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Abstract. This paper presents a new method for optimizing surface
point correspondences for shape modeling of multiobject anatomy, or
shape complexes. The proposed method is novel in that it optimizes cor-
respondence positions in the full, joint shape space of the object complex.
Researchers have previously only considered the correspondence problem
separately for each structure, thus ignoring the interstructural shape
correlations that are increasingly of interest in many clinical contexts,
such as the study of the effects of disease on groups of neuroanatom-
ical structures. The proposed method uses a nonparametric, dynamic
particle system to simultaneously sample object surfaces and optimize
correspondence point positions. This paper also suggests a principled
approach to hypothesis testing using the Hotelling T 2 test in the PCA
space of the correspondence model, with a simulation-based choice of
the number of PCA modes. We also consider statistical analysis of ob-
ject poses. The modeling and analysis methods are illustrated on brain
structure complexes from an ongoing clinical study of pediatric autism.

1 Introduction

Statistical shape modeling is an increasingly important tool for the analysis of
anatomical objects derived from 3D medical images. In many areas of clinical
psychiatric and neurological research, the joint analysis of complexes of mul-
tiple anatomical structures is of increasing interest because certain spectrum
disorders, such as autism, are thought to represent a confluence of several un-
derlying abnormalities, impacting the relationships between brain regions [1].
Shape models of anatomical complexes are also important tools for geneticists
and developmental biologists, who rely on quantifications of phenotype in gene
targeting studies (e.g., [2]).

We define a multiobject complex as a set of solid shapes, each representing a
single, connected biological structure, assembled into a scene within a common
coordinate frame. A multiobject complex contains shape, pose, scale, and posi-
tional information for each structure. Some examples include the segmentations
of multiple brain structures from a single MRI of a patient and sets of bones
segmented from a CT scan. Point-based models, which we consider in this work,
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represent shape by sampling each shape surface in a consistently ordered fash-
ion in order to define homologous object surface points called correspondences.
The set of correspondences for a population is then used for statistical analysis,
including hypothesis testing for group differences[3,4].

The choice of correspondence positions is a critical step for point-based mod-
eling. State-of-the-art methods typically rely on parameterized surface models
that assume a spherical or toroidal topology, and are thus not suitable for mul-
tiobject complexes, which are nonmanifold, and consist of disconnected sets of
discrete surfaces. Some parametric methods have been applied to shape com-
plexes by finding correspondences for each structure independently, and then
treating those correspondences as the marginal distributions of the multiobject
complex [5]. This particular approach, however, is not consistent with standard
methods in statistics, which generally seek to use the simplest model that ex-
plains the observed data. For point-based modeling, this means that ideally one
should seek a compact distribution for the correspondences in the full, joint
shape space. Several methods for optimizing correspondence positions for collec-
tions of single objects have been proposed (e.g.,[6,4]), but a joint optimization
for a multiobject model has yet to be demonstrated and analyzed.

Optimization in the full, joint shape space of complexes is important for sev-
eral reasons. If variabilities between individual shapes in a complex are cor-
related, for example, the marginal variabilities can appear small, and might
not otherwise be preserved. By modeling these correlations among variabili-
ties, optimization in the joint space may also produce more compact distri-
butions for correspondences. The specific choice of optimization methods is
also an important factor. Parametric approaches, for example, are potentially
limited for multiobject modeling because they typically rely on individual an-
chor shapes to regularize the optimization process, and thus would restrict the
degree to which parameterizations of different objects in the ensemble could
interact.

In this paper we propose a novel, nonparametric approach to multiobject
shape modeling that is an extension of the entropy-based particle system method
given for single objects in [4]. The proposed method optimizes correspondence
positions in the full, joint shape space of the object complex. Because statistical
analysis of shape models is in itself a difficult problem due to the very high
dimensionality of the shape space and the relatively low numbers of samples, we
also present a systematic approach to shape analysis using Hotelling T 2 tests
in the PCA space of the correspondences, with a simulation-based approach
to the dimensionality reduction. Additionally, we show how point-based models
can be used to analyze group differences in object position, pose, and scale.
The proposed modeling framework is applied to a proof-of-concept analysis of
brain structure complexes from a study of pediatric autism. Our analysis shows
group differences in shape between normal and patient populations that have
not been seen previously in this data, and show how an optimized joint model
yields results with a higher statistical power than a model constructed by simply
optimizing the marginal distributions.
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This paper builds on previous work on statistical shape parameterization and
analysis that has mostly focused on single objects. For instance, Styner et al.
[3] use geometric considerations on individual shapes, without ensemble statis-
tics. Finding correspondence positions that minimize information content (log-
determinant of the covariance matrix) across an ensemble of simple, closed, 2D
objects was first proposed by Kotcheff and Taylor[7], and extended by Davies
et al. [6] using a minimum description length (MDL) minimization to compute
3D surface parameterizations. In previous work, Cates et al. [4] propose a non-
parametric, particle-based method, which minimizes the entropy of the resulting
description. This strategy includes an explicit penalty for geometric regularity,
and thus does not require a regularization based on a-priori anchor shapes, as is
typically done with MDL. Previous results on statistical analysis of multiobject
complexes have been shown using sampled medial mesh (m-rep) representations
[8,5], but do not include an ensemble-based parameterization. The contributions
of this paper are, therefore, the generalization of an ensemble-based, statistical
correspondence algorithm to shape complexes, and a systematic statistical anal-
yses of multiobject shape, size, and pose, as well as a demonstration of hypothesis
testing with this framework in a compelling clinical application.

2 Methodology

This section gives a brief overview of the particle-system correspondence opti-
mization method for single object surfaces given in [4], and then describes its
extension to multiobject complexes of surfaces. We also present our approach to
the statistical analysis of the shape, scale, and pose in the resulting models.

Correspondence Optimization for Single Objects. We define a surface as a
smooth, closed manifold of codimension one, which is a subset of �d (e.g., d = 3
for volumes). We sample a surface S ⊂ �d using a discrete set of N points that
are considered random variables Z = (X1, X2, . . . , XN) drawn from a probability
density function (PDF), p(X). We denote a realization of this PDF with lower
case, and thus we have z = (x1, x2, . . . , xN ), where z ∈ SN . The probability of
a realization x is p(X = x), which we denote simply as p(x).

The amount of information contained in such a random sampling is, in the
limit, the differential entropy of the PDF, which is

H [X ] = −
∫

S

p(x) log p(x)dx = −E{log p(X)}, (1)

where E{·} is the expectation. Approximating the expectation by the sample
mean, we have H [X ] ≈ − 1

N−1

∑
i log p(xi). To estimate p(xi), we use a non-

parametric Parzen windowing estimation from the particle positions, modified
to adaptively oversample in regions of higher curvature by the inclusion of a
scaling term that is proportional to local curvature magnitude. This results in a
set of points on the surface that repel each other with Gaussian-weighted forces.

Now consider an ensemble E , which is a collection of M surfaces, each with
their own set of particles, i.e., E = z1, . . . , zM . The ordering of the particles on
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each shape implies a correspondence among shapes, and thus we have a matrix
of particle positions P = xk

j , with particle positions along the rows and shapes
across the columns. We model zk ∈ �Nd as an instance of a random variable Z,
and minimize a combined ensemble and shape cost function

Q = H(Z) −
∑

k

H(P k), (2)

which favors a compact ensemble representation balanced against a uniform dis-
tribution of particles on each surface. Given the low number of samples relative
to the dimensionality of the space, we use a parametric approach for density
estimation in the space of shapes, modeling p(Z) parametrically as a Gaussian
with covariance Σ. The entropy is then given by

H(Z) ≈ 1
2

log |Σ| =
1
2

Nd∑
j=1

log λj , (3)

where λ1, ..., λNd are the eigenvalues of Σ.
The cost function Q is minimized using a gradient descent strategy to ma-

nipulate particle positions. The negative gradient −∂H(Z)/∂P gives a vector of
updates for the entire system, which is recomputed once per iteration of the en-
tire particle system. This gradient term is added to the individual shape-based
updates ∂H(P k)/∂P k to give the update for each particle. The surface con-
straint is specified by the zero set of a scalar function F (x), and maintained by
projecting the gradient of the cost function onto the tangent plane of the surface,
followed by iterative reprojection of the particle onto the nearest root of F by
the method of Newton-Raphson. The optimization function balances entropy of
individual surface samplings with the entropy of the shape model, maximizing
the former for geometric accuracy (a good sampling) and minimizing the latter
to produce a compact model.

Correspondences Across MultiObject Complexes. The particle-based
correspond method outlined above can be directly applied to multiobject com-
plexes by treating all of the objects in the complex as one. However, if the objects
themselves have distinct identities (i.e., object-level correspondence is known a
priori), we can assign each particle to a specific object, decouple the spatial inter-
actions between particles on different shapes, and constrain each particle to its
associated object, thereby ensuring that each correspondence stays on a partic-
ular anatomical structure. The shape-space statistics remain coupled, however,
and the covariance Σ (Eqn. 3) includes all particle positions across the entire
complex, so that optimization takes place on the joint, multiobject model.

Any set of implicitly defined surfaces is appropriate as input to this frame-
work. In the case of binary segmentations, the input is a set of M segmentations
of N -object complexes, which contains N × M distinct, volumetric label masks.
A binary mask contains an implicit shape surface at the interface of the la-
beled pixels and the background, but contains aliasing artifacts that must first
be removed. We have found that the r-tightening algorithm given by Williams
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et al. [9] is effective in removing these artifacts without compromising the pre-
cision of the segmentation. Typically we follow the antialiasing step with a very
slight Gaussian blurring to remove the high-frequency artifacts that can occur
as a result of numerical approximations. We initialize the optimization using the
splitting strategy described in [4], starting with a single particle on each object.
For the hypothesis testing that will follow, it is important that correspondences
be computed without knowledge of the group classification of the shapes. We
therefore compute shape models for the shape complexes that include both the
control and study data, which we will refer to as combined models.

Statistical Analysis for Correspondence-Based Shape Models. The
goal of statistical analysis in the context of this paper is to quantify shape dif-
ferences of the targeted anatomy between control and study populations, and
to perform hypothesis testing for statistical significance of those differences. An
important consideration is to quantify differences in a way that accounts for
desirable invariances, which is typically done by explicitly normalizing for size
and pose variation. In a multiobject setting, we must decide the level of gran-
ularity at which to align shapes in order to analyze pose and scale. Previous
work [5,10] employs a hierarchical strategy, with a global coordinate frame for
the entire complex, followed by a set of local coordinate frames for each object.
The global frame is established by alignment of the entire complex, resulting
in M sets of global pose parameters. Remaining pose discrepancies among the
individual objects constitute the local coordinate frames, and are determined by
alignment of each ensemble of individual shapes, to give a set of N local pose
parameters for each of the M complexes.

For the analysis of object pose and scale, we first align shapes with respect to
their centers of mass and the orientation of their first principal eigenvectors. We
then align shapes with respect to rotation, translation, and scaling using a Pro-
crustes algorithm, which is run at regular intervals between the correspondence
optimization updates (see [4]). Hypothesis testing on object scale can now be
done using standard, two-tailed parametric t-test, and group differences in rela-
tive position analyzed with a parametric Hotelling T 2 test. For relative pose, we
use a general nonparametric hypothesis test for metric spaces [11], which relies
only on pairwise distances between the data, and we use geodesic distances in
the rotation group.

We refer to the differences in correspondences that remain in the population
after pose and scale alignment as shape. The high dimensionality of the shape
space, coupled with the relatively low sample size of our data, precludes the use
of traditional low-dimensional statistical metrics directly in the full shape space.
Instead, we use a standard, data-driven approach to dimensionality reduction
and project the correspondences into a lower dimensional space determined by
choosing a number of basis vectors from principal component analysis (PCA).
Ideally, we would like to choose only PCA modes that account for variance that
cannot be explained by random noise. Parallel analysis is commonly recom-
mended for this purpose [12]. Parallel analysis works by comparing the percent
variances of each of the PCA modes with the average percent variances obtained
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Fig. 1. Mean brain structure complexes with average pose. Colormap indicates the
magnitude and direction of the linear discriminant.

via PCA of Monte Carlo simulations of samplings from isotropic, multivariate,
unit Gaussian distributions. We choose only modes with greater variance than
the simulated modes for the dimensionality reduction, and use use a standard,
parametric Hotelling T 2 test to test for group differences, with the null hypoth-
esis that the two groups are drawn from the same distribution.

To visualize group differences that are driving the statistical result , we com-
pute the linear discriminant vector implicit in the Hotelling T 2 statistic, which is
the is the line along which the between-class variance is maximized with respect
to the within-class variance. This line is also known as Fisher’s linear discrimi-
nant, and is given by

w = (Σa + Σb)−1(μa − μb), (4)

where μ are the group means for groups a and b, and Σ are their covariance
matrices. Vector w can be rotated back from PCA space into the full dimensional
shape space, and then mapped onto the mean group shape visualizations to give
an indication of the significant morphological differences between groups.

3 Results and Discussion

For the experimental analysis, we used multiobject segmentation data taken from
an ongoing longitudinal pediatric autism study[13], which includes MRI brain
scans of autistic subjects and typically-developing controls at time points of 2 and
4 years of age. The data consists of binary segmentations of 10 subcortical brain
structures (see Fig 1), which were done by trained experts using semi-automated
procedures[5]. For this analysis, we had 10, 2-year old male controls available, and
chose 15 matched autism subjects for comparison. Multiobject correspondences
were computed from the segmentations as described in Section 2 to produce a
combined model of the groups. We sampled each complex of segmentations with
10,240 correspondence points, using 1024 particles per structure. For comparison,
we also computed point-correspondence models for each of the 10 structures
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separately and concatenated their correspondences together to form a marginally
optimized joint model.

Scale and pose were calculated for structures in the complex as described in
Sect. 2. Hypothesis testing indicates significant group differences in scale only
for the right and left amygdala, with p-values of 0.0017 and 0.018, respectively.
Hotelling T 2 tests on mean structure positions do not suggest any differences
between the groups, with p > 0.05 for all structures. Similarly, group difference in
pose are not indicated by the statistical pose analysis, and we obtained p > 0.05
for all structures. This result for pose is also consistent with results given in [5]
on this data.

The hypothesis test method outlined in Sect. 2

Fig. 2. Detail from Fig. 1

gives a highly significant p-value of 0.0087, with 8
PCA modes chosen by parallel analysis. This result
is the first evidence shown for this data for group dif-
ferences in shape alone. Gorczowski [5] reports group
differences when scale is included with shape, but
reports insignificant shape discrimination between
groups when the shapes are normalized to the same
size. Parallel analysis of the marginally-optimized
model indicates that the first 6 modes should be
used, which gives a p-value of 0.0480. While the test
still suggests group differences at the 5% significance
level, we note that the result is an order of magnitude lower in statistical power.

Previous work in shape analysis has suggested hypothesis testing on individual
correspondence point positions instead of working in the full dimensional shape
space [14]. For comparison, we ran statistical tests at every correspondence point
location, using an open-source implementation of the nonparametric Hotelling
T 2 method described in [14], with 20,000 permutations among groups and an
FDR bound set to 5%. Uncorrected p-values show widespread differences, but
no significance remains after FDR correction. This result is in contrast to the
global shape result, and illustrates one of the difficulties with point-based shape
analysis at a local feature scale: the unavoidable reduction in statistical power
due to the necessary correction for multiple comparisons.

Figure 1 shows the mean shape surfaces for the normal and autistic groups, as
reconstructed from the Euclidean averages of the correspondence points. Each
structure is displayed in its mean orientation, position, and scale in the global
coordinate frame. We computed the average orientation for each structure using
methods for averaging in curved spaces [15]. We used the arithmetic mean of
position and the geometric mean of scale. Mean pose differences between the
two groups appear small, as might be expected from their statistical analyses.

To illustrate the morphological differences that are driving the global shape
result, we visualize the linear discriminant vector w (Equation 4) in Fig. 1, as
described in the previous section. The length in the surface normal direction of
each of the point-wise discriminant vector components for the autism data is
given by the colormap. Yellow indicates a negative (inward) direction, and blue
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indicates a positive (outward) direction. The right amygdala for the normals is
shown in Fig. 2 as a more detailed example, with the vectors depicted as arrows.
Note the clear trend towards a shortening of the anterior end of the amygdala
in the autistic versus the normal population.

In summary, our results suggest that the proposed modeling and analysis
framework can effectively model group differences in the autism data that have
not been seen with other methods, and more powerful statistical results are
obtained by optimization in the joint space than by optimization in the marginal
space. This analysis, however, is only a proof-of-concept example of how the
particle method may be applied to multiobject data. A more rigorous study,
which remains for future work, is required in order draw clinical conclusions.
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