
Towards Provenance-Enabling ParaView

Steven P. Callahan1,2, Juliana Freire1,2, Carlos E. Scheidegger2,
Cláudio T. Silva1,2, and Huy T. Vo2

1 VisTrails, Inc.
2 Scientific Computing and Imaging Institute, University of Utah

Abstract. Currently, there are no general provenance management sys-
tems or tools available for existing applications. Our goal is to develop
provenance technology that is flexible and adaptable to the wide range of
requirements of software applications. By consolidating provenance in-
formation for a variety of applications, we can provide a uniform environ-
ment for querying, sharing, and re-using provenance in large-scale, collab-
orative settings. In this paper, we describe our framework for provenance-
enabling existing applications. Our approach is applicable to a variety
of software systems that are process driven. As a concrete example, we
describe a working plug-in for an open source application in scientific
visualization.

1 Introduction

Computers are now extensively used throughout science, finance, engineering,
and medicine. Advances in data mining, computational geometric modeling,
imaging, and simulation allow researchers, engineers, and artists to build increas-
ingly complex models and generate unprecedented amounts of data. Hedge funds
use simulations to construct accurate risk and return assessments for portfolios.
Oil & Gas companies heavily depend on simulations for various tasks, including
exploration and pipeline transport. Clinical medicine has become increasingly
dependent on procedures that include simulations from data acquired directly
from the patient through magnetic resonance imaging (MRI), Computed Tomog-
raphy (CT), and other computerized exams. Even areas of the entertainment
industry have been greatly impacted by the use of computers to design complex
computer models and scenes for movies and video games. A major problem that
these disciplines face is the management of this data and the processes that were
used to generate the data.

Currently, ad-hoc approaches for capturing the provenance of exploratory
computational tasks are used in the scientific and engineering community. For ex-
ample, laboratory notebooks are commonly used to track changes in parameters
or processes. However, ad-hoc approaches have serious limitations. In particu-
lar, scientists and engineers need to expend substantial effort managing data and
recording provenance information. The absence of detailed provenance makes it
hard (and sometimes impossible) to reproduce and share results, to solve prob-
lems collaboratively, to validate results with different input data, to understand

the process used to solve a particular problem, and to re-use the knowledge in-
volved in the data analysis and generation processes. In addition, it limits the
longevity of the data products—without precise and sufficient information about
how the data product was generated, its value is greatly diminished. The grow-
ing demands for compliance to varying industry and governmental regulations
and standards also requires detailed audit trails of data sources and workflows
(tasks) executed.

Originally motivated by the needs in the scientific domain, the VisTrails
provenance technology [3] and the infrastructure it provides is general and ap-
plicable to a wide range of applications that involve complex computational
processes. Whereas our initial development focused on provenance management
for tasks developed within a workflow system, our goal in this paper is to show
that the same infrastructure can be used to provenance-enable existing applica-
tions, without requiring them to be integrated within a workflow system. One
of the major advantages of this approach is that users will be able to leverage
provenance using the same applications and environments that they are used to.

1.1 Related Work

There are important distinctions that set our work apart from previous ap-
proaches to provenance. Notably, our focus is on interactive applications that
provide graphical user interfaces. Although there has been previous works on
provenance-enabling such applications, these have proposed application-specific
solutions (see e.g., [1]). In contrast, the plug-in infrastructure is general and can
be integrated with any application that exposes its undo-redo stack.

There has also been work proposing general provenance solutions that can
be combined with arbitrary systems. The Earth System Science Workbench
(ESSW) uses scripts to wrap legacy systems so that their inputs and outputs can
be transparently gathered [4]. The Provenance-Aware Service-Oriented Architec-
ture (PASOA) was designed to support provenance capture in a service-oriented
environment [5]. It requires that services be instrumented to produce assertions
which detail, for example, how different services interact and which data item
they manipulate and derive. Like PASOA and ESSW, our approach also requires
applications to be instrumented, however the purpose of this instrumentation is
to obtain access to existing applications’ undo-redo capabilities. Furthermore,
the approaches used in PASOA and ESSW were designed for services and batch-
oriented programs. In contrast, our infrastructure can be combined with both
interactive and batch oriented system.

2 A Process-Driven Provenance Model

VisTrails introduced a change-based model to capture provenance and display
it in a history tree called a vistrail [2]. Here we describe a generalized version of
this provenance model that is adaptable to a variety of settings.

Fig. 1. The version tree stores the complete history of the actions performed by a user.
Each node corresponds to a state in the application, the edges show how the actions
are ordered to achieve these states.

2.1 Change-Based Provenance

In an application, as the user makes changes to the state of the application
through a user interface, the provenance mechanism records those changes. In-
stead of storing a set of application states, the change-based model stores the
operations, or actions, that are applied to the application (e.g., slicing a volume
or editing a parameter in a scientific visualization system). This representation
is both simple and compact—it uses substantially less space than the alterna-
tive of storing multiple instances or versions of the state. In addition, it enables
the construction of an intuitive interface that allows users to both understand
and interact with the history of the application states through these changes. A
tree-based view allows a user to return to a previous version in an intuitive way,
to undo bad changes, to compare different workflows, and to be reminded of the
actions that led to a particular result. Figure 1 shows an example of a vistrail
created through computational workflows.

The change actions are represented as a rooted tree V T in which each node
corresponds to a version of the application state, and each edge between nodes
dp and dc, where dp is the parent of dc, corresponds to the action applied to dp

which generated dc. This is similar to the versioning mechanism used in Darcs [8].
More formally, let DF be the domain of all possible states of the application,
where ∅ ∈ DF is a special empty state. Also, let x : DF → DF be a function
that transforms one state into another, and D be the set of all such functions.
A vistrail node corresponding to a workflow d is constructed by composing a

sequence of actions, where each xi ∈ D:

d = (xn ◦ (xn−1 ◦ . . . ◦ (x1 ◦ (∅))...))

This change based representation is general in that the actions can be cap-
tured at different granularities and they can be made to match the semantics of a
specific application. In particular, it can be readily applied to create Provenance
Explorer plug-ins for existing applications.

3 Capturing, Representing, and Re-playing Provenance

Our change-based representation of provenance is easily incorporated into exist-
ing applications that provide a mechanism for controlling the actions that are
being performed by a user via a graphical interface. The model-view-controller
paradigm [6] is an architectural pattern used in software engineering that decou-
ples the user interface (view) from the domain-specific logic and access (model)
using an event processor (controller). This software engineering paradigm is fre-
quently used in large projects to increase the flexibility and reuse of code. As
the user interacts with a view that is generated based on the current model, a
registered handler or callback is triggered in the controller. The controller then
updates the model so that the view can be recreated. Since all the events that
are generated by the application pass through one event handler, capturing and
replaying then is performed either by modifying this controller directly, or by
intercepting and fabricating the events via the callback mechanism.

Our Provenance Explorer is an application that runs along-side the main
application. Provenance is captured during user interactions with the main ap-
plication using a custom solutions for the application. This provenance is passed
to and from the Provenance Explorer via a Communication API. The details of
these steps are provided in more detail in this section.

3.1 Capturing Actions

The implementation of the action-based provenance in the VisTrails system is
specific to the actions that occur while creating and editing workflows in the
VisTrails Builder. These actions include adding and deleting modules and con-
nections, and changing parameter values. For other applications, our Provenance
Explorer needs to be able to handle a more general action type. Conceptually,
the model supports actions at varying granularities or semantic levels, from basic
mouse button presses to complex sets of operations (such as copying and pasting
a set of actions). The level of granularity that an action may take needs to be
application specific.

In general, applications that take advantage of the model-view-controller
paradigm have a mechanism for storing and re-using actions: the undo and redo
operations. In a scientific visualization system, for instance, with undo a user
should be able to walk through the steps they took to create an image, albeit

backwards. Although undo does not capture the complete exploration process
nor does it persist across sessions, it provides valuable context for granularity of
actions. The designers of the software have already determined the granularity
of actions by designing the undo stack. The undo stack of an application may
individually capture single mouse events or keyboard strokes if they are needed
to recreate of the state. Furthermore, interactions performed by the user may
cause multiple actions to be performed, which the undo stack will store as one
step. We capture actions at the same granularity in which the undo stack does.
In fact, in practice it is simpler to capture actions as they are being added to
the undo stack instead of where they are handled by the controller. Obviously,
this depends on the completeness and availability of the undo/redo mechanism
in the application.

In some applications, access to the controller is limited, the undo mechanism
captures state instead of actions, or the undo mechanism does not provide the
actions that are required for full reproducibility. In these cases, it is necessary to
compute actions based on the previous and next states, sp and sn, respectively.
Using the application’s model of the state, the difference sp − sn can easily be
computed as the set of changes that take sp to sn. These changes can then be
stored much more efficiently and uniformly as actions in our provenance model.

3.2 Representing Actions

Once the actions have been captured from the application, we use our Communi-
cation API to pass them on to our Provenance Explorer, which is an independent
application running on its own thread. The Communication API uses sockets to
send and retrieve actions from the application’s controller to Provenance Ex-
plorer’s controller. These actions that move across the socket are simply strings
that represent the commands that have been captured or are to be executed by
the main application. When the Provenance Explorer receives a new command,
it creates an action that contains the command along with additional meta-
data that is either automatically and manually created. Automatically created
metadata includes the date and time the command was executed, the user who
created it, a unique identifier for the action, and the identifier for the action
that preceeds it. Other metadata such as annotation notes or a tag to label the
action can be added by the user in the Provenance Explorer interface.

The set of actions stored in the Provenance Explorer, or vistrail, is repre-
sented in XML as is described by the following partial schema given in a terse
form:

type Vistrail =
vistrail [@version, @id, @name, Action*, annotation?]
type Action =
action [@date, @user, @id, @parentId, @command, tag?,

annotation?]

This is a more general form of the original VisTrails schema [2] that was used
to capture the limited number of actions that are available within the VisTrails
Builder (i.e., adding/deleting workflow modules, adding/deleting connections,
and changing parameter values). This schema has also been extended to store
vistrails in a variety of available relational database management systems as
well.

Visually, a vistrail is shown in the Provenance Explorer as a history tree
of actions that can be tagged, annotated, and queried using our graphical user
interface.

3.3 Re-playing Actions

When the user interacts with our history tree by selecting a version, the Prove-
nance Explorer uses the Communication API to send actions back to the main
application. The set of actions to reproduce a version in the tree are serialized
by compiling all the commands in each action from the top of the tree to the
current selected node. The main application receives these actions, clears the
current state, and uses the actions either as a series of events that are executed
by the controller or as direct updates to the model state. By returning to a pre-
vious version in the history tree, then making changes in the main application,
it is possible to branch the tree. In this way, the actions performed by a user are
never lost, even though they would be with a normal undo stack.

During interaction with the main application, the user may still want to
use undo/redo as is provided by that application. It is important to allow this
interaction so that we minimize disruption to the normal workflow of the user.
The undo and redo operations can be hijacked so that they trigger the current
version in the Provenance Explorer to change by walking up (undo) or down
(redo) the history tree. This allows a complete history tree of the provenance to
be captured even if the user has visual component of the Provenance Explorer
interface disabled.

4 Case Study: ParaView

ParaView [7] is an open-source, multi-platform application designed to visualize
data sets of size varying from small to very large. The project started in 2000
as a collaboration between Kitware and Los Alamos National Laboratories. The
current version, ParaView 3.0, was released in May 2007. ParaView is quite
popular, and is downloaded over 10,000 times a month [10]. The system is used
by researchers and engineers in both industry and academia.

Figure 2 shows ParaView together with the Provenance Explorer, transpar-
ently capturing the complete exploration process. This Provenance Explorer was
implemented by inserting monitoring code in ParaView’s undo/redo mechanism,
which captures changes to the underlying pipeline specification. Essentially, the
action on top of the undo stack is added to the vistrail in the appropriate place,
and undo is reinterpreted to mean “move up the version tree”. The current

Fig. 2. A screenshot of ParaView (left) with the provenance captured by VisTrails and
displayed as a version tree in a separate window (right). This preliminary prototype
taps into ParaView undo/redo mechanism to capture the exploration process.

version of the Provenance Explorer captures all of the changes to the pipeline.
However, some changes of state are not related to the pipeline and ParaView
does not store these in the undo stack. For example, the position of the camera
is not stored there. In fact, it is quite common for 3D applications to not store
navigation in the undo/redo stack (just like word processors typically do not
store which page the user is looking at in undo stacks). In this sense, it would
arguably be incorrect to interpret view changes as actions that generate new
versions.

If, however, capturing these interactions is really required, more sophisticated
approaches are necessary. The latest version of ParaView introduced “Look-
marks”, which capture the complete underlying pipeline of a visualization. Unlike
in VisTrails, however, Lookmarks need to be manually set by the user during the
exploration process. Lookmarks can be serialized, allowing a visualization to be
reproduced at a later time. This mechanism for capturing the pipeline and state
of the application exposes a wider class of actions for our Provenance Explorer.
We are currently implementing a version of the infrastructure that combines the
undo/redo stack inspection with Lookmark information, in order to capture this
potentially missing information.

5 Discussion

In the VisTrails system, provenance is used for more than version tracking and
persistence. Specifically, there are some operations on particular version that
can be cast as operations over the set of stored actions. For example, VisTrails

allows users to compare two different workflows by looking at a sequence of
actions that takes one workflow into the other [3]. This sequence of actions is
presented analogously to a workflow, which allows users to look at the result in
the same way they look at regular workflows. It would be interesting to extend
this principle to third-party applications. For example, the difference between
two visualizations in ParaView should be presented as a single visualization,
superimposing and highlighting the differences between the two versions.

VisTrails also allows users to build workflows by analogy [9]. The technique
involves identifying the differences between two workflows a and b and remapping
this sequence of actions so it can be applied to a different workflow c. It originally
involves computing an approximate graph matching between a and c. In a general
case, the remapping would have to be specifically tailored for each application,
but the general algorithm would still apply.

Finally, our broader goal is to provide a uniform platform for capturing,
querying, and reusing provenance from many applications. To this end, we intend
to develop the infrastructure that allows other developers to quickly and easily
incorporate our Provenance Explorer as a plug-in to their own applications.

Acknowledgments. This work was partially supported by the NSF (under grants
IIP-0712592, CNS-0751152, IS-0746500, IIS-0513692, CCF-0401498, EIA-0323604,
CNS-0514485, IIS-0534628, CNS-0528201, OISE-0405402), the DOE, and an
IBM Faculty Award.

References

1. R. A. Becker and J. M. J. M. Chambers. Auditing of data analyses. SIAM Journal
of Scientic and Statistical Computing, 9(4):747–760, 1988.

2. S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. Managing
the Evolution of Dataflows with VisTrails (Extended Abstract). In IEEE Workshop
on Workflow and Data Flow for Scientific Applications (SciFlow), 2006.

3. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo.
Managing rapidly-evolving scientific workflows. In International Provenance and
Annotation Workshop (IPAW), LNCS 4145, pages 10–18, 2006.

4. J. Frew and R. Bose. Earth system science workbench: A data management in-
frastructure for earth science products. In Proceedings of SSDBM, pages 180–189,
2001.

5. P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau.
An architecture for provenance systems. Technical report, ECS, University of
Southampton, 2006.

6. G. E. Krasner and S. T. Pope. A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. Journal of Object-Oriented Pro-
gramming, 1:26–49, 1988.

7. Paraview. http://www.paraview.org.
8. D. Roundy. Darcs. http://abridgegame.org/darcs.
9. C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying and

creating visualizations by analogy. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1560–1567, 2007.

10. B. Wylie. Private communication.

