
Editors: Claudio Silva, csilva@cs.utah.edu
Joel E. Tohline, tohline@rouge.phys.lsu.edu

88 Copublished by the IEEE CS and the AIP 1521-9615/08/$25.00 ©2008 IEEE COMPUTING IN SCIENCE & ENGINEERING

V I S U A L I Z A T I O N C O R N E R

DIRECT VOLUME RENDERING
A 3D PLOTTING TECHNIQUE FOR SCIENTIFIC DATA

By Steven P. Callahan, Jason H. Callahan, Carlos E. Scheidegger,
and Claudio T. Silva

Direct volume rendering is an effective method for plotting 3D scientific data, but it’s not used as frequently as
it could be. Here, the authors summarize direct volume rendering and discuss barriers to taking advantage of
this powerful technique.

T he use of plotting techniques
to comprehend scalar func-
tions is ubiquitous in science

and engineering. An effective plot uses
features such as first and second deriv-
atives to convey critical and inflection
points, which help portray the overall
behavior of functions around a region
of interest. As the scalar field’s dimen-
sionality increases, plotting becomes
harder. For 2D scalar functions, many
of us rely on more complex plotting
functionality, similar to that available
in certain scientific packages, such as
the Visualization Toolkit (www.vtk.
org) and matplotlib (http://matplotlib.
sourceforge.net).

In general, available 2D plotting
 techniques are based on creating con-
tour or density data plots. In either case,
the algorithm samples the function in
some way, which turns the problem into
a discrete one. Contour plots show the
function indirectly by generating a set
of closed curves called level sets. Den-
sity plots show the function directly by
mapping the scalar values through a set
of colors. Figure 1 displays contour and
density plots for a slice of a volume cre-
ated from the implicit function f(x, y, z)
= x2 + y2 + z2 – x4 – y4 – z4.

For 3D scalar fields, this gets con-
siderably more complicated, and most
packages support only 3D contour
plots, not density plots. To visualize
3D density plots, we must use direct
volume rendering, the term indicating

that no intermediate representations
are computed. Instead, direct volume
rendering determines pictures direct-
ly from the function f(x, y, z), as Fig-
ure 1 shows. Volume visualization as
a discipline started in the early 1980s,
owing mostly to the medical com-
munity’s needs for handling 3D data
from computed tomography (CT) and
magnetic resource imaging (MRI)
scanners. That work has grown into a
major research problem in the scien-
tific visualization community.1

Direct volume rendering primar-
ily offers flexibility—we can use it to
obtain an initial overall view of the
data, and, by changing transfer func-
tions (which are directly analogous to
color maps), we can incrementally fo-
cus on the data’s particular features. In
the past, direct volume rendering was
too slow and cumbersome to be widely
used as a plotting technique, but this
hasn’t been the case for several years.
Many improvements, and the wide
availability of hardware and software
platforms that support volume render-
ing, make it a very attractive visualiza-
tion technique, and one that we feel is
somewhat underused in the scientific
community. Here, we attempt to show
the technique’s overall simplicity, its
power, and how to best employ exist-
ing hardware and software solutions.

A Volume-Rendering Primer
In rendering volumetric data directly,

we consider it a participating medium
composed of semitransparent material
that can emit, transmit, and absorb
light, thereby letting us “see through”
(or see inside) the data. By changing
the material’s optical properties, we
can achieve different lighting effects.

The typical optical model used for
volume rendering in scientific visual-
ization is to consider the volume as a
medium that both emits and absorbs
light, like a cloud. In a physically based
model, the light would also scatter, but
because the effect doesn’t necessarily
make the visualization any clearer, we
generally ignore it to make the algo-
rithms more tractable. For a ray of light
passing through the volume, we can
compute the light’s intensity I using the
standard volume-rendering integral2

I D I e

C s s Ae

t Adt

t Adt

D

s

D

0
0

ds
D

0
 (1)

for position s = 0 at the back of the
volume and s = D at the eye; particles
of area A and density per unit ; and
emmisive glow C per unit of pro-
jected area. Because computers can
efficiently perform volume render-
ing incrementally, we commonly use
a discretized form of the equation in
practice. We can derive an approxima-
tion to the equation using a Riemann
sum, which divides the integral into n

JANUARY/FEBRUARY 2008 89

equal segments of size x:

I D I t g ti
i

n

i
i

n

j
j i

n

0
1 1 1

, (2)

where

ti = e– i x x,
gi = C(i x (i x . (4)

These equations require prior steps to
compute the current step through the
volume. Thus, we perform integration
by sampling the volume incremental-
ly, in order.

Direct volume-rendering algo-
rithms consist of three major com-
ponents: sampling, classification, and
compositing. Sampling deals with se-
lecting the piecewise steps that we
take through the volume; classifica-
tion is the process of computing a col-
or and opacity for each step using the
volume-rendering integral; and com-
positing is how we blend these classi-
fied steps together to form an image.

Sampling
We can represent a structured volume
as a simple 3D array of scalar values
that implicitly defines a grid. Eight
neighboring values in the volume de-
fine the basic volume element, a voxel.
Because a discrete number of voxels
exists within the grid, we perform vol-
ume integration in a piecewise manner
by sampling incrementally through
the volume. We can easily find the
value at an arbitrary sample within
a voxel using trilinear interpolation
from the neighboring values. The
specific manner in which we sample
the volume depends on the volume-
rendering algorithm; we discuss this
concept further in a later section.

One obvious choice for the samples’
positions throughout the volume is on
the faces that define the voxel bound-
aries. However, sampling theory tells

us that one sample per voxel won’t be
sufficient. Thus, in practice, we take
multiple samples inside a voxel as well.
We can adapt sampling frequency de-
pending on the volume’s homogeneity
or on the user’s preference for interac-
tion speed over result quality.

Classification
Classification for volume rendering
is the assignment of color and opac-
ity for a discrete step, defined by two
samples, through the volume. We can
assign color and opacity to a scalar
within the volume through a user-
specified mapping called a transfer
function. We can thus compute the
contribution of one step through the
volume with the two samples and the
distance between them using the vol-
ume-rendering integral. We can ob-
tain additional lighting effects for a
sample in the volume by attenuating
the intensity with a standard lighting
model, as with surface rendering. Un-
like with surface rendering, however,

the surface normal at the sample is de-
fined not by geometry but by differen-
tial properties of the scalar field—in
this case, the gradient.

The bottleneck for volume rendering
performed in this manner occurs when
we must compute the integral for each
classification step. To address this issue,
pre-integrating the volume-rendering
integral replaces the expensive redun-
dant computations with a simple table
lookup.3 In practice, we store the pre-
integration in a 3D table that we can
index via trilinear interpolation using
the value at the front scalar, the value
at the back scalar, and the distance be-
tween the samples. With recent hard-
ware advances, we can even store this
3D table as a texture, which we can ef-
ficiently access during rendering.

Compositing
After we’ve classified a sample, the last
step before moving to the next sample
is to blend it with the previous samples
using alpha compositing.4 Just as re-

(a) (b)

(c) (d)

Figure 1. Plotting methods for a volume created from an implicit function.
Indirect methods create intermediate geometry before rendering as shown with
(a) 2D contours and (b) a 3D isosurface. Direct methods render the data directly
either as (c) a density plot in 2D or (d) a volume rendering in 3D.

V I S U A L I Z A T I O N C O R N E R

90 COMPUTING IN SCIENCE & ENGINEERING

arranging plates of different colored
glass will change the color of objects
seen through them, the order in which
we composite the data will change the
volume-rendering results. Thus, we
must traverse the samples either back
to front or front to back through the
volume. We use the standard com-
positing algorithm for front-to-back
traversal as a function of RGB color c
and opacity :

ci = ci–1 + ci i (1 – i–1) (6)
i = i–1 + i(1 – i–1) (7)

for the steps before (i –1) the current
step (i).

In practice, we use front-to-back
compositing most frequently because
it facilitates acceleration techniques
such as early-ray termination, which
prevents compositing after a thresh-
old opacity has been reached (for
example, 95 percent opaque). This
method avoids unnecessary computa-
tion by skipping regions of the volume
that are obscured in the current view.

Taking Advantage
of the Latest Hardware
When it comes to actually imple-
menting volume rendering, we can
use many possible algorithms. As we
will see, two techniques in particular
are straightforward to implement and
offer significant computational ad-
vantages. The first technique is called
ray casting, and it’s appropriate for
CPUs, especially in recent multicore
architectures. The second technique,

known as texture slicing, exploits the
special-purpose hardware present
in recent graphics processing units
(GPUs). Figure 2 shows a conceptual
overview of these two techniques.

Ray casting5 is an algorithm that
performs a direct geometrical inter-
pretation of Equation 2. The Riemann
sum approximation becomes a set of
co-linear line segments through the
volume. These rays are cast from the
image plane through the data set, ac-
cumulating color and opacity accord-
ing to the given transfer function:

ray-casting

R = all_rays_in_screen()

for ray in R:

 result = 0

 for step in steps_through_ray:

 result = composite_step

 (step, ray, result)

 set_value(ray, result)

Ray casting is a very natural imple-
mentation for volume rendering that
also happens to be computationally
desirable. In particular, ray casting is
embarrassingly parallel—no depen-
dencies exist between different rays
in an image. Each pixel in the image
plane corresponds to a different ray, so
we can use parallel architectures very
effectively to speed up ray-casting
algorithms. The recent shift toward
multicore architectures makes it a
very appealing algorithm for a CPU
implementation.

Notice that the only data dependen-
cy in the algorithm is that when com-

positing step n, we must have already
composited all the steps from 1 to n – 1.
Across rays, however, there is no depen-
dency. By changing the computation
order, we arrive at a different scheme
that’s usually referred to as texture slic-
ing.6 Whereas ray casting generates
one pixel at a time, marching the entire
ray through the volume before moving
to the next ray, slice-based techniques
generate all the pixels simultaneously,
marching all the rays through the vol-
ume one step at a time:

slice-based

R = all_rays_in_screen()

for step in steps_through_ray:

 for ray in R:

 current = get_value(ray)

 new_value =

 composite_step(step,

 ray, current)

 set_value(ray, new_value)

This reordering looks minor, but
it actually makes volume rendering
trivial to implement in graphics pro-
cessors. GPUs have become faster at
a much faster pace than general-pur-
pose CPUs, so algorithms that exploit
GPUs tend to perform extremely
well.7 In GPUs, the computation of
each slice through the data becomes a
single call to an API that’s implement-
ed directly in hardware over parallel
logic units, leading to an extremely
fast implementation. In addition,
GPUs transparently rearrange the
data layout to improve cache coheren-
cy. Finally, the trilinear interpolation

Data slices

Image plane
(b)

Image plane

Rays

(a)

Figure 2. Volume rendering using (a) ray casting vs. (b) texture slicing. On CPUs, it’s typically faster to cast rays through data,
computing these independently. On GPUs, we can render independent slabs of the data (or slices) using special-purpose
hardware, making volume rendering extremely fast.

JANUARY/FEBRUARY 2008 91

and alpha compositing are natively
implemented in hardware. Because
of these factors, we can now perform
volume rendering at interactive rates
for essentially any structured Carte-
sian grid that fits in a graphics card’s
main memory.

Feature Finding
for Volume Rendering
One of the drawbacks to rendering
the complete volume is that it might
result in information overload. With-
in the volume, features of interest can
easily become obscured by regions of
little interest. One way to remove su-
perfluous regions is to insert clipping
planes into the volume; these planes
cull away parts of the volume on one
entire side of the plane. Although ef-
ficient, clipping planes aren’t powerful
enough to isolate general homogenous
regions within the volume—for this,
we use transfer functions.

A transfer function is a simple
mapping from scalar values to color
and opacity—or, more formally, it
maps 4 (that is, s (r, g, b, a)).
A transfer function is generally rep-
resented as a lookup table that we can
access using scalar values and that
uses linear interpolation to repre-
sent a continuous range with a finite
number of entries. Thus, we can give
scalar ranges that we deem important
a higher opacity and remove scalar
ranges of little interest by specify-
ing them as fully transparent. Figure
3 shows a plot of the transfer func-
tion used for the volume rendering
in Figure 1. Note that we left values
less than 180 transparent to simplify
the function and remove unwanted
regions of the volume.

Specifying transfer functions can be
difficult, and the topic continues to be
an area of research in the visualization
community.8 Although researchers

have introduced techniques to assist
in specification, feature finding is still
very manual. Prior knowledge of the
data being visualized can help—for
instance, CT scans provide a scanned
object’s densities, and for human tis-
sue, such densities are well classified,
thus finding regions of interest might
only require highlighting the scalar
ranges that correspond to those re-
gions. In general, the goal behind the
visualization should drive the transfer
function specification. If the goal is to
find boundaries between materials in
the volume, a tool that uses differen-
tial properties of the scalar field (such
as gradient magnitude) might be im-
portant. However, if the goal is to find
one or more homogenous regions, a
tool that shows the scalar values’ 1D
histogram might be more useful.

In general, because volume render-
ing is often exploratory, specifying
transfer functions requires a lot of
user intervention. Although this pro-
cess can be time-consuming, it can
also be beneficial because it gives in-
sight to the data that we can’t achieve
using other 3D plotting techniques.

In this installment of Visualization
Corner, we covered only the basics:

direct volume rendering of regular
grid data using simple specification
techniques. In the future, we hope to
cover the details in more depth and
provide specific case studies of direct
volume rendering in practice.

Acknowledgments
The US National Science Foundation,
the US Department of Energy, an IBM
faculty award, and an IBM PhD fellow-
ship all partially supported this work.

References
C.R. Johnson and C. Hansen, The Visualiza-
tion Handbook, Academic Press, 2004.

N.L. Max, “Optical Models for Direct
Volume Rendering,” IEEE Trans. Visualization
and Computer Graphics, vol. 1, no. 2, 1995,
pp. 99–108.

K. Engel, M. Kraus, and T. Ertl, “High-Qual-
ity Pre-Integrated Volume Rendering using
Hardware-Accelerated Pixel Shading,” Proc.
EG/SIGGRAPH Workshop Graphics Hardware,
ACM Press, 2001, pp. 9–16.

T. Porter and T. Duff, “Compositing Digital
Images,” Computer Graphics, vol. 18, no. 3,
1984, pp. 253–259.

R. Drebin, L. Carpenter, and P. Hanrahan,
“Volume Rendering,” Computer Graphics, vol.
22, no. 4, 1988, pp. 65–74.

B. Cabral, N. Cam, and J. Foran, “Acceler-
ated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping
Hardware,” Proc. Symp. Volume Visualization,
ACM Press, 1994, pp. 91–98.

K. Engel et al., Real-Time Volume Graphics, AK
Peters, 2006.

H. Pfister et al., “The Transfer Function Bake-
Off,” IEEE Computer Graphics and Applications,
vol. 21, no. 3, 2001, pp. 16–22.

Steven P. Callahan is a research assistant and
PhD candidate at the University of Utah. His
research interests include scientific visualiza-
tion, visualization systems, and computer
graphics. Callahan has an MS in computa-
tional science and engineering from the Uni-
versity of Utah. Contact him at stevec@sci.
utah.edu.

1.

2.

3.

4.

5.

6.

7.

8.

0.3

0
128

x

f(
x)

256

Figure 3. A simple representation of the transfer function f(x) for the implicit data
set in Figure 1. The black line shows the opacity function, and the points show
changes in color.

V I S U A L I Z A T I O N C O R N E R

92 COMPUTING IN SCIENCE & ENGINEERING

Jason H. Callahan is a research assistant and
undergraduate student at the University of
Utah. His research interests include scientific
visualization and computer graphics. Con-
tact him at jason@sci.utah.edu.

Carlos E. Scheidegger is a research assis-
tant and PhD candidate at the University of

Utah. His research interests include scien-
tific visualization, geometry processing, and
computer graphics. Scheidegger has a BS in
computer science from the Federal Univer-
sity of Rio Grande do Sul, Brazil. Contact him
at cscheid@sci.utah.edu.

Claudio T. Silva is an associate professor at

the University of Utah. His research interests
include visualization, geometry processing,
graphics, and high-performance comput-
ing. Silva has a PhD in computer science
from SUNY at Stony Brook. He is a member
of the IEEE, the ACM, Eurographics, and So-
ciedade Brasileira de Matematica. Contact
him at csilva@cs.utah.edu.

A STEP-BY-STEP EXAMPLE

Many tools are available for direct volume rendering
of structured data. Here, we walk through a step-by-

step example of how to create a visualization from scratch
using the Visualization Toolkit (www.vtk.org) with the Vis-
Trails system. Because interacting with the data itself can
be an efficient learning tool, we recommend that readers
explore it directly. You can easily reproduce this example,
as well as all the visualizations in the main text, using the
VisTrails software available at www.vistrails.org.

The volumetric data set that we chose for this example
is a computed tomography (CT) scan of a chest (see Figure
A). With this data set, we can simultaneously pull out vari-
ous recognizable features, including the bones, heart, and
lungs. The exploratory steps for creating this visualization
are as follows:

First, we create a pipeline that can read the data from a
file and render it to the screen. Because of the large data
size, the rendering algorithm we choose is important.
We chose to use texture slicing for quick interactions
during the exploratory task. Once we add and connect
the necessary modules, we can execute the pipeline
to view the data using a default transfer function. The
resulting image is an opaque cube.

•

Next, we make sure the data is scaled in an intuitive way.
We use a factor of 1.1 in the axial direction to account
for the spacing between slices in the original scan.
The volume contains superfluous regions that we can
easily remove with clipping planes, such as the table.
In addition, to expose the internal organs, we can add
a clipping plane to the front of the chest to remove the
skin and bone from the visualization. With these clipping
planes, we begin to reduce the amount of data being
shown, and internal features start to become apparent.
The next, and most time-consuming step, is to create
a transfer function to emphasize the desired materials
inside the volume. Because densities in CT volumes are
similar with different scans, the specification is simpli-
fied because we can easily limit opacity to relevant
scalar ranges. We also give these ranges colors to
distinguish them (for example, white for bone and red
for tissue).
The final step is direct interaction with the volume. We
can do this by changing the viewing parameters, clip-
ping planes, or the transfer function itself to explore
other features within the volume.

The data and metadata associated with each visualiza-
tion in this—and previous—articles is available at www.
vistrails.org/index.php/CiSE.

•

•

•

•

Figure A. Direct volume rendering example showing several different transfer functions. The data set comes from a computed tomography
(CT) scan of a chest.

