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Inverse Electrocardiography by Simultaneous
Imposition of Multiple Constraints
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Abstract—We describe two new methods for the inverse prob-  Unfortunately, solutions to the inverse problem have to
lem of electrocardiography. Both employ regularization with cope with a fundamental difficulty: due to attenuation, spatial
multiple constraints, rather than the standard single-constraint smoothing, and discretization effects, the inverse problem is

regularization. In one method, multiple constraints on the spatial . . - .
behavior of the solution are used simultaneously. In the other, illiposed [4], [3], i.e., small perturbations in the measured data

spatial constraints are used simultaneously with constraints on Of the forward solution produce unacceptably large errors in

the temporal behavior of the solution. The specific cases of the inverse solutions. When, as is usually the case, the forward
two spatial constraints and one spatial and one temporal con- splution is represented as a matrix, the consequence of the
straint are considered in detail. A new method, the L-Surface, is iliposedness is that the matrix will be illconditioned with a

presented to guide the choice of the required pairs of regular- h fsi | | | d
ization parameters. In the case when both spatial and temporal SMOOth spectrum of singular values. In order to overcome

regularization are used simultaneously, there is an increased com- this instability, one usually applies an inverse procedure which
putational burden, and two methods are presented to compute selects the “best” solution from a restricted set of acceptable

solutions efficiently. The methods are verified by simulations candidates. The most popular method to do so is regularization
using both dipole sources and measured canine epicardial data. [6], [7]—an inverse solution is found as a particular tradeoff
Index Terms—Electrocardiography, inverse problem, multiple between a good fit to the data and the forward solution,

constraints, regularization. on the one hand, and fidelity to aa priori constraint on
candidate inverse solutions, on the other hand. This constraint
I. INTRODUCTION is chosen for a combination of mathematical convenience

HARACTERIZATION of electrophvsiological di and physical reasonableness, and forces the solution to be
ot €lectropnysiologica c?r 1ac « easonably small” or “reasonably smooth” on average, typ-
events from standard electrocardiograms (ECG’s) is

ten difficult b f ial i i tq'ally by constraining the two-norm of the amplitude (the
en diflicult because ot sparse spatial sampiing on the tor ergy”) or the two-norm of a derivative (e.g., a gradient

surface and _atFenuatlop and smoothlng n thg tOI‘SO.VO.|L.H8F Laplacian estimate). In the ECG literature, regularization
conductor. Clinically, this may lead to diagnostic amb|gu|t|eaSing a two-norm amplitude constraint is often referred to as

and .cornpromised predictive abilities. One response to trthonov zero-order, while regularization using it spatial
ambiguity has been to employ technology that samples MY&rivative is called Tikhonowsth-order [4]. In the sequel

of the available potential data on the body surface [1], [2] an e will use the terms energy regularization and Tikhonov
to develop mathematical models that estimate cardiac activify | .o regularization interchangeably

from body surface potentials. These estimation technlques,l.his tradeoff between model fit and constraint is controlled

known as solutions to thénverse problem of electrocar- by a multiplicative parameter known as the regularization

diography require as a first ste_p an eXp“C'.t model of th arameter whose value is critical. The best choice depends
volume conductor effects [3] which can predict body surface

) . X . on model and measurement error in a sensitive and compli-
potentials from cardiac sources—i.e., a solution toftmvard . . .
. . ated fashion, as has been shown both analytically in general
problem Successful inverse solutions would enhance grea

. . ) ) o and experimentally for the electrocardiographic inverse
the ability to detect, quantify, and localize cardiac activity fro ] bl gp 101, | y be ch o g P!
noninvasive surface measurements. problem 9], [10]. It can be chosea priori but in most

practical situations sufficient information to do so is not
available—consequently a number af posteriori methods
_ , _ have been developed for this purpose, such as combined
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ticular constraint has both advantages and disadvantages evdRecently, we have investigated methods which attempt to
with a “good” value of the regularization parameter. Fampose two spatial constraints [26] or a temporal and a spatial
example, solutions using a constraint on the two-norm of tleenstraint [15] simultaneously. The estimate in our approach is
solution may capture areas of large gradient such as activattha solution to goint minimization problem over the fit error
wavefronts, but will tend to be noisy, while those usingnd the two constraints. The motivation for such an approach
smoothness constraints based on spatial derivatives mayisé¢hreefold.

less noisy but may smear wavefronts [15], [16]. Standard regu-1) No a priori constraint is clearly superior from a phys-
larized solutions to the inverse problem of electrocardiography jological point of view, but several have physiological
have achieved only limited success; although the main features validity; therefore, we attempt to combine the advan-
of epicardial potential distributions are roughly reconstructed, tages of two reasonable constraints and evaluate the
there is often considerable loss of accuracy with respect to both  resylts.

location and amplitude of extrema and wavefronts and spuri-2) The imposition of constraints, although necessary to
ous low-amplitude noise. Thus, the reliability of solutions is stabilize the problem, introduces a bias on the solution.
uncertain. Both choices, of regularizing function and of regu- By using more than one constraint, we hope to be
larization parameter, require hard tradeoffs between smoothing able to reduce the severity of each constraint (i.e.,
and accuracy. In response to the limited success of these use smaller individual regularization parameters) and,
methods, in recent years researchers have looked for ways to thereby, moderate this bias.

incorporate additiona& priori information into the solution.  3) Typically, regularized solutions are quite sensitive to
Some approaches constrain the forward solution, e.g., by the value of the regularization parameter. By using two
“locally tuned” regularization of matrix factors of the forward constraints we hope to increase robustness to changes in
solution representing relationships between particular surfaces the values of the regularization parameters.

or regions [17], or by rewriting the forward solution as a The drawbacks of such an approach include the need for

generalized eigenvalue problem with specific added constraigjg, regularization parameters and possibly a large increase in
[18]. Others combine traditional regularization methods, sughe computational complexity of the problem.

as truncated SVD and energy regularization [14].

In addition to the usual spatial constraints, there have
also been limited attempts in the past to impdsmporal
constraints on the solution. Tha priori knowledge that In this section we describe the specific formulation of the
epicardial electrograms are temporally correlated is usedftaward and inverse problems of electrocardiography which
impose additional robustness against the spatial illconditionwg will use in the rest of the paper together with standard
the forward solution. Temporal constraints are not regularizeregularized solutions and methods to choose regularization
in the Tikhonov sense, directly combating the illposednepsirameters. We then present a general formulation of a mul-
of the guasi-static (and, thus, spatial) inverse problem. Thuigle spatial regularization inverse problem and an augmented
one cannot successfully use temporal constraints without sofagmulation that allows us to consider spatial and temporal
regularization of the underlying spatial problem as well. Butonstraints jointly.
they are regularizers in the sense of being an attempt to impose
constraints on solutions by restricting the acceptability of cap: Forward Model
didate solutions based on prior knowledge, and can be used in
regularization scenario known as Twomey regularization [194.

Previous attempts to use temporal information have involv%ﬂd [28]. Our geometric model consisted of epicardial and
either explicit or implicit constraints. Implicit methods havebody surfaces (no internal surfaces were included), described
included reconstructing only the activation sequence, ratf’@ 2 set of nodes on each surface connected int(,) triangles.
'than the complete epicardial potential distribution [20], imply; e mathematical formulation was a discrete, quasi-static [29]
Ing an on-off te_zmp_oral model of electrograms_, reformulate, proximation of Laplace’s equation for the region between
n te_rr_ns of derivatives n the work of G_reensm al. [21]. the heart and body surfaces with mixed boundary conditions of
Implicit temporal constraints also underlie a power-Spectruf, epicardial potentials and a zero normal electric field at

fprmulatlon of the nverse pro_ble_m, using the minimum relgpe body surface, solved numerically using boundary-element-
tive entropy reconstruction principle and autoregressive (A ethod (BEM) techniques, following [4] and [30]

mod_ellng,reported |n_[22]_. Explicit use of temporal con;tram_ts The resulting forward solution is a discrete model ex-
received early attention in [23], but was recently revived i

ressing the potential at each body surface node as a linear
the work of Oster and Rudy (see, for e>.<am_ple, [19)). In th Sombination of the potentials at all the nodes of the epicardial
work, temporal regularization was applied in a second ste

. . e ; Brface. Enumerating the epicardial and body surface nodes
via a temporally smoothing post-filtering operation, after

: . 20 - d stacking them in vectors, we have

first step of spatial regularization. Another explicit tempora

regularization approach incorporates Kalman filtering in the y(k) = A-h(k) + e(k) k=1,2,--- L (1)
constraint mechanism [24], [25]—this method imposes an

explicit “forward” temporal model as well as the standar@vhere y is the M/ x 1 vector of torso potentials at time
forward spatial model. instantk, h(k) is the N x 1 vector of epicardial potentials,

Il. PROBLEM FORMULATION

fh this work we used an epicardial potential distribution
uivalent source model for reasons described in [4], [27],
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Ais the M x N (usually M > N) matrix representing the . The L-Curve
forward solutione is a measurement noise vector of the same ™ '
dimensions ay, andk and L are a discrete time index and
the number of time samples, respectively. 10%
The inverse problem, then, is to fidd an estimate of,
given A andy at each time instant. Althought is assumed  10*}
known, it is generally not square, is illconditioned and, as
noted, has a gradually decaying spectrum of singular values.,o?
o

B. Regularized Inverse Solutions 102k

A standard least-square solution to (1) gives an estimate
of the unknown vectoh which will be extremely sensitive o'} 4
to the noise. Perturbations in the measurements will cause
unstable oscillations in the inverse solution, and low-rank,g
approximation of A via truncation of the singular value ' ials, 10°
sequence will usually not give good results because of the lack _ , _
of a clear threshold in the singular spectrum. Hence, thereff L 45, X o an Curve howing he soulon o 2 & unctor,
a need for procedures to provide a stable solution. A from the realistic human torso model, as described in Section IV Rith

1) Traditional Tikhonov RegularizationOne common me- the identity matrix.
thod of stabilizing the inverse solution is to use Tikhonov

regularization [4], [7], [31] residual norm decreases only slightly. In contrast, in the
iL/\ = arg min (||y _ A$||2 + )\2||R$||2) (2) horjzontal part of the L-Curve, obtained by over regularizing,
x |Rh||» only decreases a little with increasing regularization
where)? is the regularization parameter and thex NV matrix ~parameter while the residual error norm rises rapidly. Thé “
R (P < N), represents a regularizing side constraint. Im the figure marks the corner of the L-Curve, corresponding to
this formulation, if R is, for example, the identity matrix, a good choice for the regularization parameter. Changing the
the solutionh, is the Tikhonov zero-order solution and isparameter from very close to this point on the curve will begin
constrained in energyl> norm). If R approximates the first to either drastically increase the constraint error without signif-
or second spatial derivative, thénis the Tikhonov first- or icantly reducing the residual error or to drastically increase the
second-order solution, respectively, and is constrained to hageidual error without significantly decreasing the constraint

a smooth surface gradient or curvature. error. Thus, the L-Curve clearly demonstrates the tradeoff
The solution to (2) is between minimizing the residual norm and minimizing the
R T o T =L T side constraint.
hyn=(A"A+XNR'R) A'y. (3)

Choice of Regularization ParameteiMany a posteriori C. Regularization with Two Constraints

techniques have been proposed to find regularization pa-) \yltiple Spatial Constraint RegularizationThe minim-

rameters. One which has been specifically proposed for &tion problem using: spatial constraints can be written as
electrocardiographic inverse problem is the CRESO technique

[11]. Here we have focused our attention on a standard method k

in the literature, the L-Curve, advocated for general discrete  f, = arg min <||y_ Ax|? +Z )\§||Rﬂ||2>. (4)

inverse problems by Hansen [12], because it can be expanded z

in a straightforward fashion to include multiple constraints

(see Section IlI-B). Note that each constraint employed requires its own regular-
The L-Curve method requires the construction of a paramétation parameten;.

ric graph, for many regularization parameters, of the (semi)2) Augmented Problem to Introduce Temporal Constraints:

norm ||Rh|2 of the regularized solution versus the correAs described in Section |, several investigators have used

sponding residual (semi) nortly — Ah||.. This graph, called the correlation between the temporal samples of electrograms

the L-Curve, varies monotonically with the regularization pdo improve inverse solutions, notwithstanding the quasi-static

rameter and has a characteristic L-shaped appearance (hemgiire of ECG propagation in the torso volume conductor.

its name) when plotted itog-log scale. The curve usually Our approach is based on the assumption that electrograms

has a distinct corner separating the vertical and horizonge reasonably correlated in time (or low pass in frequency).

portions; this corner identifies a close-to-optimal regularizatiothough the temporal constraint here is not strictly a regular-

parameter. An example of an L-Curve for an electrocardiézer, we will refer to this approach as joint time/space (JTS)

graphic inverse solution is shown in Fig. 1. The first (verticafegularization.

part of the L-Curve corresponds to solutions, obtained with We begin by defining an augmented forward model [13]

small values of\, which are dominated by the side constraint

error—||Rh||» increases sharply with decreasiagwhile the 7=Ah+e (5)

=1
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whereg % [y7(1),- -, 47 (L)]¥, k ande are defined simi- A. Forms of the Solution for Joint Regularization

larly, A < I, ® A, where® is the Kronecker product] j, In the case of multiple spatial regularization (4), the solution
represents a, x L identity matrix, andZ is the number of can be written as

time samples included. Thud is block diagonal and has the -1

k
form hy = lATA—i—Z )\fR;‘FRi] Aly. )
A 0 O 0 i=1
_ 0 4 0 0 Thus, the solution for regularization with two spatial con-
A=10 0 4 0. (6)  straints is
000 - A hy = (A"A+ XRIR, + XRYR,) " ATy, (10)

An optimization problem which imposesjaint constraint For the case of the augmented time/space problem (7), the
in space (over the epicardial surface) and in time (over the tiraelution is
samples recorded at each sensor) can, then, be formulated as X ke -1
R = T ~ o575 ol —T_
h = arg min h_<A A+‘ - )‘iRiRz‘i‘Z; 77iTiT2> Ay (11)
xT 1= =

ks kot
: <||Z$_ -9’ + > NIRzIP + ) 7Tz

) For k, = k; = 1 the solution can be written
=1 =1

T T N\l

o - (ATA TNR R+ UQTTT) Ay
_ _ =[I, © (ATA) + X0, @ RR+*(T"T) @ Iy]

We concentrate on the simplest case, one Epatlal gnd one T AT\g (12)
temporal constraint, so thdt, = k&, = 1, and B, and T (IroAT)y
are denoted ak andT. R < I, ® R has the same structure In the filtering interpretation of the matri¥’ described in
as A, repeating the spatial regularization constraint at eagfction I1-C, the rows of the matr&? T, from whichT T is
time instant (note that in principle th_lsdrfegulanzatlon can bgonstructed, contain the deterministic autocorrelation sequence
made time varying), antl’, defined asl’ = T'® Iy, has the of the filter unit sample response.
following block-Toeplitz structure with Toeplitz (and diagonal)

blocks: B. Choice of Regularization Parameter Pair: The L-Surface
tol N t1In o bl To solve either of these joint regularization schemes it is
T — necessary to have a method to choose the values of the pair

t_In toln e tp_oln ®)
of regularization parameters def (A1, A2) or A def (A n).
t-vdn top-odn -+ toln Previously known methods are limited to only one parameter,

. . so we have developed a new method based on the L-Curve,
Thus,T" picks out the same time instant from all sensors anghi-1 we have denoted the L-Surface [15], [26]. Determining

constrains temporal behavior according to the rowf.6fhese  hraa or more parameters is beyond the scope of currently
rows can be seen as discrete estimates of a temporal derivaijygiaple methods and, thus, in this paper we deal only with
operator or as unit sample responses of high-pass filters. In {fi$§ imyitaneous constraints. The L-Surface is applicable both
latter interpretation]” becomes the corresponding convolutiog, reqjarization with two spatial constraints on a time-instant-
matrix. The temporal filters can be made space varying, i.8y time-instant basis and to the JTS problem in the augmented
T can be a non-Toeplitz matrix, and time varying, in whicly.qpjem space. The L-Surface is drawn by plotting the residual
caseT is not block Toeplitz. norm against the two side constraint norms for each pair of
regularization parameters, thus forming a surface as a bivariate
[Il. SOLUTION APPROACHES parametric function of the regularization parameter pair. The

In this section, we first present the solutions to the joint re corner Of. this surface then. indicates an estimate of a good
i%gulanzatlon parameter pair.

ularization problems formulated in the previous section. The
solutions require the choice of two regularization parameters, )

and we next describe an extension of the L-Curve technigfre Efficient Solutions to the Augmented Problem

to the two parameter case. Finally, the problem size of theAs mentioned above, the size of the augmented scheme (12)
augmented time/space regularization problem grows linear$ycritical. As the number of time instants increases, standard
with the number of time samples included and, thus, thebéock solutions quickly become prohibitive. This is especially
is an increase in the computational load for the solution tfue if we employa posteriori techniques such as the L-
the associated system of equations which is cubid.inn Surface to obtain a good as we then have to solve (12)
the last part of this section we present two techniques whighany times for each inverse solution. However, the matrix
under certain conditions, allow an efficient solution to this highly structured: it is a positive definite sparse symmetric
augmented system of equations. matrix, nonzero only in the diagonal blocks and along the
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diagonals of some off-diagonal blocks. Under certain condiesolving the combined problem using results of the previous
tions, this structure allows us to achieve efficient solutionigerations in the temporal filter. Under what conditions will this
via either iterative or diagonalization techniques. The iteratiseheme converge to the correct minimum of the augmented
scheme, in addition to being computationally more efficiemroblem? It can be shown that this scheme is of the block
than a direct solution, has an interpretation which allows udgcobi type [32] and that the matri8 has to haveblock
to track a progression of inverse solutions; we go from diagonal dominance to guarantee convergence. This turned
standard, spatial-only regularization, to a first-step solutiaut to be the case for all our tests; more detail on convergence
obtained by post-filtering of the spatially regularized solutiooonditions can be found in Appendix A. This iterative solution
(similar to the method in [19]), through a series of increasingduces the computational complexity to the same order as the
degrees of temporal filtering, until we converge to the jointlgingle time instant case. Its speed of convergence is a function
optimal solution to (12). The diagonalization method wheaf the degree to which the diagonal block matrices dominate.
the spatial regularization is Tikhonov zero order is even mofidne convergence conditions can be determined directly, or at
efficient than the iterative scheme, especially when multipleast bounded, in terms of the coefficients of the temporal
solutions are required (as when constructing an L-Surfacéter (since the matrice®,;; are diagonal) and the magnitude
since it requires only one diagonalization each of the “smaldf the regularization parameters.
matricesA and T, followed for any A by scalar and matrix  2) Pre/Post Diagonalization Schemén even more com-
multiplications only. putationally efficient solution to (12) can be achieved for the
1) Block Jacobi Iterative SchemaAriting (12) as case of Tikhonov zero-order spatial regularizatidd = I)
~ by a pre/post diagonalization method adapted from a method
I @ (AYA) + VI, © (R"R) +7*(T7T) @ In]h described for a different problem in [33]. This method requires

= (IL @AT)y (13) one-time diagonalizations of two matrices whose sizes are
. of the order of the spatial and temporal size of the problem
we can denote this system as respectively, followed by simple matrix multiplication.

o The solution depends on noticing that (13) can be written as
B-h=0b (14)

The matrix B has a block structure PH+HS =2 (19)

By By -+ By where P = (ATA) + A2(R"R), andS = »*(T"'T), H is

Bz Bn - Ba (15) @ matrix of the unknown epicardial potentials with rows and
columns as its spatial and temporal dimensions, respectively
Bri Br» - Brr (i.e., theith row of H is the desired unknown time signal at
where theB;; blocks are square matrices of siex N. The the ith epicardial node and thggh column of H contains the
diagonal blocks are well conditioned due to regularization. #esired epicardial potentials at timg andZ = A"Y, where

the vectorsh andb are divided into blocks accordingly, theY contains the known data on the torso surface organized in
ith block equation can be written an analogous fashion tH. Details of the solution are given

in Appendix A. The key advantage of this approach is that if

E:

B”ﬁ7 + Z Bi,jﬁj =b,. (16) R = I, we only need to decompose the “small” matricts
oy and T once; solutions for many different regularization pairs
) require only scalar operations and matrix multiplication. If
Thus, we can solve foh; as R £ I, then we can still use this approach but we would need
to decompose the matrik separately for each value af
ki =B;' | b;—>_ Bih;|. (17)
JF#i IV. RESULTS AND DISCUSSION

The problem in implementing this last equation is that we ) _
need the unknown values of the other block vecthysto A. Simulation Experiments
find h;. A “natural” iterative scheme would be to proceed as, W€ have applied the methods discussed in this paper to
follows: At the (k + 1)st iteration, set S|muI§1ted torso data and numerical forward solutions from
two different heart/torso and source models. In one model, a
(k1) ) (k) . single dipole was used to simulate the source of epicardial
=B |b - Z Bi;;h; (t=1,2,---,L) and torso potentials. In the other model, measured epicardial
j#i potentials served as an equivalent source for generating torso
= © (18) potentials. In both cases, the geometrical model was treated as
initialized by k; °~ = B;;'b; (i.e., the usual spatially regu-homogeneous between the epicardial and torso surfaces, torso
larized solution with some additional two-norm regularizatioaurface potentials were simulated as described below, Gaussian
due to the zeroth lag of the filter autocorrelation sequence)white noise was added to the forward computed torso data at
This scheme can be interpreted as initially solving a spatibecified signal-to-noise ratios (SNR’s), and from these data
system only, then at each iteration, for each time instamte estimated epicardial potentials.

h;
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1) Dipole Model: The geometric model for this forward
solution was based on a human subject (the Dalhousie torso
[16]) and consisted of 352 torso nodes connected to form
700 triangles and 98 epicardial nodes connected to form 192
triangles. The cardiac source was a single dipole located ‘»
near the center of the ventricles from which we calculate

both epicardial and torso surface potentials by two different R '
‘ INA

numerical pathways. V

L/
a) We computed both epicardial and torso potentials di- ‘ ‘e"%l\\‘\‘
rectly from the dipole source. NNWVA‘W =

b) We computed epicardial potentials from the dipole as 4‘

N VIDWA
above, and then, using these computed epicardial po- “_‘l‘l D'
tentials as an equivalent source, we used the forward

<A 'l’ q
solution matrixA to compute the torso potentials ‘Egg%)/ll’}
In the second path, we computed the torso potential using ‘ v

the same forward matri4 used in the inverse solution; hence,
we have exactly complementary oratchedconditions. The [Posterior Descending|
first path, on the other hand, produces slightly different torso
potentials, computed without using the matelx resulting in F19- 2. Polar projection of the epicardium used for plotting IPM's of
a model mismatclthat is more representative of any practicaﬁ'mcardlaI potential distributions.
application of the inverse solution. Neither case is an exact
forward solution, of course, and both have bias. HowevdRMSE) and correlation coefficients (CC) [4]. Although global
robustness to this type of model mismatch is an importa@fror measures such as RMSE and CC are incomplete, there
attribute for which inverse solution methods should be testdd.currently a dearth of accepted and physiologically based
Three orientations of the dipole were used, aligned with ti§giantitativemeasures based on features of the potential dis-
X-, Y-, andZ-axes of the torso geometry’ in addition to |ineaVibUti0nS. Thus, the literature on inverse solutions tends to
combinations of these three orientations. In each case, tR& on RMSE and CC. To partially alleviate this problem we
epicardial potentials computed from the dipole source were RS0 present several figures showing epicardial time signals
true solution against which inverse solutions were evaluatdglectrograms) and isopotential maps (IPM's) [1], [35] of
One major limitation of the dipole experiments is that it i@riginal data and inverse-computed solutions, so that the reader
difficult to reproduce realistically complex epicardial potentigf@n Visually compare the quality of the results. The format
distributions due to the simplicity of the model. A second ifo" the IPM's is a polar projection with the apex of the
that there is no natural way to produce realistic simulatiof§art in the center and the atrioventricular ring around the
of the time-varying epicardial distributions needed to test tf/tside [16], [34], as illustrated in Fig. 2. The problem of
JTS method. illustrating and quantifying results is compounded for the case
2) Tank Preparations:To test our inverse methods usingOf joint spatial and temporal reconstruction b_y_ the need to
realistic time-varying data, we used epicardial data recordedP4€Sent & temporal sequence of IPM's of sufficient length to
the Cardiovascular Research and Training Institute (CVRTJE @ble to properly evaluate the results. Readers who wish
University of Utah, Salt Lake City, from an isolated canind® S€€ more detail of the results are encouraged to see [36],
heart preparation during experiments conducted as partaéfwe” as an animation of one simulation, both available at:

other projects. The heart was suspended in a fiberglass tQﬁtp://www.cdsp.neu.edu/info/facuIty/brooks/brooks.htmI.

molded in the shape of an adolescent human torso and filled
with electrolytic solution at a resistivity of 50Q-cm, rep- B. Results

resentative of a typical torso volume conductor. Circulation e describe specific results using the L-Surface and inverse
was provided via cannulation and retrograde perfusion of tBgjutions computed using joint regularization with 1) two
aorta by a support dog. Epicardial potentials were recordedcghstraints and 2) a spatial constraint coupled with a temporal
a sampling rate of 1000 Hz/channel via 64 electrodes sew#nstraint.
into a nylon sock placed over the suspended heart [34]. Thel) Estimation of Regularization Parameters—the L-Surface:
heart was paced by one of the sock electrodes or by medgasdetermine the regularization coefficient pairs required for
of a hook electrode in the right atrium. From each acquisitidsoth joint spatial and joint time-space regularization we calcu-
epoch of 4-7 s of potentials we averaged over 5-8 sequentiated the L-Surface over a reasonable range of regularization
time aligned, beats to derive a representative beat for eggirameters. Fig. 3 depicts a typical L-Surface for joint time
epoch. Simulated potentials at 658 torso surface nodes wargl space regularization. The upper figure shows the sur-
computed using a forward model based on a BEM solution face over a wide range of regularization parameters and
a nominal heart location within the tank geometry. the bottom figure is an enlargement of the corner where
3) Error Measures: We report error measures which aregyood regularization parameter pairs are located. As indicated
standard in the literature, namely, relative mean square erbyr the labels on the upper figure, the horizontal axis is

Left Anterior|
Descending

el
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Energy Constraint a) RobustnessThe density of intersections is greater near
Norm the optimal region than along thg= 0 line. In the left

(front) portion of the L-Surface plot one can see that
the spacing between intersections along each constant
temporal regularization parameter curve, which reflects
the sensitivity of the regularization to the choice mpf
was considerably smaller in the optimal region than
near then = 0 edge. The change in error norms
with regularization parameter was smaller in the optimal
region than for smaller values af even for an optimal
choice ofA. The four values of the spatial regularization

ilsoi?nl‘JIaI parameter which correspond to the center of'the optimal
region range in value from §10~7 to 1x 107°.

b) Better definition of the corner of the surfacemoving
from the » = 0 edge toward the optimal zone, the
corner became sharper with increasing values ofrthe
even as more intersection points moved into the corner.
The combined result is that through the presence of the
second constraint, it becomes easier to locate the optimal
region and less critical to select its center.

c) Less weight on the spatial constraint normhe opti-
mal region occurred at smaller values of the energy
regularization parameter than the corner of the- 0
edge.

Fig. 3. The L-Surface: an extension to the L-Curve, showing the log of the This observation indicates less “bias” in the solution im-

two-norms of the two constraint terms as a function of the log of the residyapsed by the joint constraint norms, compared to only the

norm over a range of values of the parameter pair;), constructed from ‘energy norm, for a comparable level of stability. Comparisons

torso tank data. The upper figure illustrates the surface over a wide variet ! .

of regularization parameters, while the lower figure is an enlargement of t e made here to the= 0 case (Only a spatlal ConStramt) but

“corner” where good regularization parameters are localized. The format@@6t to the A = 0 case (only a temporal constraint) because

the figure is described in the text. of the fact that the temporal constraint by itself is not a

regularizer, as explained in Section I.

the residual norm, the vertical axis is the spatial constraint!n all the tests we performed for joint inverse procedures, the

norm, and the axis coming out of the page is the tempor‘_‘gpr_ner” of the L_-Sqrface showed less sgnsmwty to chang_es

constraint norm, all plotted on a log scale. The matrix in either regularization parameter than did the corresponding

used was the transformation matrix from the tank experimeﬂ{]gle regglarlzatlon L-Curvgs. This |nd|9ates that with joint
gzgularlzatlon the norms of inverse solutions are more robust
lu

"Optimal" Region

described in Section IV-A, the spatial constraint was an ener X X =2
error in the choice of regularization parameters. As we

constraint, and the temporal constraint was the one giv _ :

in Section IV-B3. To draw the figure, we connected "n‘J'f‘hesggltjtizilg\{cvﬁ;rrl](s)gvee);p:::eer:r?c?rgort)gzlsytthe norms but also
segments between points with constant temporal regularizatlorb) Joint Spatial RegularizationWe comBined Tikhonov
parameter as the spatial regularization paramgtechanged, i ) T ) .

: . ero-order and Tikhonov second-order constraints in our
and then connected line segments between points of cons O Thus. in (10) we took®, as the identity matrix, to
spatial regularization parameter as the temporal regularizatl&ghjstrain 'Ehe solution in enelrg§12 norm), andR, as 'Ehe
parameter(n) changeq. Thus, every intersection in f[he ﬁgurS’econd spatial derivative (Laplacian) to constr&into be
corresponds to a particul@h, ) pair. The standard Tikhonov smooth! Inverse epicardial potentials were calculated from

zero—o_rder(ﬁ = 0) solution corresponds to the “front—mo_st”body surface potentials for both types of data sets at various
such line, (i.e., the front edge of the surface, enhanced in fag.|s of SNR.

figure) and as the temporal regularization parameter increases a) Dipole results with and without model mismatchs

the curves progress into the plane of the paper. The shadgdcribed above, we generated two types of body surface
region labeled “optimal region” in the figure is the “cornerotentials, with and without model mismatch between forward
of the L-Surface—the region analogous to the corner ghq inverse models, using the human torso geometry. We
the traditional L-curve for a single regularization constraingdded noise at three SNR levels and then used Tikhonov zero-
L-Surfaces for the joint spatial regularization method wergrder regularization, Tikhonov second-order regularization,
similar, although narrower, due to fact, already explained, thaid joint solutions using both regularization constraints, and
both constraints were true spatial regularizers. calculated inverse solutions over a wide range of regularization

There are several aspects of joint regularization which can

be observed by Inspection Of.Flg. 3 and which are typlcal CnclThe Laplacian for our geometry was estimated using a method developed
the L-Surfaces we have studied. for an irregular triangular mesh on a three-dimensional surface [37].
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TABLE | 1
THE RMSE FOR JOINT SPATIAL REGULARIZATION USING DIPOLE
DATA wiTH No MopEL MismATCH, 40-dB SNR. HE FIRST

Row |s THE LAPLACIAN REGULARIZATION PARAMETER AND THE é’ 0.5 h
FIRST COLUMN |s THE ENERGY REGULARIZATION PARAMETER o
[ 0c0 53 de-l  le-0 Licl 6.0el 8.0el  1.0e2  2.5e2 e ppe ppe ppc s
00 [ 282.0 1.104 0379 028 0.071 0100 0.108 0115 0.128 Eneray Reguianzation Parameter
le-6 || 1.050 0.683 0.350 0.127 0.074 0.100 0.108 0.115 0.128
Be-G |l 0.410 0.396 0.28%  0.124  0.074  0.100 0.108 0.115 0.128 !
le-5 ] 0.309  0.304 0.243 0.120  0.074 0.100 0.108 0.115 0.128
Se-b 1l 0.168  0.167 0.151 0.105  0.077 0.101 0.109 0.116 0.129 Yosl Tl
le-4 | 0.141 0.140 0.131 0.102  0.080 0.103 0.111 0.117 0.130 & T
Se-d L0147 00143 0,140 0,129 0,109 0.118 0.123  0.127  0.13% h
le-3 |1 0.162  0.162 0.161 0.154  0.135 0.135 0.138 0.141  0.148 ol e s - e s
Se-3 0l 0,232 0232 0232 0230 0.219 0211 0209 0.209  0.208 Laplacian Regularization Parameter
le-d | 0270 0.270 0.270 0.269  0.262 0.254 0.253  0.252  0.250 ) . o
Se-2 [ 0380 0381 0.381 0.381  0.379 0376 0375 0371 0371 Fi9. 4. RMSE as a function of the regularization parameter for the case
lel [ 0410 0440 0110 0.140  0.110 0438 0437 037 0.3¢  Without model mismatch. SNR= 40 dB. Top graph: Solid line for only
ge-l | 0510 0510 0510 0510 0510 0.509 0509 0.509 0.508 energy regularization and dotted line for joint regularization with the Laplacian
le-0 | 0.727 0727 0727 0.727 0727 0727 0727 0.727 o727  Parameterfixed atthe "best’ value of 15. Lower graph: Solid line for Laplacian
900 |1 0.913 0.913 0913 0913 0.913 0.913 0.913 0913 0.912 regularization only and dotted line for joint regularization with the energy
regularization parameter fixed at 19.
TABLE 1

SAME FORMAT AS TABLE |

model mismatch case than in the exact model case.
Moreover, in the model mismatch case the best results

FOR DiPOLE DATA WITH MODEL MISMATCH

T P = . ; B 5 o . . . . .

— | l‘;‘;z "2’""5 01(;"1 0‘1‘(’)" (‘J;;‘} g?i ;(1);; (1)?1: él“j involved more regularization withoth constraints and,

o0 ] 713, 2.68 0075 0406 0.193 0.151 0.149 0.149 0.15 . . :
le6 | 2,020 1732 0915 0403 0092 0050 0.149 0.149 0.153 thus, W_oulc_i suffer u_nder elthe_r type of single-constraint
S5 0 1108 LOG6 0760 0.392 0.192  0.150 0.140 0.149 0.153 regularization. For instance, in Table | the best result
le-5 1 0.835  0.817 0.650  0.379  0.191  0.150 0.119  0.119 0.153 (row two, column five in the table) was only very
Sed L 0420 00418 0.396 0318 (.186 0.119 0.8 0,118 0.152 slightly improved over using Laplacian regularization
Tl | 0331 0.330 0322 0282 0180 0147 0.6 0.147  0.152 e i

Sed | 0.218 0218 0215 0204 0.160 0.142 0.143 0.L41 0.150 alone, and the energy regularization was quite small.
le3 | 0,191 0491 0.193 0.185 0.157  0.111 0.145 0.146 0.151 On the other hand, in Table Il, the best result (row
Sed | 0216 0216 0216 0.214 0203 0194 0.193 0192 0.192 seven, column six) was more significantly improved in
Je-2 | 0232 0232 0.252 0251 0243 0236 0.231 0.233  0.231 ) ) )

5e-2 || 0.366 0.366 0.366  0.366 0.361  0.360 0.330 0.359 0.357 comparison to the best result obtained using only one
fe-1 ] 0427 0427 0427 0427 0426 0425 0420 0423 0.422 regularizer and the balance between the contributions
2e-1| 0.500 0.500 0.500 0.500 0.499  0.49% 0498 0.49% 0497 of energy and Lap|acian regu|arizati0n was much more
le0 | 0722 0722 0722 0.722 0722 0.722 0722 0722 0.722 even

5e-0 | 0.012 0.912 0912 0912 0912 0912 0912 0912 0912 .

parameter pairs. At all SNR’s tested, the lowest relative errorv)
and highest correlation coefficient were obtained with joint
spatial regularization. However, the improvement was often
not very large. RMSE results for a selection of regularization
parameter pairs are shown in Tables | and Il, for the exact and
mismatched model cases, respectively. The results of these
tests led us to the following set of observations.

i)

i)

iv) The best joint spatial solution always involved equal or
smaller (usually smaller) values of thés than the best
single-constraint solution.

Using RMSE as a criterion, the difference between
using Laplacian regularization alone and joint spatial
regularization was minimal when the Laplacian regu-
larization parameter was large enough. However, if this
parameter was even slightly smaller than “optimal,” a
small amount of energy regularization greatly stabilized
the inverse solution. This was true with both exact and

Inverse solutions using Laplacian regularization alone
performed better than with energy regularization alone,
especially in the case of model mismatch. Moreover,

mismatched models. In the model mismatch case 1)
the amount of joint energy regularization required was
greater, and 2) the degree of improvement was better.

Laplacian regularization was generally less sensitive to This last effect, i.e., the greater robustness of joint spatial
the value of\. regularization to under-regularizing values of either regular-
RMSE was lower using joint spatial regularization tharzation parameter, is illustrated in Figs. 4 and 5. These figures
with either constraint alone. On the other hand, the Céhow how the RMSE varies with one regularization parameter
showed only slight improvement even for the case witivhile the other is held constant. Fig. 4 is for the exact model
model mismatch. This may suggest that, at least foase. In the top graph, the RMSE is plotted as a function of the
these relatively simple epicardial distributions, all threenergy regularization parameter when the Laplacian parameter
methods capture the basihapeof the epicardial po- is held constant at the optimal value, while in the bottom graph,
tentials, but using both constraints improved amplitudbe RMSE is shown as a function of Laplacian regularization
recovery. parameter when the energy regularization parameter is held

iii) The best solution found using any method and eionstant, again at its optimal value. Fig. 5 shows the same

ther error measure involved more regularization in thesults for the model mismatch case. In other words, the figures
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= ORIGINAL

Energy Regularization Parameter

= o B 00
Laplacian Regularization Parameter

Fig. 5. Same as the previous figure for the case with model mismatcR
Top part, Laplacian regularization parameter 60. Lower part, energy
regularization parametes 10—,

show one row (top graph) and one column (bottom graph) each
from Tables | and Il. Clearly, the jointly regularized result was

much stronger in the model mismatch case.

b) Results using tank modelfo give a visual representa-
tion of the degree and types of errors in the various reconstru
tions with a more realistically complex epicardial distribution,
Fig. 6 shows IPM’s of inverse results computed from the
simulations based on the measured epicardial potentials. The
results are shown for a single mid-QRS time sample from©
an beat initiated from a right-ventricular epicardial site, wit
an SNR of 30 dB. The original measured distribution is gt
the top of the figure. The second row shows Tikhonov zeri‘
order reconstructions at three values of the regularizatioy
parameter, while the third row shows Tikhonov second-order
reconstructions. The remaining two rows show joint spatial
reconstructions using various combinations of the regulariza-
tion parameter pairs. In all cases, zero-order regularizatiofE-5
parameters are shown above and to the left of the maps ane’
second-order parameters to the upper right. The regularizat oyn,
parameters were chosen to illustrate what happens with vari us"
degrees of under- or over regularization.

We will discuss these results in terms of the following five
features of the original distribution specific to the distribution

we selected:

i)
i)

h | d " f . d mini . Fig. 6. IPM for one time sample of tank data at 30-dB SNR. The original
the values and positions of maxima and minima; distribution is on the top row. The second row shows energy regularization

the accuracy of the shape of the region of negativand the third row Laplacian regularization. The rest of the maps show joint

potential around the 10-12 o’clock pOSitiOI’l (under th%patlal regularization. The energy regularization parameters are shown to the
LAD as shown in Fig 2)_ upper left of the maps and the Laplacian parameters to the upper right.

i) the position and density of the bundle of isocon-

iv)

tours that mark the wavefront near the 6 o’clock po-
sition—this shows the wavefront just crossing front0 the most under-regularized joint reconstruction, shown at the

the right to the left ventricle as it passes under theft of the fourth row (denoted as J1 in the sequel). (We will
left-anterior descending artery, use Azo and Ago to denote the ZO and SO regularization
the shape and density of the wavefront around 2 o’cloglarameters respectively.) In addition we will look at the
The presence of two distinct maxima, the larger one aange from the lowest to middke,o with and without added

the anterior and the other on the posterior midline dfaplacian regularization (i.e., comparing the first and second
the heart, in the broad positive region on the right sid@aps of row two to those of row four). We note that many
of the map. other comparisons can be made and we simply chose these to

For each item listed above we will compare the zero-orddiustrate typical results and features often examined in exper-
(20) and second-order (SO) single regularized reconstructiangental and clinical evaluation of epicardial potential maps.
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i) The ZO and SO reconstructions either had difficulty 2.0
locating the maximum or minimum at low values of oﬂﬁ/
their respectiveX’'s or underestimated the magnitude 2.0
of one or both extrema at high values af The -4.0

120 140 1

[o2}

0

J1 reconstruction seemed to find a better compromise

between amplitude and position of both maxima an .o z'gﬂ 2.2
minimum. Also, we note that the change in extrems, ﬁ/\ﬂ 2.0 20
amplitude with regularization parameter was smaller i o 4.0 4.0
the joint reconstructions than in the case of single ZO 120 140 160 120 140 160 120 140 160
regularization. 20 20 20
ii) The J1 reconstruction captured the shape of the contourso/\\/ 0% OA\/
surrounding the negative area better than any of tH&° -20 -20
single regularization reconstructions. It had more nois'f/' 10 120 160 70 120 1a0 1600 130 140 160
spurious minima than the single regularization recon- —
structions with higher values of but less than either 0\/_/
single regularization with its regularization parameter -2.0
at the same value as in J1. Again, the reconstructions -4.0

120 140 1

D

. L . 0
were more stable with variations in the,o.

iii) All of the reconstructions showed the degradation in 0
the density of contours on the wavefront typical OtZ.OWW 20 _Z_OW
regularized solutions. The SO reconstruction produceflg 4.0 4.0
a higher density of contour lines, and was, thus, more 120 140 160 120 140 160 120140 180

accurate in this sense than the ZO reconstruction, but 0
showed a marked change in shape and location, a bena\MN/ 0 0 OW
-4.0 -4.0

to the left near the 6 o’clock position along the atrio-2? 20
ventricular (AV) ring. The J1 reconstruction again found® 120 140 160 120 140 160 120 140 160
a compromise, more densely packed than ZO thougfy 7. 37s regularization: the effect on electrogram shape during QRS. The
not as densely as SO, but more accurate in positifrst and fourth rows show two selected original electrograms. The second
and shape than SO. The reconstructions showed oA fifth rows show energy-only regularization and the third and sixth JTS

. L . . . regularization for the respective originals. For the energy regularization
small changes with variations ikzo in either case.  from left to right, is 106, 5x 106, and 10°>. For the JTS regularization,

iv) The SO reconstruction of the wavefront was morte péir?meter paiir is (10°%, 10°%), (5% 106, 10°%), and (10°%,
accurate than ZO in both density and shape in this p&rt 107 )-
of the map, and the J1 reconstruction was similar to

SO. Again changes with increasego were slight in - To evaluate the effect of the number of time instants used in
both cases. the augmented scheme, the intervals were varied from 5 to
v) The J1reconstruction found both maxima in the origingp ms, with several different SNR levels for each test. Thus,
map, although the locations were shifted down towaigjnce the tank epicardial model had 64 points, the matrix size
the apex and somewhat and slightly toward the left sidg (12) varied from 128& 1280 to 3840« 3840. To calculate
of the heart. The SO reconstruction also found bofRverse reconstructions using 20- to 40-ms intervals we used
extrema but the smaller one was more diffuse than tiige block Jacobi method, while for intervals longer than 40 ms
original, while the ZO reconstruction missed the secongle used the diagonalization method. Reconstructions using
entirely. Increasing the ZO parameter caused even thestandard block solution took several hours on a mid-level
joint reconstruction to miss the second maximum.  workstation when coded in MATLAB with no particular effort
3) JTS RegularizationWe tested the JTS method at varito optimize the code; the block Jacobi method with a 20- to
ous segments of the cardiac cycle using only the potentidi@-ms interval took several minutes, and the pre/post method
from the torso tank. We used energy regularization as thaly a few seconds. Single-constraint regularization on the
spatial constraint and employed a simple high-pass filter wigame machine would require about 0.2-0.4 s for the same
impulse response(n) — 0.5[6(n — 1) + é(n + 1)] (with number of time samples. All results shown here are from the
modifications to handle edge effects). Thus, the méktikad same epicardially paced heartbeat as the results for joint spatial
the form regularization shown in Fig. 6.
1 -1 0 --- 0 Fig. 7 illustrates the effect on the temporal electrogram
0 ... waveforms of using JTS reconstructions over temporal in-
o det - . . (20) tervals of 60 ms during QRS at two epicardial nodes, one
y 1' L with a comparatively smooth time course and one with a
o 2 2 much sharper deflection, both with an SNR of 40 dB. The
o -0 -1 1 60-ms interval used in the reconstruction is shown for the first
The SNR'’s for the tests ranged from 20 to 60 dB—resultdectrogram in the first row and for the electrogram with a
from values as low as 15 dB had an almost random appeararstearper deflection in the fourth row. Rows two and three show

:

T
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inverse-computed solutions for the electrogram in row one; T1=105 ms
row two contains results using only energy regularization and
row three contains results with JTS regularization. The left-
most plot is under-regularized, the middle plot shows L-Curve
or L-Surface values, and the right plot is over-regularized.
Rows five and six are the same as rows two and three
but for the original electrogram in row four. In both cases,

even the best regularization failed to capture all the details
of the electrogram when the temporal derivative was high.
But it is clear from this figure that using the JTS method

we could dampen considerably the unrealistic, uncorrelated|-;
temporal behavior in the singly regularized results. In addition,
the JTS results were quite insensitive to the exact choice of
regularization parameter pair, in comparison to the spatially
regularized solution.

To illustrate the spatial behavior of the JTS method we
present IPM’s for some of the JTS regularization cases de-
scribed in the previous paragraph in Figs. 8 and 9. Fig. 8 -
focuses on two time instants during QRS (105 and 122,
as illustrated by the vertical bars on the plot of the time
signal at the top of the figure). The format of this figure is
similar to that of Fig. 7. The original two maps are shown
by themselves on the first and fourth rows, each followed
by a row of three energy regularization reconstructions, and
then by a row of three JTS reconstructions. The regularization
parameters are also the same as in Fig. 7 and are indicated i
the upper left (energy) and right (Laplacian) corner of each
map. Both time instants showed considerably less variability
with changing regularization parameters for JTS than purely
spatial regularization. For instance, there were several spurious ~ ©riginal
maxima and minima on the left ventricle (right side of the
projection) at time 105 in the spatial reconstructions which £~ "%
were smoothed by increasing energy regularization at the @j{x{\:{” Y
cost of underestimated amplitudes. The same was true ovef,? b o
the right ventricle in maps from time instant 112, rows five X
and six of Fig. 8. The JTS result was more stable across
values of regularization parameters with fewer spurious local
maxima and minima and less damping of the global maxima
and minima. JTS regularization showed even more improve-
ment during other segments of the cardiac cycle in which
the temporal filtering of the JTS method was more helpful
since the SNR was lower. Fig. 9 shows reconstructions for a
sequence of the six time instants 111-116, again marked by
vertical bars on the time signal plotted at the top of the figure.
In this figure, the first column shows the original epicardial
potentials, the second column shows inverse reconStrUCti%%. For format of the maps see previous figure, for layout of the figure see
using energy regularization with = 5 x 106, and the third text. Regularization parameters match Fig. 7 and are shown to the upper left
column shows reconstructions using JTS regularization wif¢patial) and right (temporal) of the maps.

A= (5x1075,107%). Although at particular time instants the

energy regularization was as good as or better than the Ji&sitive potential on the right and bottom and one of negative
regularization, there was considerable oscillatory behavior potential on the upper left, and b) the pattern of one negative
the energy regularization that did not appear at all in the JB&d two positive extrema. The JTS reconstruction provided a
results, such as the positive/negative fluctuation around then8re accurate estimate of the location, density, and movement
o’clock position or the large jump in the global minimum abf the wavefront. In addition, the positive region appeared in
time 112 (the second row of maps). The main features of theth the original and the JTS result, in contrast to the energy
original maps in this sequence were a) the distinct wavefromggularized result.

that moved slowly across the map from upper left to lower a) Comparison to two-step regularizationsing the
right as time progressed and separated the map into a regioblotk Jacobi iterative scheme to monitor the changes in

Original

8. IPM’s for time instants 105 and 122 as show by bars in time signal
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was an interaction among the relative sizeshoénd 7, the

’7 m, spatial and temporal regularization parameters, the SNR, and
mv the rate of convergence. In general, reasonably accurate results
| could be achieved in several steps of the iterative algorithm
L m.oo ms when A was close to optimal and the optimalwas small,
-3.0 as for instance when the interval used was entirely within the
Originals QRS complex and the SNR was, thus, comparatively high.

If a smaller than optimalA was used, even more iteration
steps were required for reasonable results. When the local
SNR was low (e.g., during the ST segment or at a low-
amplitude epicardial node) then improvements continued until
the JTS scheme had completely converged. Using global error
measures, such as CC and RMSE, we rarely saw significant
improvement from only one step of the algorithm. Inspection
of the intermediate results, both as time signals and IPM’s,
revealed that generally the first few iterations were somewhat
smoother in time, but at a cost in accuracy. As the algorithm
iterated, temporal and spatial smoothness and accuracy were
played off against each other as the optimal solution was
approached.

To illustrate these results, in Fig. 10 both temporal plots
of three leads and IPM’s at two time instants are shown.
The parameters of the simulation were the same as for the
previous two figures, except that only 20 time instants, rather
than 60, were included in the optimization, so that the final
result did not correspond exactly to that in the previous figures.
Convergence was reached after 274 iterations. In the top half
of the figure, the upper left-hand panel contains the original
signal at node 47, with vertical bars marking the interval shown
in the other panels. Each of the other three panels shows four
inverse calculated waveforms for each of three nodes; one
obtained with only spatial (energy) regularization, one each
after one and four iterations of the block Jacobi algorithm,
and the fourth after convergence. In each panel, the smooth
solid line is the original epicardial signal and the jagged solid
line the spatially regularized reconstruction. The dotted line is
the reconstruction after one iteration, the dashed line is after
four iterations, and the dot-dashed line is the reconstruction
after convergence. We note that the solution after the first
iteration was quite smooth in time, but was also less able to
follow more rapid variations in the temporal waveform than
the converged solution.

In the bottom half of this figure, we show IPM’s for two
time instants within the interval shown in the top half, denoted
as 112 and 113 ms and corresponding to two of the time
samples shown in Fig. 9. The correct solution and the solution
found with only spatial regularization can be seen in this
latter figure: in Fig. 10 we show results after one, four, and
Fig. 9. IPM's for time instants 111-116 as show by bars in time signal pldd0 iterations and at convergence. As the algorithms iterated
Format of the maps as in previous figures. See text for details on layoutygk saw minor but significant improvements in accuracy, both
the figure. . . . .

in terms of amplitudes and in terms of the details of the

distribution, especially the shape and density of the bundles of
inverse solutions as we iteratively approached the jointlgocontours that mark the location of the activation wavefront
optimal solution, we observed how the results changed @®e, for instance, the region near the 8 o’clock position) and
the iterations proceeded. (We note again that the result aftiee locations of maxima and minima (for example, the leftward
one iteration step has undergone a two-step regularizatigmft of the local maxima near the 6 o’clock position).
similar to that presented in [19].) Not unexpectedly given the b) Effect of the interval length LWe tested the effect of
convergence conditions in (A-1) or (A-2), we found that therearying interval lengths in the JTS scheme by holding the filter
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mv latter (with L = 20). In particular, with the smaller value df
20 l Node 47 the maximum near the 8 o’clock position was underestimated,
0 N an example of a more general tendency noted below.
It was difficult to draw definitive conclusions from these
-20 tests and we consider future development of a method to
-4.0 determine a good interval length to be a priority. Results were
80 130 180 230 280 330 generally better with longer segments during low SNR parts
mv i of the cycle such as the ST segment, but better with shorter

segments when the interval included parts of the cycle with
distinct temporal characteristics (such as the QRS complex
and the ST region), suggesting that there may be an interac-
tion between the interval length used and the type of filter

-4.0 employed, another topic of future research. We also observed

165 110 115 120 125 105 110 115 120 125 that JTS regularization over longer intervals seemed to be
ms ms . .. .

able to reconstruct both maximum and minimum amplitudes

T=113 ms more accurately across a wavefront without the instability and

temporal oscillation present with spatial regularization alone.
Shorter intervals seemed to often capture one extremum while
smoothing the other. We speculate this may happen because
we are minimizing two-norms and the longer temporal interval
may allow a greater local excursion of the spatial amplitudes
without affecting the overall combined norm as much.

V. CONCLUSIONS AND FUTURE WORK

In Section I, we listed three motivations for exploring the
use of more than one simultaneous regularizing constraint. In
evaluating the results of our tests we found the following.

1) Our conjecture that we might be able to take advan-
tage of the “reasonableness” of both constraints when
two constraints were imposed jointly was upheld, in
particular by the results of the experiments using JTS
regularization with the tank data. We were able to
successfully dampen unrealistic noise in inverse solu-
tions while simultaneously regularizing against spatial

Converged / OS> sensitivity to noise.

< § 2) Our conjecture that using two regularization constraints
jointly would decrease dependence on a particular con-
straint and generally require smaller values of the cor-
responding regularization parameters was also upheld.
The optimal regularization values as determined us-
ing our extended L-Surface approach when applied to

Fig. 10. Electrograms and IPM’s at various _iterations of the block Jacobi both d|po|e simulation data and measured potentiajs
solver. The top four panels show reconstructions at three nodes for 20 ms Supported this hypothesis.

(time instants 105-124 as shown by the bars on the top left graph). The . . .
curves are identified in the text. The bottom eight panels show IPM’s for ime 3) Furthermore, the conjecture that using two constraints

instants 112 and 113. Format as in previous figure. See text for details. would increase robustness to error in the value of
regularization parameters was also upheld. This was
evident in the behavior of the L-Surface near its corner
length constant and letting range from 5 to 60 ms; a larger in comparison to the corner of the L-Curve and in the
L meant a longer interval over which the weighted sum of the  results of the dipole and tank model experiments.
three norms was minimized. We generally saw improvement4) Temporal behavior of the electrograms was generally
over single time instant regularization for intervals in the ~ much more realistic using the JTS method than with
range of 10-60 ms, with no clear “best” length. An example ~ spatial regularization alone, and more accurate than
comparison can be made by contrasting the results in Fig. 9 simply post-filtering spatially regularized estimates. If
for time instants 112 and 113 with the corresponding fully ~ temporal characteristics of the resulting estimates are
converged results in Fig. 10. For instance, at time 112 the important, for instance to estimate activation or recovery
amplitudes of the two local maxima were more accurately  times, then use of temporal constraints could be very
reproduced in the former figure (with = 60) than in the useful.
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In the process of developing and testing these methods we APPENDIX
performed the following: CONVERGENCEANALYSIS OF BLOCK JACOBI METHOD

1)

2)

3)

4)

5)

6)

7

introduced the L-Surface as an extension to the L-Curveas stated in Section I11-C.1, the iterative scheme described

for the purpose of evaluating candidate regularizatiqg a block Jacobi method [32], and, in analogy to “scalar”
parameter pairs for two constraints; Jacobi iterative methods, which require diagonal dominance
found that joint spatial regularization with Laplaciarsf the system matrix for convergence, here the maBixas

and energy constraints showed some improvement tf) haveblock diagonal dominance. This is guaranteed if the

the inverse solution over single-parameter regularizatiomaximum over alk for any induced matrix norrjj- || satisfies
but that the most significant contribution was increasqge condition

robustness to the exact choice of regularization parame-
ters, especially for under-regularized solutions; 1B;; |l Z | Bl < 1. (A-1)
found that JTS regularization significantly improved the i

accuracy of the temporal behavior of the inverse solution . L
y P If the spatial regularization is Tikhonov zero order, and we

as compared to spatial regularization only: . . .
developed efficient schemes to solve the JTS equatit&%(e” || as the induced two-norm, this condition reduces to

under certain mild conditions; 7

compared results from the dipole simulations between i) m
inverse solutions computed when the same model is used ‘ ’
to generate the data via a forward solution as is used,j

. . L . Where ry,_. are the{s, j} elements of the ToeplitZ x L
the inverse solution, and ii) inverse solutions computed ’

. . orrelation matrix 72T and o is the smallest nonzero
when there is a mismatch between the model used (io oN

. . sihgular value of the matrid. If we let v = /X and assume
generate the forward data and that used in the mvert %?a is small, relative to the spatial rg ulz{ization arameter
solutions. We found the expected result that in the case. " ' P 9 P

2 /\2 i i
of mismatch between forward and inverse models, 8ta?r?’ th_us,(lo—N/)\ ) <<.1’ we can approximate the condition
least for dipole simulations, more regularization wady € SIMple expression

required than when the correct forward model was used 2 L-1

in the inverse solution. We also found the unanticipated 1772 Z [rn,_, | < 1. (A-3)
result that in the model mismatch case joint spatial TR 574

regularization provided considerably more improvement

over either regularization alone than it did in the exad. Details of Pre/Post Diagonalization Method

model case; Proceeding from (19), iR = I, P and.S can be decom-
found that a significant percentage of the improvemeﬂbsed using the SVD as

over spatial regularization achieved by the JTS scheme,

when implemented in an iterative fashion, came after P=V, (33 + 2DV (A-4)
the first iteration, indicating that spatial regularization
followed by simple post-filtering temporal regularization'?md
is often not close to the optimal JTS regularization;
found that for some regularization parameters there is

significant degradation compared to intermediate iteratgg,qre V. and Vo are the right singular matrices of
if the block Jacobi algorithm is allowed to iterate to fully 4 7 respectively. The singular values dP are (o2 +
convergence, even though the result at convergence)\ks’ o2 + A2,.-. o3 + A2), where theo; are the singular
better than with no temporal regularization or with only,51,es of A, and 212, the singular value matrix of5, is

one iteration of temporal filtering. This is due to residu diag(n?02. . n202 .-+, 202 ), with o7, the singular values
illiconditioning of the block matrix used in the iterationys - LetTl’ Lo TR k

and suggests the possibility of additional regularization
via truncation of the iterations, as in [8] and [15]. Q=vVizv, (A-6)

Z Irn,_;| <1, Vi (A-2)
i

S =vV2ivh (A-5)

Current work is proceeding in the following areas:

1)

2)

3)

acquiring tank data with measured epicardial and bogyd
surface potentials and geometry to enable testing of the wij = %ij (A-7)
effects of model mismatch in a more realistic scenario; of + A2 + 772f7:2rj

further analysis of joint spatial and JTS regularizatiopori B

. - : : - . =1,2,---,Nandj =1,2,---, L, whereu,;; denotes the
via modified simultaneous diagonalization techniques; . T A [ I
9 9 t{é,j} element of a matrixXJ. Then the solution to the joint

application of the JTS method. For instance, we arrggularlzatlon equation s

studying ways to find an optimal interval length for H=V . WVL (A-8)
the JTS method, looking at the effect of using different

filters in the JTS matriX’, and exploring the effects of As noted in the text, ifR # I we would need to decompose
space-varying and time-varying JTS schemes. the matrix P separately for each value of
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