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Abstract

MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor
tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor
field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data
acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in
combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to
reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with
PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in recon-
structing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion. © 2004 Elsevier Inc. All
rights reserved.

1. Introduction

MRI diffusion imaging has demonstrated many impor-
tant applications in diagnostic medicine. This method has
proved to be effective in measuring the diffusion tensor field
in brain [1], cardiac [2], and spine [3] imaging. In particular,
diffusion tensor (DT) MRI offers significant potential for
studying the fiber structure of tissues. Recently, a new
method, diffusion tensor tomography MRI (DTT MRI), was
proposed in which the tensor field is reconstructed from
measurements of projections of the tensor field [4–6]. The
tensor tomography approach assumes that a proper collec-
tion of projected scalar measurements can be obtained to
form an adequate dataset for reconstruction of the full tensor
field or, at least, of its principal directions [7]. This method
used in combination with PROPELLER (Periodically Ro-
tated Overlapping ParallEL Lines with Enhanced Recon-
struction) acquisition has the potential to reduce the number
of measurements or improve the signal-to-noise ratio (SNR)

for the same number of measurements used presently in DT
MRI.

For many years, sampling of the MR signals on a uni-
form and rectangular Cartesian grid in k-space has been the
most popular acquisition method. It is motivated by use of
an easy image reconstruction technique that applies the Fast
Fourier Transform (FFT), which has become the standard
tool in integrated software toolkits such as Matlab (Math-
Works, Natick, MA) and IDL (Research Systems, Inc.,
Denver, CO).

At present, nonuniform sampling schemes including ra-
dial [8], spiral [9], rosette [10], PROPELLER [11], or random
[12] acquisitions are gaining importance in various MRI ap-
plications. The image reconstruction techniques for arbitrary
nonregular grids can be divided into two groups. The first
group, regridding methods, provides computationally inexpen-
sive resampling and interpolation of a kernel function into a
uniform Cartesian grid. The second group includes optimiza-
tion methods that minimize a least-squares cost functional. The
optimization methods can handle nonuniform coil sensitivity
and off-resonance effects, improve noise suppression, and pro-
vide a robust solution within a larger parametric domain [13–
15]. In clinical applications, imaging methods with nonuniform
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acquisition schemes have proved their capability to suppress
noise and to reduce the artifacts caused by motion and by eddy
currents in functional [16], cardiac [11], arterial [17], and spine
[18] imaging as well as others.

The purpose of the present paper is to examine the
potential of combining the PROPELLER data acquisition
scheme with DTT. First, the conventional regridding and
FFT algorithm for the PROPELLER acquisition is pre-
sented. Then the Papoulis-Gerchberg iterative extrapolation
algorithm is implemented for incomplete sampling to re-
duce the number of acquisition samples. After extrapolating
each diffusion-weighted image, the image formation fol-
lows by the conventional FFT algorithm. Then taking a
different point of view, the DTT reconstruction can be
considered as a solution to an inverse problem that evaluates
DT parameters directly. The approach implemented with
PROPELLER acquisition can be applied for arbitrary k-
space sampling and is not limited by diffusion gradient
directions for any PROPELLER blade. For this case, we
present an iterative optimization algorithm for data acquired
with PROPELLER acquisition with rotated diffusion gradi-
ents. The proposed algorithms are applied to both simulated
and MRI-acquired data. The DTT method utilizing PRO-
PELLER with rotating gradients is compared to the conven-
tional DTI using computer-generated cardiac phantom data.

2. PROPELLER acquisition

Data collection for DTT MR imaging is based on the
PROPELLER method proposed in Ref. 11. The resulting
k-space trajectories are shown in Fig. 1. K-space is filled out
by rotating blades around the k-space center. The sample
spacing in the readout direction satisfies the Nyquist crite-

rion. The number of phase encodings in each blade and the
total number of blades are such that the pattern covers the
whole of k-space without gaps.

The governing idea of PROPELLER is that the circular
region at the center is overlapped by many blades. Due to
this redundancy, effective data correction can be performed
to reduce motion artifacts and to improve the SNR because
blades overlap in the vicinity of the k-space center, and this
can be used to average the signal.

To estimate the diffusion tensor in each voxel, one has to
collect a sufficient amount of diffusion-weighted data. The
PROPELLER method offers an opportunity to choose the
diffusion gradient direction while acquiring each k-blade.
The conventional approach is to acquire a full set of PRO-
PELLER data with a fixed direction of the diffusion gradi-
ent and to reconstruct the corresponding component of the
tensor. By repeating this for three (in two dimensions) or six
(in three dimensions) appropriately chosen directions, the
whole tensor can be recovered. An alternative approach con-
sists in rotating the diffusion gradient simultaneously with the
rotating k-blade. This method is flexible and might provide
more complete information to reconstruct the DT. It offers a
potential to reduce the total amount of diffusion-weighted data
without degrading the accuracy of the reconstructed image.

3. Reconstruction methods

According to several simplifying assumptions [19], the
diffusion-weighted image reconstructed from a complete set
of k-space samples P�(k) measured with a fixed direction ��
of the diffusion gradient can be modeled as

p��r� � ���1P���r�

� �
�

P��k�e�2�jk · rdk

� ��r�e�b��� T · D�r� · �� �, (1)

where � is the proton density, D is a second-order diffusion
tensor, and

b � ��G��2�� �
�

3
� , (2)

is a function of the amplitude G, width �, and spacing � of
the diffusion gradients [20]. The constant � is the spin
gyromagnetic ratio. In Eq. 1, � is the support of the Fourier
transform of p�.

For a PROPELLER acquisition, we define the region of
k-space covered by one blade by B�, where the subscript �
refers to the direction of the read-out gradient for this blade.
The spatial image p̃�(r,�) obtained from this blade is then:

p̃��r, � � � �
B�

P��k�e�2�jk · rdk, (3)

Fig. 1. An example of PROPELLER k-space. It contains 12 uniform
sampled blades with 256 and 32 encodings in readout and phase directions,
respectively.
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where �� is the direction of the diffusion gradient. The
images p̃�(r,�) have low resolution in the direction ortho-
gonal to �� but they can be used for fast testing and for
identifying a region of interest (ROI) before a final high-
resolution reconstruction.

The blade data should be corrected for phase inconsis-
tency before being combined to form the complete image.
The application of diffusion gradients and the motion of the
object and equipment can cause significant displacement of
the actual center of the k-blade spectrum from its formal value.
We apply a phase correction algorithm for each blade by
locating its signal maximum, then adjusting the intensity of the
blade and its position in k-space. This correction procedure
prevents blurring and shadowing in the reconstructed images.

The DT is a symmetric tensor depending on the voxel
location r, and it can be expressed in terms of Cartesian
coordinates as

D�2� �r� � �Dxx �r� Dxy �r�

Dyx �r� Dyy �r�� ,

D�3� �r� � �Dxx �r� Dxy �r� Dxz �r�

Dyx �r� Dyy �r� Dyz �r�

Dzx �r� Dzy �r� Dzz �r�
� (4)

and has three (in two dimensions) and six (in three dimen-
sions) independent components, which can be diagonalized
to obtain the principal diffusivities and the corresponding
principal directions at each voxel. This diagonalization can
be done analytically or using a least-square method, which
is more robust for noisy real-world data acquisitions.

The choice of a fixed or moving diffusion encoding unit
vector �� determines the method of reconstruction of the DT
at image voxels.

3.1. Conventional gridding algorithm

We first consider the case where a complete PROPEL-
LER data set is measured with a fixed direction �� of the
diffusion gradient (Fig. 2a). These data consist of a set of
irregularly spaced k-space samples P�(kx,i,ky,i),i 	 1, . . . ,

M, and can be reconstructed using a standard gridding
procedure to estimate the diffusion weighted image p�(r) in
Eq. 1. The reconstruction consists of two steps:

1. Interpolate the irregular k-space samples P�(kx,i,ky,i)
onto a N 
 N Cartesian grid, (kx, ky) 	 (i, j), i, j 	
1, . . . , N.

2. Apply the inverse two-dimensional FFT to P�(i, j), i,
j 	 1, . . . , N.

We summarize for completeness the gridding procedure
[21], neglecting in the rest of this section the fixed subscript
�� . Represent the set of sampled PROPELLER data by a
function

PS�kx, ky� � P�kx, ky� · S�kx, ky�, (5)

where the sampling function S is

S�kx, ky� � �
i	1

M

��2��kx � kx,i, ky � ky,i�, (6)

is a set of Dirac impulses at the N k-space samples kx,i,ky,i,
i 	 1, . . . , M located on the irregular grid defined by the
PROPELLER blades. In the gridding procedure, an inter-
polated spectrum is defined by convolving the sampled data
with some spectral window function C. To compensate for
an undersampling/oversampling weighting in S(kx,ky), we
define an area density function W(kx,ky) as

W�kx, ky� � S�kx, ky�*C�kx, ky�. (7)

The corrected k-space dataset results in

PC�kx, ky� � ��PS�kx, ky�

W�kx, ky�
�*C�kx, ky��

· �
i, j	1

N

��2��kx � i,ky � j�. (8)

The corresponding reconstructed image pC is given by
the inverse Fourier transform of PC

Fig. 2. Diffusion gradient encoding schemes. (a) Diffusion gradient direction is the same for all blades (for regridding � FFT algorithm). (b) Gradient
direction is the same for a specific set of blades (for iterative extrapolation algorithm). (c) Gradient direction is different for each blade, rotated with the blade
(for iterative optimization algorithm).
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pC�x, y� 	 ���p�x, y�*s�x, y��*�1�s�x, y� · c�x, y���

· c� x, y�}* �
i, j	1

N

��2�� x � i, y � j�, (9)

where *�1 operation refers to a deconvolution. Finally, the
transformed data are divided by c(x,y) to compensate for
roll-off in the inverse Fourier transform of C(kx,ky).

pC� x, y� � pC� x, y�/c� x, y�. (10)

In our work, we have developed an efficient regridding
procedure taking into account the numerical implementation
experience in Refs. 21 and 22. The important part of the
algorithm is a choice of convolution window function. The
Kaiser-Bessel window was used. In one dimension, the
discrete Kaiser window function has the form

C�k�		 I0�B
1�� k

L
�2� /I0�B�, if �L 	 k 	 L,

0, otherwise,

(11)

where L is window length, and I0 is the 0th-order modified
Bessel function of the 1st kind. The determination of an
optimal value of B is similar to that described in Ref. 22.

A rotating vector �� can potentially provide more com-
plete information about model parameters, make recon-
struction more stable, and/or require a smaller dataset for
the same image quality. Such results were observed earlier
in ultrasonic transmission tomography for studying aniso-
tropic composite materials [23]. It has also been proposed
for DT MR imaging [25]. In the present paper this idea is
extended to a two-dimensional PROPELLER acquisition
technique.

3.2. Papoulis-Gerchberg iterative extrapolation algorithm

The amount of data acquired in a PROPELLER acquisi-
tion can be reduced by collecting for each direction �� of the
diffusion gradient only a subset of the blades, as shown in
Fig. 2b. In two dimensions, for instance, we need three direc-
tions �� to recover the DT, such as �� 1 	 (1,0), �� 2 	 (0,1), and
�� 3 	 (1/�2 ,1/�2 ). One way to reduce the data size would
then consist in acquiring only one out of three blades with each
direction �i. We denote by Bi � �, i 	 1, 2, 3 the region of
k-space covered by the blades acquired with a diffusion gra-
dient along �i.

Due to the redundancy of the blades at k-space center, the
low frequency components of p�i (r) can still be accurately
recovered from these incomplete data in Bi. At higher fre-
quencies, however, data are missing in triangular shaped
gaps in k-space, as shown in Fig. 2b. An accurate recon-
struction of p�i (r) therefore requires extrapolating the mea-
sured signal P�i (k),k � Bi into the gaps � � Bi. This
problem is an example of the general ill-posed problem of
extrapolating band-limited signals. These problems are ill-
posed but a solution can be obtained by relying on the prior

knowledge that the inverse Fourier transform of the signal
has a bounded support. Thus, in our case, we know that
p�i (r) 	 0 outside some region r � Q determined by the
imaging FOV.

Denoting by P̃n
i (k),k � � the estimated extrapolated data

at iteration n, the Gerchberg and Papoulis algorithm [24]
proceeds by alternatively modifying the data in k-space and
in image space. Starting with

P̃0
i �k� � 0, k�Bi, (12)

each iteration consists of three steps,

1. In k-space, substitute the measured data in the sam-
pled region Bi:

P̃n�1
i �k� � Pi�k� k � Bi

� P̃n
i �k� k�Bi (13)

2. Take the inverse Fourier transform and truncate the
resulting image outside the known support Q:

p̃n�1
i �r� � ���1P̃n�1

i ��r� r � Q
� 0 r�Q (14)

3. Take the Fourier transform to get the next estimate of
the signal,

P̃n�1
i �k� � ��p̃n�1

i ��k� (15)

The stopping criterion is determined by a small positive
threshold 


�P̃n�1
i � P̃n

i �L2
� 
. (16)

After stopping the iteration at the N-th step, the compo-
nent of the DT is recovered from Eq. 1 as

�� i
TD�r��� i � �

1

b
log

1

��r�
��1 �P̃N

i ��r�. (17)

3.3. Iterative optimization algorithm

An iterative optimization algorithm was developed to
reconstruct the diffusion tensor D from a PROPELLER
acquisition with rotating gradients (Fig. 2c). Under circum-
stances of noisy acquisition and data incompleteness, this
problem has a nonunique and ill-conditioned solution. Reg-
ularization methods should be applied to impose the desir-
able properties to the solution. Schematically, a least-
squares inversion technique for minimizing the cost
functional L can be expressed as

L � �WP�P � P̃��L2
� Lprior�WDD�, (18)

where P,P̃ are measured and predicted MR data, WP,WD

are data and model parameter weighting matrices, respec-
tively, Lprior is a stabilizing functional carrying the specific
constraint information, and  is a regularization parameter.
Because the signal contains in-phase and out-of-phase com-
ponents, the norm in Eq. 18 denotes a complex conjugate

142 A.B. Cheryauka et al. / Magnetic Resonance Imaging 22 (2004) 139–148



expression. For simplicity, in this implementation we use
identity weighting matrices WP and WD. In iterative nu-
merical realization the minimization problem results in a
converging sequence {L}n

min��P � ����r� exp�� bP�mn���2 � nLprior�mn�,

n 	 1, . . . , N, (19)

where m 	 [Dxx,Dyy,Dxy] is the vector of unknowns com-
posed of DT values within an ROI. The symbols n and N are
the iteration index and total number of iterations, respec-
tively. At each iterative step we solve a linearized problem
using the regularized conjugate gradient method. The de-
termination of the regularization parameter n at each iter-
ation uses an explicit noise estimation technique [25]. An
important aspect of solving linearized inverse problems is to
compute a Jacobian matrix, which is composed of first
derivatives with respect to components of the vector of
unknowns (DT components). The derivative over the signal
acquired within each blade with specific direction of diffu-
sion-weighted gradient �� can be expressed as follows

�P�

�Dij�r�
� �� p��r�� � b�i�j�i, j��,

�i, j � � 1, if i � j,
2, if i � j.

(20)

where p� is the diffusion-weighted image in Eq. 1.
If the length of the vector m, Nm, is less than the number

of data samples Nd in the vector P, the conjugate gradient
converges to the least-squares solution (Nm� Nd, overde-
termined problem). For underdetermined problems, where
Nm� Nd, the conjugate gradient iterations converge to the
minimum norm solution.

The stabilizing functional L was implemented as a global
total variation (TV) functional [26]

L�m� � �
ROI

��m�dxd y, (21)

where function m is a continuous analog of the vector m.
The advantage of the TV stabilizer is that the function
m(x,y) need not be differentiable, i.e., discontinuities in the
spatial distribution of the material properties (DT tensor
components) are allowed.

4. Results

4.1. Spin density imaging

We have tested the algorithm described above for the
case of a constant (zero) diffusion gradient. We have ap-
plied the direct (regridding � FFT-based) technique using
numerical and realistic phantom data to reconstruct the
two-dimensional proton density function �(r), defined in
Eq. 1.

First, we verified the reconstruction algorithm using
purely synthetic data. The original target is the well-known
Shepp-Logan phantom, which contains 10 ellipses of vari-
ous intensity and geometry. Its Fourier domain spectrum
can be calculated analytically with any desired accuracy.
The resulting Fourier spectrum of the Shepp-Logan phan-
tom is the sum of the ellipse’s spectra. The Fourier spectrum
of an inclined ellipse can be found, for instance, in Ref. 14:

P(k, �)	�
i	1

10

Pi (k, �),

Pi(k, �) 	 �iAiBi exp��j2�kticos��i � � ��
J1 �2�ai �� � k�

ai �� � k
,

ti 	 
xi
2�yi

2, �i 	 arctan�yi

xi
�,

ai �� � 	 
Ai
2 cos2 �� � i� � Bi

2 sin2�� � i�, (22)

where �i is the intensity and Ai,Bi are the axes of the ith

ellipse, (xi,yi) is its center point, and i is its rotation angle
relative to the x axis. The function J1 stands for Bessel
function of the first kind and the first order.

The k-space acquisition scheme is shown in Fig. 1. It
includes 12 blades with 32 lines in the phase-encoding
direction and 256 frequency samples in the readout direc-
tion for each blade, respectively. Two reconstructed 256 

256 images are demonstrated in Fig. 3. The one shown in
Fig. 3a is obtained by the regridding � FFT algorithm, and
another, Fig. 3b, is reconstructed using the iterative optimi-
zation method. The images reconstructed from PROPEL-
LER data by both techniques are almost equal to the image
that would be obtained with a spin echo sequence (conven-
tional k-space imaging) and approaches the quality of the
original. However, due to the lack of data at the corners of
k-space, the reconstructed images have some insignificant
artifacts in the corners of the rectangular FOV (Fig. 3a).
One may consider a circular FOV (or circular mask) for
PROPELLER similar to radial or spiral acquisitions. The
image in Fig. 3b has been reconstructed defining voxel
unknown intensity inside the circular area of the square
region.

We also used realistic phantoms and volunteers. Data
were acquired on General Electric and Philips scanners. The
agar phantom shown in Fig. 4 was reconstructed from data
acquired on a GE 1.5 T scanner. The acquisition parameters
are: 22 
 22 cm FOV, 4 mm slice thickness, TE/TR 	
200/3000 ms, b 	 0 attenuation constant, 24 blades with 16
phase lines and 256 readout samples. PROPELLER MRI is
expected to work well for noisy or motion-affected realistic
data (scanner vibrating during data acquisition). The next
example in Fig. 5 was acquired on a Philips (Picker) 1.5 T
scanner. The acquisition parameters are: 30 
 30 cm FOV,
5 mm slice thickness, TE/TR 	 135/800 ms, b 	 0 atten-
uation constant, 16 blades with 32 phase lines and 256
readout samples.
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4.2. Diffusion tensor imaging

Here, we show examples of two-dimensional image re-
constructions using the above described algorithms.

The computer-generated phantom imitates two cylindri-
cal elements of an anisotropic cardiac wall with an isotropic
blood region inside each wall. The spin density of heart
tissue and blood has values [0.8,1.0] and [0.6,1.0] for the
upper and lower cylindrical elements, respectively (Fig. 6a).
The structure of the diffusion tensor components Dxx,Dyy,
Dxy is shown in Fig. 6, b–d. The diffusion tensor eigenval-
ues of anisotropic myocardium [1.6,1.2] and isotropic blood
[2.4] are for the upper element and [1.2,1.0] and [2.0] for the

lower element, respectively (Fig. 6, e, 1st eigenvalue; f, 2nd

eigenvalue). The eigenvector maps are represented in Fig. 6,
g and i, 1st eigenvector, h and j, 2nd eigenvector. The
attenuation constant, b value, is 1. Phantom resolution is 64

 64 and the vector fields in Fig. 6, g and h have resolution
32 
 32 for convenient visualization. Three percent random
noise was added to real and imaginary parts of the MR signal.

Fig. 7 demonstrates the results obtained by a conven-
tional “regridding � FFT” technique. It is known that this
method requires at least three diffusion-weighted datasets
acquired with noncollinear diffusion gradient directions.
Our reconstruction results with three datasets are repre-
sented in the form of the distribution of 1st and 2nd eigen-

Fig. 3. The predicted image from computer-generated data obtained for Shepp-Logan phantom. The 256 
 256 image reconstructed (a) by regridding � FFT
procedure; and (b) by iterative optimization algorithm.

Fig. 4. The image of agar phantom from data acquired with GE scanner.
Fig. 5. Patient image reconstructed from data acquired with Picker (Philips)
scanner.
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values and the maps of 1st and 2nd eigenvectors. The diffu-
sion gradient directions, unit vectors (�� j, j 	 1,2,3), were
chosen as [1,0], [1/�2, 1/�2], and [0,1].

The second example, Fig. 8, was obtained by the iterative
extrapolation technique. One diffusion-weighted dataset is
acquired. The PROPELLER k-space includes 12 blades,
where [1,4,7,10] blades correspond to the first stationary
gradient direction �� 1 	 [1,0], [2,5,8,11] blades correspond
to �� 2 	 [1/�2, 1/�2], and [3,6,9,12] blades correspond to
�� 3 	 [0,1], respectively. For each set of blades we apply the

Papoulis-Gerchberg iterative extrapolation algorithm. It re-
quires 10 iterations to achieve a relative error of 0.05. The
resultant DT parameters are obtained as described above for
the regridding � FFT procedure.

The iterative optimization reconstruction was applied
for measurements with a continuous rotating diffusion
gradient. In our experiment we used only one dataset
acquired with one diffusion gradient direction in each
blade coordinate system. This direction was set up along
blade readout. The iterative optimization took seven it-
erations to achieve a relative error of 0.05. The results are
shown in Fig. 9.

The reconstructed DT parameters in Figs. 7–9 have the
same level of accuracy. However, in the rotating gradient
case (DTT MRI), one can significantly reduce the amount of
data and the acquisition time which is three times less than
conventional two-dimensional DTI. Also, it was shown ear-
lier that DTT leads to a unique reconstruction of principal
directions, whereas the conventional MRI technique (sta-
tionary diffusion gradients) leads to an ambiguous recon-
struction of principal directions when the same number of
measurements is used [7].

Fig. 6. The numerical phantom imitating two cylindrical cardiac walls with
inner blood regions: (a) the proton density; DT components (b) Dxx, (c)
Dyy, (d) Dxy; (e) 1st and (f) 2nd principal eigenvalues; (g and h) 1st and (h
and j), 2nd principal vector maps, respectively. The colormaps in panels (i)
and (j) describe horizontal vector component using red color and its
vertical component using green color.

Fig. 7. The results of image reconstruction using regridding � FFT algo-
rithm and three diffusion-weighted datasets: (a) 1st and (b) 2nd eigenvalues;
(c and e) 1st and (d and f) 2nd eigenvectors, respectively.
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5. Discussion

MR DT imaging covers two aspects of data acquisition:
an acquisition strategy and the choice of a diffusion gradient
encoding scheme. Existing DTI techniques often rely on
uniform Cartesian k-space sampling using EPI sequences
and apply diffusion gradients in fixed directions while an
entire dataset is acquired. The number and the choice of
noncollinear directions define a particular encoding scheme
[1]. Any of these schemes requires the acquisition of at least
three DW datasets in the two-dimensional case and six DW
datasets in the three-dimensional case. DT images are cal-
culated voxel-by-voxel and employ logarithms of DW and
non-DW. In low spin density regions of the image, such
techniques can lead to very noisy reconstructions. EPI-
based imaging has low resolution and its image quality is
seriously affected by the influence of magnetic susceptibil-
ity and eddy currents. Hence, new high-resolution and dis-
tortion-free diffusion imaging techniques are required for
detailed clinical diagnostics. PROPELLER was proposed
[11] as a two-dimensional acquisition scheme designed spe-

cifically to decrease the susceptibility and eddy current
artifacts that occur in EPI.

Because PROPELLER DTI data acquisition can take
0.5-1 min per slice, it is worth considering methods that
decrease acquisition time. The proposed method utilizing
the Papoulis-Gerchberg extrapolation algorithm explores
the idea of reducing the number of blades in the PROPEL-
LER dataset and estimating the signal in the gaps between
blades. Too little data leads to ambiguity and the loss of
resolution. On the other hand, the overlap of PROPELLER
blades at the k-space origin improves image SNR. This
tradeoff makes it possible to maintain the quality of the
resultant image. The extrapolation approach can be opti-
mized with efficient k-space sampling, implementing accu-
rate nonuniform fast Fourier analysis (NUFFT [28]), and
improving the convergence of the reconstruction algorithm.

DTT MRI reconstructs tensor fields from scalar projec-
tions of the diffusion field. Acquiring field projections from
multiple angles of view allows one to improve SNR and
reduce bulk motion. Generally speaking, a tensor field can
obviously have a very complicated structure, much more so
than a scalar field. For instance, an arbitrary tensor field can
be decomposed into rotational and irrotational tensor field

Fig. 8. The results of image reconstruction using iterative extrapolation
algorithm and one diffusion-weighted dataset: (a) 1st and (b) 2nd eigenval-
ues; (c and e) 1st and (d and f) 2nd eigenvectors, respectively.

Fig. 9. The results of image reconstruction iterative optimization algorithm
and one diffusion-weighted dataset: (a) 1st and (b) 2nd eigenvalues; (c and
e) 1st and (d and f) 2nd eigenvectors, respectively.
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components [4]. The DTT approach exhibits an intrinsic
flexibility in evaluating tensor fields with dominant contri-
butions from the rotational component, which, for example,
describes appropriately major properties of the human spine
[18]. It was also shown that DTT can be an efficient tool for
mapping the principal directions of fiber structures in mus-
cle tissue and myocardium, if the principal values of those
objects are known from side measurements [7]. Moreover,
DTT MRI with rotating gradients provides a unique recon-
struction of the principal diffusion directions, whereas con-
ventional MRI acquisition with stationary gradients leads to
ambiguous results in some situations. DTT uses a large
number of angular projections to achieve needed image
resolution and satisfy Nyquist criterion. Unfortunately, this
feature is not easily implemented on existing MR hardware,
which was designed primarily for nonrotating image acqui-
sition.

The rotating blade acquisition of PROPELLER is not a
true tomographic measurement. Although it acquires mul-
tiple blades, the PROPELLER scheme has a small number
of strip segments, typically from 6 to 24. This makes the
realization more practical. Each DW blade is produced by a
fast spin-echo sequence, and the entire blade is rotated,
rather than trying to rotate each line of k-space. PROPEL-
LER DTT with rotating diffusion gradients is able to pro-
vide complete directional information for diffusion tensor
reconstruction. This feature allows a dramatic reduction of
the amount of DW data. In this approach, the reconstruction
of the tensor field appears as a nonlinear inverse problem
that can be solved by any iterative optimization method.
Because the problem exhibits intrinsic ill-posedness, regu-
larization should be applied to keep the solution in the
vicinity of an a priori model estimate and to control its
smoothness. The most challenging optimization problem
within the optimization framework is storing the informa-
tion in onboard memory. To reduce memory requirements,
precomputing, on-fly calculations, and parallelization
should be applied where possible.

In summary, the proposed method, DTT MRI with PRO-
PELLER acquisition, promises to improve image quality
when evaluating anisotropic tissues. The PROPELLER se-
quence has a natural immunity to artifacts caused by mo-
tion, eddy currents, and magnetic susceptibility effects. Ro-
tating the diffusion gradient with the PROPELLER
acquisition makes it possible to reduce the amount of data
that must be acquired, thereby improving efficiency. In this
work, we have tested several approaches to PROPELLER
MRI with numerical simulations and phantom image acqui-
sitions.
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