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V I S U A L I Z A T I O N  C O R N E R

DIRECT VOLUME RENDERING
A 3D PLOTTING TECHNIQUE FOR SCIENTIFIC DATA 

By Steven P. Callahan, Jason H. Callahan, Carlos E. Scheidegger,  
and Claudio T. Silva

Direct volume rendering is an effective method for plotting 3D scientific data, but it’s not used as frequently as 
it could be. Here, the authors summarize direct volume rendering and discuss barriers to taking advantage of 
this powerful technique. 

T he use of plotting techniques 
to comprehend scalar func-
tions is ubiquitous in science 

and engineering. An effective plot uses 
features such as first and second deriv-
atives to convey critical and inflection 
points, which help portray the overall 
behavior of functions around a region 
of interest. As the scalar field’s dimen-
sionality increases, plotting becomes 
harder. For 2D scalar functions, many 
of us rely on more complex plotting 
functionality, similar to that available 
in certain scientific packages, such as 
the Visualization Toolkit (www.vtk.
org) and matplotlib (http://matplotlib.
sourceforge.net).

In general, available 2D plotting 
 techniques are based on creating con-
tour or density data plots. In either case, 
the algorithm samples the function in 
some way, which turns the problem into 
a discrete one. Contour plots show the 
function indirectly by generating a set 
of closed curves called level sets. Den-
sity plots show the function directly by 
mapping the scalar values through a set 
of colors. Figure 1 displays contour and 
density plots for a slice of a volume cre-
ated from the implicit function f(x, y, z) 
= x2 + y2 + z2 – x4 – y4 – z4.

For 3D scalar fields, this gets con-
siderably more complicated, and most 
packages support only 3D contour 
plots, not density plots. To visualize 
3D density plots, we must use direct 
volume rendering, the term indicating 

that no intermediate representations 
are computed. Instead, direct volume 
rendering determines pictures direct-
ly from the function f(x, y, z), as Fig-
ure 1 shows. Volume visualization as 
a discipline started in the early 1980s, 
owing mostly to the medical com-
munity’s needs for handling 3D data 
from computed tomography (CT) and 
magnetic resource imaging (MRI) 
scanners. That work has grown into a 
major research problem in the scien-
tific visualization community.1

Direct volume rendering primar-
ily offers flexibility—we can use it to 
obtain an initial overall view of the 
data, and, by changing transfer func-
tions (which are directly analogous to 
color maps), we can incrementally fo-
cus on the data’s particular features. In 
the past, direct volume rendering was 
too slow and cumbersome to be widely 
used as a plotting technique, but this 
hasn’t been the case for several years. 
Many improvements, and the wide 
availability of hardware and software 
platforms that support volume render-
ing, make it a very attractive visualiza-
tion technique, and one that we feel is 
somewhat underused in the scientific 
community. Here, we attempt to show 
the technique’s overall simplicity, its 
power, and how to best employ exist-
ing hardware and software solutions.

A Volume-Rendering Primer
In rendering volumetric data directly, 

we consider it a participating medium 
composed of semitransparent material 
that can emit, transmit, and absorb 
light, thereby letting us “see through” 
(or see inside) the data. By changing 
the material’s optical properties, we 
can achieve different lighting effects.

The typical optical model used for 
volume rendering in scientific visual-
ization is to consider the volume as a 
medium that both emits and absorbs 
light, like a cloud. In a physically based 
model, the light would also scatter, but 
because the effect doesn’t necessarily 
make the visualization any clearer, we 
generally ignore it to make the algo-
rithms more tractable. For a ray of light 
passing through the volume, we can 
compute the light’s intensity I using the 
standard volume-rendering integral2
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for position s = 0 at the back of the 
volume and s = D at the eye; particles 
of area A and density per unit ; and 
emmisive glow C per unit of pro-
jected area. Because computers can 
efficiently perform volume render-
ing incrementally, we commonly use 
a discretized form of the equation in 
practice. We can derive an approxima-
tion to the equation using a Riemann 
sum, which divides the integral into n 
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where

ti = e– i x x,
gi = C(i x (i x . (4)

These equations require prior steps to 
compute the current step through the 
volume. Thus, we perform integration 
by sampling the volume incremental-
ly, in order.

Direct volume-rendering algo-
rithms consist of three major com-
ponents: sampling, classification, and 
compositing. Sampling deals with se-
lecting the piecewise steps that we 
take through the volume; classifica-
tion is the process of computing a col-
or and opacity for each step using the 
volume-rendering integral; and com-
positing is how we blend these classi-
fied steps together to form an image.

Sampling
We can represent a structured volume 
as a simple 3D array of scalar values 
that implicitly defines a grid. Eight 
neighboring values in the volume de-
fine the basic volume element, a voxel. 
Because a discrete number of voxels 
exists within the grid, we perform vol-
ume integration in a piecewise manner 
by sampling incrementally through 
the volume. We can easily find the 
value at an arbitrary sample within 
a voxel using trilinear interpolation 
from the neighboring values. The 
specific manner in which we sample 
the volume depends on the volume-
rendering algorithm; we discuss this 
concept further in a later section.

One obvious choice for the samples’ 
positions throughout the volume is on 
the faces that define the voxel bound-
aries. However, sampling theory tells 

us that one sample per voxel won’t be 
sufficient. Thus, in practice, we take 
multiple samples inside a voxel as well. 
We can adapt sampling frequency de-
pending on the volume’s homogeneity 
or on the user’s preference for interac-
tion speed over result quality.

Classification
Classification for volume rendering 
is the assignment of color and opac-
ity for a discrete step, defined by two 
samples, through the volume. We can 
assign color and opacity to a scalar 
within the volume through a user-
specified mapping called a transfer 
function. We can thus compute the 
contribution of one step through the 
volume with the two samples and the 
distance between them using the vol-
ume-rendering integral. We can ob-
tain additional lighting effects for a 
sample in the volume by attenuating 
the intensity with a standard lighting 
model, as with surface rendering. Un-
like with surface rendering, however, 

the surface normal at the sample is de-
fined not by geometry but by differen-
tial properties of the scalar field—in 
this case, the gradient.

The bottleneck for volume rendering 
performed in this manner occurs when 
we must compute the integral for each 
classification step. To address this issue, 
pre-integrating the volume-rendering 
integral replaces the expensive redun-
dant computations with a simple table 
lookup.3 In practice, we store the pre-
integration in a 3D table that we can 
index via trilinear interpolation using 
the value at the front scalar, the value 
at the back scalar, and the distance be-
tween the samples. With recent hard-
ware advances, we can even store this 
3D table as a texture, which we can ef-
ficiently access during rendering.

Compositing
After we’ve classified a sample, the last 
step before moving to the next sample 
is to blend it with the previous samples 
using alpha compositing.4 Just as re-

(a) (b)

(c) (d)

Figure 1. Plotting methods for a volume created from an implicit function. 
Indirect methods create intermediate geometry before rendering as shown with 
(a) 2D contours and (b) a 3D isosurface. Direct methods render the data directly 
either as (c) a density plot in 2D or (d) a volume rendering in 3D.
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arranging plates of different colored 
glass will change the color of objects 
seen through them, the order in which 
we composite the data will change the 
volume-rendering results. Thus, we 
must traverse the samples either back 
to front or front to back through the 
volume. We use the standard com-
positing algorithm for front-to-back 
traversal as a function of RGB color c 
and opacity :

ci = ci–1 + ci i (1 – i–1) (6)
i = i–1 + i(1 – i–1) (7)

for the steps before (i –1) the current 
step (i).

In practice, we use front-to-back 
compositing most frequently because 
it facilitates acceleration techniques 
such as early-ray termination, which 
prevents compositing after a thresh-
old opacity has been reached (for 
example, 95 percent opaque). This 
method avoids unnecessary computa-
tion by skipping regions of the volume 
that are obscured in the current view.

Taking Advantage  
of the Latest Hardware
When it comes to actually imple-
menting volume rendering, we can 
use many possible algorithms. As we 
will see, two techniques in particular 
are straightforward to implement and 
offer significant computational ad-
vantages. The first technique is called 
ray casting, and it’s appropriate for 
CPUs, especially in recent multicore 
architectures. The second technique, 

known as texture slicing, exploits the 
special-purpose hardware present 
in recent graphics processing units 
(GPUs). Figure 2 shows a conceptual 
overview of these two techniques.

Ray casting5 is an algorithm that 
performs a direct geometrical inter-
pretation of Equation 2. The Riemann 
sum approximation becomes a set of 
co-linear line segments through the 
volume. These rays are cast from the 
image plane through the data set, ac-
cumulating color and opacity accord-
ing to the given transfer function:

# ray-casting

R = all_rays_in_screen()

for ray in R:

  result = 0

  for step in steps_through_ray:

     result = composite_step 

   (step, ray, result)

    set_value(ray, result)

Ray casting is a very natural imple-
mentation for volume rendering that 
also happens to be computationally 
desirable. In particular, ray casting is 
embarrassingly parallel—no depen-
dencies exist between different rays 
in an image. Each pixel in the image 
plane corresponds to a different ray, so 
we can use parallel architectures very 
effectively to speed up ray-casting 
algorithms. The recent shift toward 
multicore architectures makes it a 
very appealing algorithm for a CPU 
implementation.

Notice that the only data dependen-
cy in the algorithm is that when com-

positing step n, we must have already 
composited all the steps from 1 to n – 1. 
Across rays, however, there is no depen-
dency. By changing the computation 
order, we arrive at a different scheme 
that’s usually referred to as texture slic-
ing.6 Whereas ray casting generates 
one pixel at a time, marching the entire 
ray through the volume before moving 
to the next ray, slice-based techniques 
generate all the pixels simultaneously, 
marching all the rays through the vol-
ume one step at a time:

# slice-based

R = all_rays_in_screen()

for step in steps_through_ray:

  for ray in R:

    current = get_value(ray)

    new_value = 

       composite_step(step,  

       ray, current)

    set_value(ray, new_value)

This reordering looks minor, but 
it actually makes volume rendering 
trivial to implement in graphics pro-
cessors. GPUs have become faster at 
a much faster pace than general-pur-
pose CPUs, so algorithms that exploit 
GPUs tend to perform extremely 
well.7 In GPUs, the computation of 
each slice through the data becomes a 
single call to an API that’s implement-
ed directly in hardware over parallel 
logic units, leading to an extremely 
fast implementation. In addition, 
GPUs transparently rearrange the 
data layout to improve cache coheren-
cy. Finally, the trilinear interpolation 

Data slices

Image plane
(b)

Image plane

Rays

(a)

Figure 2. Volume rendering using (a) ray casting vs. (b) texture slicing. On CPUs, it’s typically faster to cast rays through data, 
computing these independently. On GPUs, we can render independent slabs of the data (or slices) using special-purpose 
hardware, making volume rendering extremely fast.
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and alpha compositing are natively 
implemented in hardware. Because 
of these factors, we can now perform 
volume rendering at interactive rates 
for essentially any structured Carte-
sian grid that fits in a graphics card’s 
main memory.

Feature Finding  
for Volume Rendering
One of the drawbacks to rendering 
the complete volume is that it might 
result in information overload. With-
in the volume, features of interest can 
easily become obscured by regions of 
little interest. One way to remove su-
perfluous regions is to insert clipping 
planes into the volume; these planes 
cull away parts of the volume on one 
entire side of the plane. Although ef-
ficient, clipping planes aren’t powerful 
enough to isolate general homogenous 
regions within the volume—for this, 
we use transfer functions.

A transfer function is a simple 
mapping from scalar values to color 
and opacity—or, more formally, it 
maps  4 (that is, s (r, g, b, a)). 
A transfer function is generally rep-
resented as a lookup table that we can 
access using scalar values and that 
uses linear interpolation to repre-
sent a continuous range with a finite 
number of entries. Thus, we can give 
scalar ranges that we deem important 
a higher opacity and remove scalar 
ranges of little interest by specify-
ing them as fully transparent. Figure 
3 shows a plot of the transfer func-
tion used for the volume rendering 
in Figure 1. Note that we left values 
less than 180 transparent to simplify 
the function and remove unwanted 
regions of the volume.

Specifying transfer functions can be 
difficult, and the topic continues to be 
an area of research in the visualization 
community.8 Although researchers 

have introduced techniques to assist 
in specification, feature finding is still 
very manual. Prior knowledge of the 
data being visualized can help—for 
instance, CT scans provide a scanned 
object’s densities, and for human tis-
sue, such densities are well classified, 
thus finding regions of interest might 
only require highlighting the scalar 
ranges that correspond to those re-
gions. In general, the goal behind the 
visualization should drive the transfer 
function specification. If the goal is to 
find boundaries between materials in 
the volume, a tool that uses differen-
tial properties of the scalar field (such 
as gradient magnitude) might be im-
portant. However, if the goal is to find 
one or more homogenous regions, a 
tool that shows the scalar values’ 1D 
histogram might be more useful.

In general, because volume render-
ing is often exploratory, specifying 
transfer functions requires a lot of 
user intervention. Although this pro-
cess can be time-consuming, it can 
also be beneficial because it gives in-
sight to the data that we can’t achieve 
using other 3D plotting techniques.

In this installment of Visualization 
Corner, we covered only the basics: 

direct volume rendering of regular 
grid data using simple specification 
techniques. In the future, we hope to 
cover the details in more depth and 
provide specific case studies of direct 
volume rendering in practice. 
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Figure 3. A simple representation of the transfer function f(x) for the implicit data 
set in Figure 1. The black line shows the opacity function, and the points show 
changes in color.
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A STEP-BY-STEP EXAMPLE

Many tools are available for direct volume rendering 
of structured data. Here, we walk through a step-by-

step example of how to create a visualization from scratch 
using the Visualization Toolkit (www.vtk.org) with the Vis-
Trails system. Because interacting with the data itself can 
be an efficient learning tool, we recommend that readers 
explore it directly. You can easily reproduce this example, 
as well as all the visualizations in the main text, using the 
VisTrails software available at www.vistrails.org. 

The volumetric data set that we chose for this example 
is a computed tomography (CT) scan of a chest (see Figure 
A). With this data set, we can simultaneously pull out vari-
ous recognizable features, including the bones, heart, and 
lungs. The exploratory steps for creating this visualization 
are as follows:

First, we create a pipeline that can read the data from a 
file and render it to the screen. Because of the large data 
size, the rendering algorithm we choose is important. 
We chose to use texture slicing for quick interactions 
during the exploratory task. Once we add and connect 
the necessary modules, we can execute the pipeline 
to view the data using a default transfer function. The 
resulting image is an opaque cube.

•

Next, we make sure the data is scaled in an intuitive way. 
We use a factor of 1.1 in the axial direction to account 
for the spacing between slices in the original scan.
The volume contains superfluous regions that we can 
easily remove with clipping planes, such as the table. 
In addition, to expose the internal organs, we can add 
a clipping plane to the front of the chest to remove the 
skin and bone from the visualization. With these clipping 
planes, we begin to reduce the amount of data being 
shown, and internal features start to become apparent.
The next, and most time-consuming step, is to create 
a transfer function to emphasize the desired materials 
inside the volume. Because densities in CT volumes are 
similar with different scans, the specification is simpli-
fied because we can easily limit opacity to relevant 
scalar ranges. We also give these ranges colors to 
distinguish them (for example, white for bone and red 
for tissue).
The final step is direct interaction with the volume. We 
can do this by changing the viewing parameters, clip-
ping planes, or the transfer function itself to explore 
other features within the volume.

The data and metadata associated with each visualiza-
tion in this—and previous—articles is available at www.
vistrails.org/index.php/CiSE.

•

•

•

•

Figure A. Direct volume rendering example showing several different transfer functions. The data set comes from a computed tomography 
(CT) scan of a chest.


