
Medical Image Synthesis via Monte Carlo Simulation  MICCAI 2002 Paper Submission 

Medical Image Synthesis via Monte Carlo Simulation 
 

James Z. Chen, Stephen M. Pizer, Edward L. Chaney, Sarang Joshi 
Medical Image Display & Analysis Group, University of North Carolina, Chapel Hill, USA 

 
 

Abstract 
 

A large number of test images and their “ground truth” segmentations are needed for performance 
characterization of the many image segmentation methods. In this work we developed a methodology to form a 
probability distribution of the diffeomorphism between a segmented template image and those from a population, 
and consequently we sample from these probability distributions to produce test images. This method will be 
illustrated by producing simulated 3D CT images of the abdomen for testing the segmentation of the human right 
kidney. 
 

1. Introduction 
 

This work explores a methodology for generating realistic, synthetic medical images for characterizing the 
performance of segmentation methods. It is intended to allow more effective validation and inter-comparison of 
algorithms that are designed to perform objective, reproducible segmentations of anatomical objects from medical 
images. 

Test images intended for performance characterization should be able to represent the modality of interest 
and contain the “ground truth” segmentations, against which a particular segmentation method can be evaluated. 
Also, these images should represent statistical variations in the shape of target object across a population and span 
the range of image qualities found in a clinical setting. These properties mandate a large set of test images. In 
practice, however, it is a highly demanding task to define the ground truth segmentations for so many test images 
because 1) the manual segmentation by medical experts is a laborious and expensive process; 2) it has been shown 
that there exists a large variation even among the experts regarding the “correct” segmentations [Gerig 2001] due to 
subjective bias and the dependence on objectives. 

A promising approach that could partially replace the costly performance evaluation procedures is to make 
use of synthetic images generated from simulations. Several statistical models of shape and appearance variability 
have been investigated and applied to perform various medical image analysis tasks. Examples are Active Shape 
Models (ASM) [Cootes 1994] and Statistical Deformation Models (SDM) [Rueckert 2001]. These methods can also 
be adapted to generate synthetic images for performance characterization by sampling the distribution of variability. 
But in building an ASM, a set of segmentations of the shape of interest is required as well as a set of landmarks that 
can be unambiguously defined in each sample shape. The manual identification of the point correspondences is a 
time-consuming task and is prone to the subjective bias. In the SDM method, this difficulty is removed by applying 
an automated nonlinear image registration. However, since the sample points in this model are distributed in the 
entire image volume, the computational complexity is non-trivial. In our method, the shape of the target object is 
represented via a limited number of automatically determined fiducial points. The computational efficiency is thus 
dramatically improved. Similar to the SDM method, the point correspondence across a population is established by a 
nonlinear, diffeomorphic image registration. 

This work focuses on simulating the shape variability of the target anatomical object as observed across a 
population. The methodology will be laid out first, which includes the scheme of fiducial point shape representation, 
the training process, the shape analysis and the subsequent image synthesis. Then, this method will be applied to 
synthesize the CT images of the human abdomen as a demonstration. Although the illustration here is limited to a 
single-organ system, this method should be applicable for generating synthetic images of any anatomical structure in 
principle, including multi-organ complexes. 
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2. Methodology 
 
2.1 Overview 

Our method for generating realistic, synthetic medical images proceeds in two steps: training and sampling. 
In the training phase, the shape of the target object is studied, from which a distribution of its variation is derived. In 
the sampling phase, a large number of synthetic images can be produced by randomly sampling from the probability 
distribution. 

For training purposes a set of clinical images containing the target object need to be collected, so as to 
capture the shape variations of the anatomical object of interest across the population. These images will be referred 
to as the training images {It}. One of {It} will be chosen as the template image I0, and other images will be 
registered to I0 via a nonlinear, diffeomorphic warp function Ht: It ≅ Ht(I0). Given a predefined segmentation S0 of 
the target object in I0, {Ht(S0)} can be analyzed to find its probability distribution (referred to as the “normal shape 
domain”, or NSD). Artificial warp functions, and consequently the synthetic images and their segmentations, can 
then be generated by randomly sampling in the NSD. Details of this new method will be developed in the following 
sections. 
 
2.2 Training Image Segmentation 

Training defines the degrees of freedom that will characterize a typical object through observed shape 
variations across a population. The target object in a training image It can be recognized through an image 
segmentation St, which can be achieved via an automated image registration of It to the pre-labeled template image 
I0. The large-scale fluid deformation method [Christensen 1997] is used in this work for the image registration. This 
method models I0 as a highly viscous fluid allowing for large-magnitude, nonlinear deformations, and the resulting 
registration function Ht (from I0 to It) is represented as a diffeomorphic vector field. Before applying the fluid 
deformation method, the intensity and volume of each It needs to be normalized to that of I0. Then, I0 is registered to 
It through a diffeomorphic function Ht: 

)( 0IHI tt ≅  (1) 

It is assumed here that the correspondence between these images established by {Ht} is the “true correspondence”. 
Some registration error may exist, but it should not be significant enough to affect the subsequent shape analysis. 

Assuming the target object in I0 has been labeled a priori (denoted as S0), then that in It (denoted as St) can 
thus be defined by applying the same warp function Ht on S0, 

)( 0SHS tt =  (2) 

Because the exact definition of the ground truth S0 is still an open research question, we propose to define 
the “ground truth” S0 by the consensus of an expert panel at this stage. 
 
2.3 Fiducial Point Shape Representation 

The shape of an object is defined as those aspects of its geometric conformation that are invariant under 
similarity transformations, for example, its topology. In this writing, the term “shape” can refer to either a specific 
instance of an object (for example, “the shape of a kidney in one CT image”) or a class of objects (for example, “the 
shape of the human right kidney”, or “shape and its variations”). Its exact connotation will be clear from the context. 
It is assumed that the shape of an object can be represented sufficiently by its surface when its conformation is 
simple, which is the case for many anatomic structures at a coarse scale level. A fiducial point shape representation 
made from a limited number of points on the surface will be developed next to represent an object’s shape according 
to its variation in the training set. The shape analysis then becomes the study of the displacement distributions of 
these points. 

Given a predefined template shape S0, and a set {Ht} that registers I0 to {It}, the various shapes of the 
object of interest in {It} can be represented by (S0, {Ht}). Assume that each Ht can be encoded into the 
displacements of a limited number of points, from which another deformation field H't can be constructed to 
reproduce the deformation around Ht (S0). Then the representation of the various shapes is further simplified to the 
locations of these individual points and their corresponding displacements. The algorithm employed here to 
construct H't from a set of points and their displacements has been developed under the fluid deformation model and 
has been implemented as the “landmark fluid deformation” function in the fluid deformation program [Joshi 2000]. 
This function takes the initial and terminal locations of a set of points as the input, and generates a diffeomorphic 
deformation vector field that drives each point from its initial location to its destination. 
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This set of points on the surface of S0 is named the “fiducial points”, denoted by {Fm}, (m ∈ [1, M], M 
being the total number of fiducial points in the representation). In the extreme case of including all points on the 
surface of S0, we would have an enumerative representation of the surface. However, since the locations of these 
points are highly correlated due to the biological nature of the target object, some of these points are redundant in 
this representation and can be eliminated without losing significant information. The fiducial points predominantly 
reside at salient geometric and/or intensity features of an image. 

An iterative procedure has been developed to find an optimal set of fiducial points in representing the shape 
of an anatomical object adequately and efficiently such that, on the average over all training samples, the difference 
between Ht and H't 
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is reduced below a predefined threshold on the surface of S0, where N0 is the number of voxels on the surface of S0 
and T is the total number of training samples. A surface curvature based geometric screening can be employed to 
initialize the seed point set – assuming large surface curvature implies important shape conformation, the first few 
points with the highest surface curvature are selected to define the initial fiducial point set {Fm}. Then the following 
algorithm can be applied to each training case It (t ∈ [1, T]) to find the optimal fiducial point selection. 

1. Apply the training warp function Ht on {Fm} to get the warped fiducial points: Fm,t = Ht(Fm); 
2. Reconstruct the diffeomorphic warp field H't for the entire image volume based on the displacements {Fm,t 

- Fm}; 
3. Locate the point pt on the surface of S0 that introduces the largest discrepancy between Ht and H't: Ht(pt) - 

H't(pt) = max{ | Ht(x) - H't(x) | }, where pt, x ∈ the surface of S0; 
4. In the point set {pt} established from all training images, find the point p that introduces the largest 

discrepancy in {Ht(pt)-H't(pt)} and add it to the fiducial point set: {{Fm}, p}⇒{Fm}; 
5. Loop back to step 1 until an optimization criterion is reached. 

The optimization criterion can take various forms and one example will be demonstrated in Section 3. 
 
2.4 The Normal Shape Domain & Its Validation r

Denote by  the collective coordinates of the fiducial point set {F0f m}, 
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and  the displaced fiducial points {Ftf
r

m,t} (t = 1, 2, … T). So 
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=  (5) 

r
The object’s shape in It can be represented by tf  and the subsequent shape analysis will be on { }. tf

r

tf
r

 is a single point in a 3M dimensional space (M being the total number of fiducial points in the shape 
representation). A set of T training shapes gives a cloud of T points in this 3M-D space. Assume that these points lie 
within some region of the space, which is named the “normal shape domain” (NSD). Every 3M-D point within this 
domain will give a shape definition f

r
 that complies with those in the original training set. Thus new shapes can be 

generated systematically by sampling in this NSD. Also assuming that the NSD is approximately ellipsoidal, we can 
calculate its center and its major axes to give an analytical definition. r

For a set of T training samples represented by { tf }, the mean shape is 
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The principal axes of the 3M-D ellipsoid can be calculated by applying a principal component analysis to the 
deviation in the data from the sample mean: 

><−= fffd tt

rrr
 (7) 

 3 



Medical Image Synthesis via Monte Carlo Simulation  MICCAI 2002 Paper Submission 

Each principal axis gives a significant mode of variation, in which the fiducial points tend to move collectively as 
the shape varies. These principal axes are described by the unit eigenvector { kpr } (k = 1, 2, … 3M) of the 
covariance matrix S formed from the deviations: 

kkk ppS rr λ=  (8) 

Most of the variation can usually be explained by a small number of modes n. This means the 3M-D ellipsoid can be 
approximated by an n-dimensional ellipsoid, and the original ellipsoid has a relatively small width beyond these n 
dimensions. 

In order to assess the validity of the n-dimension NSD, another set of clinical images {Iv} of the same class 
but independent of {It} will be used. For each Iv, apply the fluid deformation registration method to register it with 
I0 via the warp function Hv. Then the corresponding displacements of the fiducial points {Hv(Fm)-Fm} will be 
reconstructed by using only the major modes defining the current NSD. Denote the reconstructed shape as vf

r
. 

Then, 
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From this, a diffeomorphic deformation field (H'v) for the entire image volume can be computed from ( ,0f
r

vf
r

) by 
using the landmark fluid deformation function introduced before. Then both Hv and H'v are applied to the template 
shape S0: Hv(S0) and H'v(S0), and these warped segmentations are compared, from which the assessment of the 
current NSD can be drawn. The NSD derived from the training process is validated if the shapes in {Iv} can be 
explained adequately, that is, they also fall into this NSD. An example of this validation process will be presented in 
Section 3. 
 
2.5 Realistic, Synthetic Image Generation 

Each point in the NSD can be reached by taking the mean shape and adding a linear combination of the 
eigenvectors. Therefore, a new shape complying with those training samples is 
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r
where  is the component coefficient of kb kp . As the variance of each mode kpr  is kλ , suitable limits are typically 
of the order of 

kkk b λλ 33 ≤≤−  (11) 
rr

From the original and the displaced fiducial points ( sff ,0 ), a deformation field (Hs) can be obtained by 
applying the landmark fluid deformation function. A synthetic image Is and its “ground truth” segmentation will 
then be defined by 
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A large number of realistic, synthetic images with known ground truth segmentations can be thus produced and used 
for characterizing the performance of the image segmentation methods. 
 
 

3. Application: Synthetic Images of the Human Right Kidney 
 
3.1 Training Image Segmentation 

A pool of 36 clinical CT images {It} was prepared and one of them was selected as the template I0, which 
has clear kidney region, low noise, minimal breathing artifacts and is close to the mean geometric conformation of 
all the training samples. The right kidney in I0 was then carefully segmented by medical experts and was used as the 
ground truth S0. For each training image It, its intensity was normalized to that of the template I0, and its resolution 
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was resampled to  via trilinear interpolation. To improve the convergence of registration, the 
MIRIT program [Maes 1997] was applied first to find the similarity transformation between each (I

mmmmmm 222 ××
0, It) pair. 

As image quality varies, parameters in the fluid deformation program were fine-tuned in each case to give 
the best registration between I0 and It, as judged by visual inspection. The tri-orthogonal views of one training case 
are shown in Fig. 1. The contour superimposed over each image indicates the segmentation of the kidney – the 
manual segmentation for the template and the warped segmentation for the training image. 

 

   

 
Axial 

 
Sagittal 

 
Coronal 

Fig. 1: Training image segmentation: the template (1st row) and one 
training sample (2nd row). 

 
3.2 Fiducial Point Shape Representation 

The algorithm developed in Section 2.3 was applied to find the optimal point set for this data. The 
optimization criterion was taken from a previous independent study [ref], in which a comparison was made between 
two human raters’ manual segmentations on a subset of the human kidney CT images used in this work. It was 
found that the average volume overlap between these two manual segmentations was 94.0%, and the average surface 
distance was 1.2mm apart, as measured by VALMET. Thus the iterative procedure was terminated when, on the 
average over all training samples, the similarity between Ht(S0) and H't(S0) surpassed the statistics from the human 
raters’ comparison. In the fiducial point set initialization, a geometric screening selected the top 32 points with the 
highest surface curvature. The progress of optimization is graphed in Fig. 2. 
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Fig. 2: Fiducial point set optimization for the human right kidney. 

 
In this chart, each of the three statistical indices has been averaged over all 36 training samples. Both 

surface distance measurements are the averaged magnitude over all the voxels on the surface. The curve in light gray 
(labeled “<Ht–H't Surface Distance>”) shows the average point-wise (according to the diffeomorphisms) error 
between Ht and H't on the surface of kidney. The curve in darker gray (labeled “<Closest Surface Distance>”) 
shows the averaged nearest surface distance from every point on surface of Ht(S0) to that of H't(S0), so it is 
necessarily lower than the light gray curve. The curve in black gives the volume overlap between these two warped 
segmentations. The last two indices are calculated by the VALMET program [Gerig 2001], which compares and 
evaluates a pair of segmentations. Both distance measurements are in voxel units, and their ordinate is on the left. 
The volume overlap is measured in percentage, and its ordinate is on the right. The behavior of these curves is as 
expected – as more points are added into the fiducial point set, the average volume overlap increases monotonically 
and the distance measurements decrease correspondingly. 

In representing the human right kidney, the volume overlap index has already exceeded 90% when only 
about 30 fiducial points are selected. Intuitively, this few points can hardly represent a shape in detail even for a 
simple 3D object. In segmentation comparison, the volume overlap measurement alone is sometimes misleading and 
should be used with great caution. We therefore report the average surface distance index in combination with this 
volume overlap index, and we sometimes even include the quartile statistics for more detailed analysis. 

Applying the optimization criteria, the fiducial point shape representation for the human right kidney was 
established to comprise 88 points on the surface of S0, with <Volume Overlap> = 94.2%, <Closest Surface 
Distance> = 0.591, and < Ht–H't surface distance> = 0.743. 
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3.3 Normal Shape Domain 
MATLAB was used for the principal component analysis. Although the covariance matrix in this case was 

a 264-D ( 3 ) square matrix, its rank was only 35, because there were only 36 training samples in this 
study. Therefore, only the first 35 modes were non-trivial and the NSD in this model case was defined by the first 
seven modes (see Table 1). They covered more than 88% of the total variance observed in the training samples. In 
Fig. 3, the first three modes are shown at different variations. 

26488 =×

 
 

Mode Variance ( kλ ) Coverage (%) 

1 370.59 59.07 
2 177.33 11.51 
3 142.59 8.45 
4 81.76 3.66 
5 52.21 2.81 
6 47.76 1.57 
7 31.33 1.34 

Table 1: Major modes of kidney shape variation. 
 

 

Mode I 

    

Mode II 

    

Mode III 

    
 

kλ2−  kλ−  kλ+  kλ2+  

Fig. 3: First three modes at different variations. 
 

To validate the NSD derived from the principal components analysis, four clinical CT images were used 
and they will be referred to as {IV1, IV2, IV3, IV4}. Following the validation scheme outlined in Section 2.4, the 
warped segmentation pair (Hv(S0), H'v(S0)) in each case was compared by the volume overlap and the average 
surface distance metrics evaluated by VALMET. The result is tabulated in Table 2. To put these numbers into 
perspective, the same procedure had been applied to all the training samples {It}, and the average value was taken 
for each of these evaluation metrics. It was found that, among all the training cases, the average volume overlap 
between Hv(S0) and H'v(S0) was 90.4%, with a standard deviation (st.d.) of 1.7%; and the average surface distance 
was 0.874, with st.d. being 0.17. In every validation case, the difference of each metric (Dvolume and Dsurface in the 
table) from its average value was also measured by the corresponding standard deviation (“+” means better than 
average, “–” means inferior). 
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Case Volume Overlap (Dvolume in st.d.) Surface Distance (Dsurface in st.d.) 
IV1 92.1% (+1.000) 0.728 (+0.859) 
IV2 92.4% (+1.176) 0.759 (+0.676) 
IV3 88.4% (-1.176) 0.902 (-0.165) 
IV4 89.6% (-0.471) 1.008 (-0.788) 

Table 2: Evaluation metrics for human right kidney NSD validation. 
 

From Table 2, we see that the kidney shape in the case IV1 and IV2 have been thoroughly interpreted by the 
NSD, with both the volume overlap percentage and the average surface distance measurements being better than the 
average of those training samples. As for the cases IV3 and IV4, even though the statistics are not as spectacular, the 
surface distance evaluation metrics falls within about one standard deviation from its average value. 
 
3.4 Synthetic Image Generation 

An arbitrary large number of synthetic human kidney CT images can now be produced from the current 
system. One such image is shown in Fig. 4, in comparison with the template. Note that the kidney object in the 
synthetic image takes a different shape from that of the template, but their background conformations (structures like 
liver, lung, spinal cord, and soft tissues) are very similar. Also, the intensity contrast and the noise level in these 
images are almost identical. 
 

   

   
Axial Sagittal Coronal 

Fig. 4: The template (1st row) and one synthetic image (2nd row). 
 
 

4. Discussion & Conclusion 
 

In the model system of the human right kidney, only the kidney organ is modeled as an object (by S0) 
whereas all the other structures in the image are treated as the background intensity variation without any shape 
description. In order to produce truly realistic synthetic images for a large, multi-organ complex (for example, the 
entire abdominal region), the shape of each object in the complex needs to be studied to define an ensemble NSD of 
the system. 

Also, because one single image I0 is used as the template in this example, all the synthetic images will 
inevitably share a similar background and intensity profiles. To alleviate this situation, a template transformation 
procedure can be employed – in generating a synthetic image Is, a transformed warp function HsHt

-1 can be used in 
place of Hs, with It as the template image instead of I0. The characterization of this process is currently under 
investigation, and the result will be reported in a future publication. 

To validate the NSD derived for the model system in Section 3, four validation cases have been used. The 
result shows that this NSD is able to explain the shape variations observed in these samples. Admittedly, a decisive 
conclusion regarding the validity of the current NSD cannot be drawn based on the tests from only a few cases. 
However, this does not prevent this method from generating synthetic images for performance characterization. The 
possibly limited scope of this NSD will be corrected and expanded by further training and testing, which will always 
be an interleaved on-going process. 
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In summary, a methodology has been developed to generate realistic, synthetic medical images via the 
Monte Carlo simulation for characterizing the performance of the image segmentation methods. As a demonstration, 
it has been applied to produce the synthetic CT images of the human right kidney. A test of the m-rep deformable 
model segmentation method [Pizer 2001] is currently in progress and its result will be reported in a separate 
publication. 
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