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a b s t r a c t

A spectral/hp element discretisation permits both geometric flexibility and beneficial convergence prop-
erties to be attained simultaneously. The choice of elemental polynomial order has a profound effect on
the efficiency of different implementation strategies with their performance varying substantially for low
and high order spectral/hp discretisations. We examine how careful selection of the strategy minimises
computational cost across a range of polynomial orders in three dimensions and compare how different
operators, and the choice of element shape, lead to different break-even points between the implemen-
tations. In three dimensions, higher expansion orders quickly lead to a large increase in the number of
element-interior modes, particularly in hexahedral elements. For a typical boundary–interior modal
decomposition, this can rapidly lead to a poor performance from a global approach, while a sum-facto-
risation technique, exploiting the tensor-product structure of elemental expansions, leads to better per-
formance. Furthermore, increased memory requirements may cause an implementation to show poor
runtime performance on a given system, even if the strict operation count is minimal, due to detrimental
caching effects and other machine-dependent factors.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Spectral/hp element solvers are now widespread throughout
the fluid dynamics community, as well as in many other areas of
applied mathematics and engineering. Applications include incom-
pressible fluid problems such as biomedical flows and flow control,
turbulence models, structural mechanics, acoustics, electrophysi-
ology, climate and geology modelling.

The benefits of using these high order solvers stem from both
the geometric flexibility offered by the elemental decomposition
of the domain combined with the high accuracy and preferential
convergence properties of a spectral method. Unlike linear finite
element or pure spectral techniques spectral/hp methods exhibit
a broad scope for optimisation, not only through mesh refinement
and polynomial order, but through careful choice of evaluation
strategies for a given numerical operator. The importance of choos-
ing the correct strategy in three dimensions should not be under-
estimated, as is evident from the results presented in Section 3.
ll rights reserved.
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Even in two dimensions, a change of polynomial order by one
may incur a runtime performance penalty on the order of 50%, if
the evaluation strategy is not also adjusted to the optimal choice
for the new discretisation.

In formulating a spectral/hp element method a domain is di-
vided into a tessellation K of non-overlapping elements on which
one or more solution variables are expanded in terms of polyno-
mial functions up to a fixed order, P [1]. The typical choice for
the polynomial functions are Jacobi polynomials due to their
orthogonality and favourable numerical properties [2]. The charac-
teristics of these functions lie outside the scope of this paper. The
typical choice for P varies between communities. Those from the
finite element community typically use expansions up to 4th-order
[3], while those in the spectral/hp element community typically
consider polynomial orders up to 15th-order [2,4]. For the pur-
poses of this study we consider polynomial orders in the range of
1 6 P 6 10, since this is sufficient for our analysis.

In constructing a spectral/hp expansion each elemental region
is mapped onto a reference element on which the basic operations
of integration and differentiation are defined. In two dimensions,
these are typically quadrilaterals or triangles, but three dimensions
encompasses a broader selection of hybrid shapes. These include
hexahedrons, prisms, pyramids and tetrahedrons. Each of these re-
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gions exposes its own performance characteristics and while they
offer great geometric flexibility, they may introduce complexities
in choosing an optimal evaluation strategy. In this paper we will
restrict ourselves to comparison of hexahedral and tetrahedral ele-
ments. Expansions in three dimensions are formed as a tensor-
product of one-dimensional polynomials. This permits the use of
strategies which may dramatically reduce the operation count,
and therefore improve the overall performance, of a given operator
when compared with a naive local matrix implementation.

Local elemental modes are extended to a global context through
direct stiffness assembly, typically with the enforcement of a C0

continuity constraint. A sparse, invertible assembly matrix de-
scribes the scattering of global coefficients onto their correspond-
ing local elemental coefficients allowing the problem, and
therefore the evaluation of the operators, to be formulated in either
a global or local context. This local-to-global mapping is used to
construct a global, bandwidth-optimised, matrix system through
which operations may be performed across all elements simulta-
neously. Conversely, elemental evaluation may be performed using
a local matrix operation, or by exploiting the tensorial nature of the
expansions and using a sum-factorisation approach [5]. The perfor-
mance benefits of the latter have been noted in the literature [6],
and the evaluation may be expressed using matrix–matrix
multiplications which may be further optimised by the BLAS sub-
system. The formulation of each of these strategies is detailed in
Section 2.

In any spectral/hp implementation, the specifications of the sys-
tem on which it is used, and the related software libraries, will af-
fect its performance. The wall time taken to solve a particular
problem will be affected by factors beyond the theoretical opera-
tion count, with the characteristics of the hardware and external
libraries (such as BLAS and LAPACK) at a given problem size having
a non-negligible effect. This paper will therefore focus on discuss-
ing the runtime performance of the various strategies to present a
picture of the real performance of such operations in a three-
dimensional context.
2. Spectral/hp element discretisation

We first summarise our spectral/hp element formulation for
hexahedral and tetrahedral elements in reference-space. A more
detailed construction may be found in Karniadakis and Sherwin
[2]. We use a modified form of a Jacobi polynomial basis,

/p ¼
w0ðnÞ ¼ 1�n

2 p ¼ 0;

wpðnÞ ¼ 1�n
2

1þn
2 P1;1

p�1ðnÞ 0 < p < P;

wPðnÞ ¼ 1þn
2 P;

8>><
>>:

in which the interior modes are zero on the boundary, while still
maintaining the numerical efficiencies of the expansion. This allows
for greater numerical optimisation of global strategies through
boundary–interior decomposition.

2.1. Reference space expansions

For the hexahedral region we extend the modified set of one-
dimensional Jacobi polynomials, {wp(n)}, to form a three-dimen-
sional basis through a tensorial construction. The standard hexahe-
dral reference region is Q3 ¼ fðn1; n2; n3Þ 2 ½�1;1�3g on which the
basis functions take the form

/nðn1; n2; n3Þ ¼ wpðn1Þwqðn2Þwrðn3Þ: ð1Þ

This defines the standard hexahedral elemental expansion,
XstðQ3Þ. A solution defined on this region may be expanded in
terms of these functions as
uðn1; n2; n3Þ ¼
X
n2N

/nðn1; n2; n3Þûn

¼
XP

p¼0

XP

q¼0

XP

r¼0

wpðn1Þwqðn2Þwrðn3Þûpqr ; ð2Þ

where û is the coefficient space representation. Note that in the
hexahedral expansion the wp, wq and wr are independent of each
other.

The tetrahedral region, when defined in terms of orthogonal
Cartesian coordinates, is T3 ¼ f�1 6 n1; n2; n3; n1 þ n2 þ n3 6 �1g.
This region does not have the constant limits necessary to exploit
the tensorial expansion set out in the hexahedral case. To fit the
tetrahedron into this framework we employ a coordinate trans-
form [7] from the Cartesian coordinate system (n1,n2,n3) onto a
non-orthogonal coordinate system (g1,g2,g3). For the triangular
expansion [8], such a mapping is

g1 ¼ 2
1þ n1

1� n2
� 1;

g2 ¼ n2:

Repeated application of this mapping to the orthogonal coordi-
nate system in three dimensions leads to a local mapping for tetra-
hedra [9],

g1 ¼
2ð1þ n1Þ
�n2 � n3

� 1;

g2 ¼
2ð1þ n2Þ

1� n3
� 1;

g3 ¼ n3:

Under this collapsed coordinate system, the tetrahedral region,
T3 ¼ f�1 6 g1;g2;g3 6 1g, is bounded by constant limits allowing
the tensorial basis construction to be used. The standard tetrahe-
dral expansion XstðT3Þ is defined as

/nðn1; n2; n3Þ ¼
X
n2N

wpðg1Þwpqðg2Þwpqrðg3Þ:

A consequence of the coordinate transform is the creation of
two degenerate vertices which requires careful handling when
generating meshes to ensure alignment of the collapsed coordi-
nates. Furthermore, to maintain numerical efficiency, the one-
dimensional expansion basis in the second direction varies with
p, and similarly the corresponding basis in the third direction var-
ies with both p and q. This leads to the following solution
expansion

uðn1; n2; n3Þ ¼
X
n2N

/nðn1; n2; n3Þûn

¼
XP

p¼0

XP

q¼0

XP

r¼0

wpðg1Þwpqðg2Þwpqrðg3Þûpqr: ð3Þ
2.2. Local and global expansions

To represent a solution on an arbitrary local elemental region,
Xe we construct a bijective linear mapping, ve

i : Xst ! Xe. We as-
sume the domain consists entirely of non-deformed elements
and therefore leads to a map with constant positive Jacobian on
each element,

x1 ¼ ve
1ðn1; n2; n3Þ;

x2 ¼ ve
2ðn1; n2; n3Þ;

x3 ¼ ve
3ðn1; n2; n3Þ:

If the faces of the elemental regions were instead defined by
non-linear iso-parametric functions, the Jacobian would be depen-
dent on the quadrature point.
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A continuous Galerkin formulation dictates a degree of connec-
tivity between the individual elements, typically in the form of a C0

continuity condition. The boundary/interior decomposition of the
elemental modes simplifies this construction since all interior ele-
mental modes are themselves globally orthogonal with respect to
the modes of all other elements. Therefore, given our tessellation
K of elements, each with N elemental modes, the solution on
the entire domain can be represented as

uðx1; x2Þ ¼
X

m2Ng

Umðx1; x2Þûg
m;

¼
X
e2K

X
n2N

/e
nðx1; x2Þûe

n;

where Um are the Ng global modes. The mapping of global degrees
of freedom to local degrees of freedom may be succinctly expressed
as a highly sparse invertible matrix, A, defined as

ûl ¼Aûg :
1 www.nektar.info.
2.3. Evaluation strategies

The structured nature of the spectral/hp formulation allows for
several approaches to evaluating numerical operators. In particular
we will be concerned with the relative performance of computing a
backward transform from coefficient space to physical space, an in-
ner product, as well as the evaluation of mass and Helmholtz oper-
ators. We consider evaluating these operations using a global
matrix operation, a sequence of local elemental matrix operations
(implemented as a block matrix) or through exploitation of the
tensorial basis using elemental sum-factorisation.

In the global context a sparse Ng �Ng matrix is constructed
which directly solves for the global coefficients. This approach is
typical of linear finite element implementations in which all modes
are essentially elemental boundary modes and results in a signifi-
cantly lower operation count than handling each element individ-
ually at very low orders. At higher orders, the global matrix rapidly
becomes very large, although substructuring techniques [10] can
be used to reduce the matrix bandwidth and dramatically improve
the efficiency of this approach.

The remaining two evaluation strategies are performed at the
elemental level. The global coefficients ûg are scattered onto their
corresponding local coefficients ûl with which the operation is
evaluated elementally as

ŷe
m ¼

X
n2N

ae /e
m;/

e
m

� �
ûe

n 8ðm; eÞ 2 ðN;KÞ:

Here we use ae(v,u) to represent a general bi-linear operator typical
of a weak Galerkin formulation of a PDE. The resulting vector, ŷ is
then reassembled to give the global solution.

The sum-factorisation strategy [5] exploits the tensorial nature
of the elemental basis. For simplicity we will consider just the
backward transform in the hexahedral region in detail. The other
operators may be expressed in a similar form. The expansion basis
defined in Eq. (2) can be reorganised as

uðn1i; n2j; n3kÞ ¼
XP

p¼0

wpðn1iÞ
XP

q¼0

wqðn2jÞ
XP

r¼0

ûpqrwrðn3kÞ
( )( )

: ð4Þ

In hybrid regions, the inter-dependence of the one-dimensional
modes in the tensorial construction leads to a restriction on the
ordering of the factorisation of Eq. (3). However, this does not pre-
vent the same technique being applied to these regions.

2.3.1. Sum-factorisation matrix formulation
Further to a reduction in operation count, the summation can be

expressed as a sequence of matrix–matrix multiplications which
may leverage optimisations in the BLAS subsystem. To achieve this
we must express a P0P1P2-length vector as a matrix. We define the
following notation to simultaneously denote the dimensions of the
matrix and the ordering of the components in memory. The
expression ûP0 ;P1P2 represents the vector û arranged as a P0 � P1P2

matrix with P0 running fastest and P2 running slowest. We could
instead reshape the matrix as ûP0P1 ;P2 simply by changing the stride
from P0 to P0P1. We define the Pi � Qi basis matrices, Bi � BQi ;Pi

i , as
having entries Bi[q][p] = wp(nq). Consequently, the backward trans-
form operation in three dimensions, from Eq. (4),

u ¼ Bû � ðB0 � B1 � B2Þû;

may be reformulated as a series of three matrix–matrix operations,
using the above notation:

qP1P2 ;Q0
0 ¼ ûP0 ;P1P2

� �>
B>0 ;

qP2Q0 ;Q1
1 ¼ qP1 ;P2Q0

0

h i>
B>1 ;

uQ0Q1 ;Q2 ¼ qP2 ;Q0Q1
1

h i>
B>2 ;

u ¼ uQ0Q1Q2 ;1:

Note that the intermediate q matrices have been reshaped be-
tween steps. The other operators may be expressed in a similar
way. For example, the inner product operator (/n,u)X is given by

X
k

wrðn3kÞ
X

j

wqðn2jÞ
X

i

wpðn1iÞwiwjwkuðn1i; n2j; n3kÞ
" #" #

;

where the shape function /n is expanded using Eq. (1). We define
the operation w(u) to multiply the function values at the quadrature
points by the integration weights, w(u)ijk = wiwjwku(n1i,n2j,n3k). The
inner product may then be expressed as the sequence of operations

qQ1Q2 ;P0
0 ¼ wðuÞQ0 ;Q1Q2

h i>
B0;

qQ2P0 ;P1
1 ¼ qQ1 ;Q2P0

0

h i>
B1;

ûP0P1 ;P2 ¼ qQ2 ;P0P1
1

h i>
B2;

û ¼ ûP0P1P2 ;1:

The mass matrix operation Mû � B>WBû may be expressed as a
concatenation of the backward transform and inner product
operations.

2.4. Implementation and test system

The specific spectral/hp implementation used is Nektar++,1

written in C++. The matrix–matrix and matrix–vector linear algebra
operations are performed using the reference BLAS and LAPACK
implementations available on the test system (Mac Pro with two
2.26 Ghz 4-core processors, 2 MB L2 cache, 8 MB L3 cache, 16 GB
RAM) using dgemm and dgemv, respectively.

3. Results

Fig. 1 shows the runtime performance of hexahedral elements
for the three strategies and four numerical operators. We make a
comparison of the strategies relative to the intermediate local ele-
mental matrix strategy for clarity of comparison. In this figure, the
results are computed using a cube mesh of 64 hexahedral ele-
ments, although the optimal strategies and break-even points do
not significantly change with variation in h. We summarise the
strategy break-even points for hexahedrons in Table 1.

http://www.nektar.info
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Fig. 1. Comparative performance of (a) backward transform, (b) inner product, (c) mass matrix and (d) Helmholtz operators on a mesh of 64 hexahedral elements. All results
are normalised by the local elemental performance for comparison. The break-even points apparent in this figure are largely independent of the choice of h and so this result
is representative of larger numbers of elements.

Table 1
Table of optimal strategy selection for different operators on hexahedral meshes up to
P = 10.

P Global Local Sum-factorisation

Backward transform 1 – 2–
Inner product 1 – 2–
Mass matrix 1–2 3 4–
Helmholtz matrix 1–2 3–6 7–
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(T
)

P

Sum-factorisation
Local Element
Global Matrix

Fig. 2. Absolute comparison of runtimes for the Helmholtz operator using 64
hexahedral elements. The number of microseconds required to evaluate the
Helmholtz operator once is shown.
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An immediate observation is that the global matrix approach is
only optimal at low orders, typically order 1 or 2 polynomials. This
in itself is not surprising as the operation count is far lower than for
an elemental approach. However, the dominance of elemental
boundary modes in three-dimensional elements continues to
much higher orders, suggesting a global strategy may still have a
lower operation count. At high orders it becomes rapidly sub-opti-
mal, although it is surprising this approach does not provide better
performance at orders as low as three. Fig. 2 shows an absolute
comparison of runtimes – measured in microseconds – for the
three strategies when applied to the Helmholtz operator. Interest-
ingly, the global runtime saturates at a rate not much higher than
that of the local elemental strategy. This can be attributed to the
performance gain provided by the multi-level static condensation
(substructuring) employed in the global matrix implementation.

The performance of the sum-factorisation strategy is poor at
low orders, particularly for the more complex mass and Helmholtz
operators. In such cases the performance difference in relation to
the global strategy could be as high as two orders of magnitude.
The local elemental approach is typically only optimal for low to
intermediate orders when performing complex operations such
as those involving differentiation.

Fig. 4 demonstrates a slight shift away from local strategies for
tetrahedral meshes, with a global matrix approach giving the best
performance up to 4th-order for some operators. Sum-factorisation
is particularly poor in this geometry when used with the mass and



Table 2
Table of optimal strategy selection for different operators on tetrahedral meshes up to
P = 10.

P Global Local Sum-factorisation

Backward transform 1–2 3–4 5–
Inner product 1–3 – 4–
Mass matrix 1–4 5–10 –
Helmholtz matrix 1–4 5–10 –

Sum-factorisation
Local Element
Global Matrix
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Fig. 3. Absolute comparison of runtimes for the Helmholtz operator using 384
tetrahedral elements. The number of microseconds required to evaluate the
Helmholtz operator once is shown.
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Helmholtz operators. At low orders, it can be up to three orders of
magnitude slower than the global approach. This is due to the
necessity of using a series of matrix–vector operations, rather than
more optimised matrix–matrix operations, in the sum-factorisa-
tion to handle the inter-dependence of the basis modes in the sec-
ond and third dimension. Consequently this eliminates the benefits
of cache locality present in matrix–matrix operations. Again we
summarise the strategy break-even points for tetrahedra in
Table 2.

In comparing the performance of hexahedra and tetrahedra we
observe the relative performance of the local matrix and global
matrix approaches are quite similar for the backward transform
and inner product. For more complex operations tetrahedral oper-
ations benefit from global strategies to a higher polynomial order,
although for a large portion of the polynomial order spectrum, the
local element approach is optimal.

An absolute comparison of runtimes for tetrahedral elements
across the range of polynomial orders is given in Fig. 3. There are
both qualitative similarities and quantitative differences between
these results and those in Fig. 2. The global matrix strategy, while
offering the best performance at low orders, is clearly seen to scale
comparably with the local elemental strategy at high orders. Quan-
titatively, these figures demonstrate the efficacy of the sum-facto-
risation technique in hexahedral expansions when compared to
tetrahedral expansions.
4. Discussion

We have summarised the comparative performance of hexahe-
dral and tetrahedral spectral/hp element discretisations for a range
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ass matrix and (d) Helmholtz operators on a mesh of 384 tetrahedral elements.
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of polynomial orders commonly used in different communities.
Operations within the spectral/hp formulation may be evaluated
in either a global or local framework. Furthermore, in the local con-
text, the tensorial construction of the elemental basis modes al-
lows for the choice of sum-factorisation or elemental matrix
evaluation. Ideally, a spectral/hp element code utilising a tensorial
basis should support all three evaluation techniques to ensure a
high performance over a broad range of polynomial orders. As with
the two-dimensional case [11], the general principle is to use glo-
bal strategies at low orders, local elemental strategies at interme-
diate orders, and sum-factorisation at high orders. This falls in line
with the general approach taken by the various academic and
industrial communities using low and high order finite element
techniques. However, as these results demonstrate, there is no
fixed rule applicable to all problems and the type of operation
and elemental shapes involved are key factors in determining an
optimal evaluation strategy for a given polynomial order on a par-
ticular system.

The dominance of elemental boundary modes in low order
expansions means a global approach should always offer the great-
est performance. The implementation of the global strategy em-
ploys a multi-level static condensation technique which, through
substructuring of the global degrees of freedom associated with
elemental boundaries, allows a bandwidth-optimised matrix sys-
tem to be produced. This system can be solved considerably faster
than the original full or banded matrix system adding significant
performance to this approach. At high polynomial orders the larger
number of modes rapidly leads to large elemental matrices which
are outperformed by a sum-factorisation approach for some oper-
ators. This is not surprising since the elemental operators are true
three-dimensional operators which require OðP6Þ floating-point
operations to apply, while the sum-factorisation approach consists
of three matrix–matrix multiplies, each requiring just OðP4Þ float-
ing-point operations. This is indeed the strength of the sum-facto-
risation approach.

The boundaries between the various strategies are not uniquely
defined and they depend on the specification of the hardware and
any performance enhancements offered by the operating system
and linear algebra libraries. Certain systems support the implicit
parallelisation of BLAS operations which can dramatically acceler-
ate various large matrix operations and consequently shift the
strategy boundaries by several polynomial orders.

We conclude the discussion by comparing these results with a
similar study in the two-dimensional case [11]. In both a compar-
ison of the quadrilateral and hexahedral regions, as well as the tri-
angular and tetrahedral regions, we see a strong similarity
between the relative runtimes across all four operators. There is
a slight shift of the break-even points towards the lower end of
the polynomial spectrum in the three-dimensional cases. This is
attributable to the number of modes increasing as P3 rather than
P2. The relative performance of the sum-factorisation at higher or-
ders is consequently much greater in the three-dimensional case,
while being especially poor at low orders.

5. Conclusions

This study has shown that the choice of strategy for the evalu-
ation of operators in three dimensions is critical to attain the best
performance from a spectral/hp element solver. Essentially, the dif-
fering performance of the various strategies is emphasised to a
much greater extent in three dimensions and great care should
be taken to select the best strategy for each operator on a given
system.

Acknowledgements

We would like to acknowledge support for this work under ONR
award N00014-08-1-0374. S.J.S. acknowledges support from the
EPSRC Advanced Research Fellowship. R.M.K. acknowledges sup-
port for this work under ARO W911NF-08-1-0517 (Program Man-
ager Mike Coyle) and by the Leverhulme Trust. The authors would
also like to acknowledge the valuable input of Peter Vos, Imperial
College London (now based in Belgium).

References

[1] Patera AT. A spectral element method for fluid dynamics: laminar flow in a
channel expansion. J Comput Phys 1984;54(3):468–88.

[2] Karniadakis GE, Sherwin SJ. Spectral/hp element methods for computational
fluid dynamics. 2nd ed. Oxford University Press; 2005.

[3] Hughes TJR. The finite element method. Prentice-Hall; 1987.
[4] Szabó B, Babuška I. Finite element analysis. John Wiley & Sons; 1991.
[5] Orszag SA. Spectral methods for problems in complex geometries. J Comput

Phys 1980;37(1):70–92.
[6] Melenk JM, Gerdes K, Schwab C. Fully discrete hp-finite elements: fast

quadrature. Comp Meth Appl Mech Eng 2001;190(32-33):4339–64.
[7] Dubiner M. Spectral methods on triangles and other domains. J Sci Comput

1991;6(4):345–90.
[8] Sherwin SJ, Karniadakis GE. A triangular spectral element method; applications

to the incompressible Navier–Stokes equations. Comp Meth Appl Mech Eng
1995;123(1–4):189–229.

[9] Sherwin SJ, Karniadakis GE. Tetrahedral hp finite elements: algorithms and
flow simulations. J Comput Phys 1996;124(1):14–45.

[10] Smith B, Bjorstad P, Gropp W. Domain decomposition: parallel multilevel
methods for elliptic partial differential equations. Cambridge University Press;
2004.

[11] Vos PEJ, Sherwin SJ, Kirby M. From h to p efficiently: implementing finite and
spectral/hp element discretisations to achieve optimal performance at low and
high order approximations. J Comput Phys 2010;229(13):5161–81.


	From h to p efficiently: Strategy selection for operator evaluation  on hexahedral and tetrahedral elements
	Introduction
	Spectral/hp element discretisation
	Reference space expansions
	Local and global expansions
	Evaluation strategies
	Sum-factorisation matrix formulation

	Implementation and test system

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


