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Inverse Electrocardiography by Simultaneous
Imposition of Multiple Constraints
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Abstract—We describe two new methods for the inverse prob-
lem of electrocardiography. Both employ regularization with
multiple constraints, rather than the standard single-constraint
regularization. In one method, multiple constraints on the spatial
behavior of the solution are used simultaneously. In the other,
spatial constraints are used simultaneously with constraints on
the temporal behavior of the solution. The specific cases of
two spatial constraints and one spatial and one temporal con-
straint are considered in detail. A new method, the L-Surface, is
presented to guide the choice of the required pairs of regular-
ization parameters. In the case when both spatial and temporal
regularization are used simultaneously, there is an increased com-
putational burden, and two methods are presented to compute
solutions efficiently. The methods are verified by simulations
using both dipole sources and measured canine epicardial data.

Index Terms—Electrocardiography, inverse problem, multiple
constraints, regularization.

I. INTRODUCTION

CHARACTERIZATION of electrophysiological cardiac
events from standard electrocardiograms (ECG’s) is of-

ten difficult because of sparse spatial sampling on the torso
surface and attenuation and smoothing in the torso volume
conductor. Clinically, this may lead to diagnostic ambiguities
and compromised predictive abilities. One response to this
ambiguity has been to employ technology that samples more
of the available potential data on the body surface [1], [2] and
to develop mathematical models that estimate cardiac activity
from body surface potentials. These estimation techniques,
known as solutions to theinverse problem of electrocar-
diography, require as a first step an explicit model of the
volume conductor effects [3] which can predict body surface
potentials from cardiac sources—i.e., a solution to theforward
problem. Successful inverse solutions would enhance greatly
the ability to detect, quantify, and localize cardiac activity from
noninvasive surface measurements.
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Unfortunately, solutions to the inverse problem have to
cope with a fundamental difficulty: due to attenuation, spatial
smoothing, and discretization effects, the inverse problem is
illposed [4], [5], i.e., small perturbations in the measured data
or the forward solution produce unacceptably large errors in
the inverse solutions. When, as is usually the case, the forward
solution is represented as a matrix, the consequence of the
illposedness is that the matrix will be illconditioned with a
smooth spectrum of singular values. In order to overcome
this instability, one usually applies an inverse procedure which
selects the “best” solution from a restricted set of acceptable
candidates. The most popular method to do so is regularization
[6], [7]—an inverse solution is found as a particular tradeoff
between a good fit to the data and the forward solution,
on the one hand, and fidelity to ana priori constraint on
candidate inverse solutions, on the other hand. This constraint
is chosen for a combination of mathematical convenience
and physical reasonableness, and forces the solution to be
“reasonably small” or “reasonably smooth” on average, typ-
ically by constraining the two-norm of the amplitude (the
“energy”) or the two-norm of a derivative (e.g., a gradient
or Laplacian estimate). In the ECG literature, regularization
using a two-norm amplitude constraint is often referred to as
Tikhonov zero-order, while regularization using theth spatial
derivative is called Tikhonov th-order [4]. In the sequel
we will use the terms energy regularization and Tikhonov
zero-order regularization interchangeably.

This tradeoff between model fit and constraint is controlled
by a multiplicative parameter known as the regularization
parameter whose value is critical. The best choice depends
on model and measurement error in a sensitive and compli-
cated fashion, as has been shown both analytically in general
[8] and experimentally for the electrocardiographic inverse
problem [9], [10]. It can be chosena priori but in most
practical situations sufficient information to do so is not
available—consequently a number ofa posteriori methods
have been developed for this purpose, such as combined
residual and smoothing operator (CRESO) [11], the L-Curve
[8], [12], and combined singular-value decomposition (SVD)-
regularization methods [13], [14]. In most such techniques,
solutions are calculated for a range of regularization param-
eters, and the “best” one is chosen as a good compromise
between accuracy (residual error) and the particular method’s
criterion.

Unlike some inverse problems, where there may be a clear
best choice of regularization constraint and parameter, the
complicated nature of the equivalent source in the inverse
problem of electrocardiography means that choosing any par-
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ticular constraint has both advantages and disadvantages even
with a “good” value of the regularization parameter. For
example, solutions using a constraint on the two-norm of the
solution may capture areas of large gradient such as activation
wavefronts, but will tend to be noisy, while those using
smoothness constraints based on spatial derivatives may be
less noisy but may smear wavefronts [15], [16]. Standard regu-
larized solutions to the inverse problem of electrocardiography
have achieved only limited success; although the main features
of epicardial potential distributions are roughly reconstructed,
there is often considerable loss of accuracy with respect to both
location and amplitude of extrema and wavefronts and spuri-
ous low-amplitude noise. Thus, the reliability of solutions is
uncertain. Both choices, of regularizing function and of regu-
larization parameter, require hard tradeoffs between smoothing
and accuracy. In response to the limited success of these
methods, in recent years researchers have looked for ways to
incorporate additionala priori information into the solution.
Some approaches constrain the forward solution, e.g., by
“locally tuned” regularization of matrix factors of the forward
solution representing relationships between particular surfaces
or regions [17], or by rewriting the forward solution as a
generalized eigenvalue problem with specific added constraints
[18]. Others combine traditional regularization methods, such
as truncated SVD and energy regularization [14].

In addition to the usual spatial constraints, there have
also been limited attempts in the past to imposetemporal
constraints on the solution. Thea priori knowledge that
epicardial electrograms are temporally correlated is used to
impose additional robustness against the spatial illcondition of
the forward solution. Temporal constraints are not regularizers
in the Tikhonov sense, directly combating the illposedness
of the quasi-static (and, thus, spatial) inverse problem. Thus,
one cannot successfully use temporal constraints without some
regularization of the underlying spatial problem as well. But
they are regularizers in the sense of being an attempt to impose
constraints on solutions by restricting the acceptability of can-
didate solutions based on prior knowledge, and can be used in a
regularization scenario known as Twomey regularization [19].
Previous attempts to use temporal information have involved
either explicit or implicit constraints. Implicit methods have
included reconstructing only the activation sequence, rather
than the complete epicardial potential distribution [20], imply-
ing an on-off temporal model of electrograms, reformulated
in terms of derivatives in the work of Greensiteet al. [21].
Implicit temporal constraints also underlie a power-spectrum
formulation of the inverse problem, using the minimum rela-
tive entropy reconstruction principle and autoregressive (AR)
modeling, reported in [22]. Explicit use of temporal constraints
received early attention in [23], but was recently revived in
the work of Oster and Rudy (see, for example, [19]). In this
work, temporal regularization was applied in a second step
via a temporally smoothing post-filtering operation, after a
first step of spatial regularization. Another explicit temporal
regularization approach incorporates Kalman filtering in the
constraint mechanism [24], [25]—this method imposes an
explicit “forward” temporal model as well as the standard
forward spatial model.

Recently, we have investigated methods which attempt to
impose two spatial constraints [26] or a temporal and a spatial
constraint [15] simultaneously. The estimate in our approach is
the solution to ajoint minimization problem over the fit error
and the two constraints. The motivation for such an approach
is threefold.

1) No a priori constraint is clearly superior from a phys-
iological point of view, but several have physiological
validity; therefore, we attempt to combine the advan-
tages of two reasonable constraints and evaluate the
results.

2) The imposition of constraints, although necessary to
stabilize the problem, introduces a bias on the solution.
By using more than one constraint, we hope to be
able to reduce the severity of each constraint (i.e.,
use smaller individual regularization parameters) and,
thereby, moderate this bias.

3) Typically, regularized solutions are quite sensitive to
the value of the regularization parameter. By using two
constraints we hope to increase robustness to changes in
the values of the regularization parameters.

The drawbacks of such an approach include the need for
two regularization parameters and possibly a large increase in
the computational complexity of the problem.

II. PROBLEM FORMULATION

In this section we describe the specific formulation of the
forward and inverse problems of electrocardiography which
we will use in the rest of the paper together with standard
regularized solutions and methods to choose regularization
parameters. We then present a general formulation of a mul-
tiple spatial regularization inverse problem and an augmented
formulation that allows us to consider spatial and temporal
constraints jointly.

A. Forward Model

In this work we used an epicardial potential distribution
equivalent source model for reasons described in [4], [27],
and [28]. Our geometric model consisted of epicardial and
body surfaces (no internal surfaces were included), described
by a set of nodes on each surface connected into triangles.
The mathematical formulation was a discrete, quasi-static [29]
approximation of Laplace’s equation for the region between
the heart and body surfaces with mixed boundary conditions of
known epicardial potentials and a zero normal electric field at
the body surface, solved numerically using boundary-element-
method (BEM) techniques, following [4] and [30].

The resulting forward solution is a discrete model ex-
pressing the potential at each body surface node as a linear
combination of the potentials at all the nodes of the epicardial
surface. Enumerating the epicardial and body surface nodes
and stacking them in vectors, we have

(1)

where is the vector of torso potentials at time
instant , is the vector of epicardial potentials,
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is the (usually matrix representing the
forward solution, is a measurement noise vector of the same
dimensions as , and and are a discrete time index and
the number of time samples, respectively.

The inverse problem, then, is to find, an estimate of ,
given and at each time instant. Although is assumed
known, it is generally not square, is illconditioned and, as
noted, has a gradually decaying spectrum of singular values.

B. Regularized Inverse Solutions

A standard least-square solution to (1) gives an estimate
of the unknown vector which will be extremely sensitive
to the noise. Perturbations in the measurements will cause
unstable oscillations in the inverse solution, and low-rank
approximation of via truncation of the singular value
sequence will usually not give good results because of the lack
of a clear threshold in the singular spectrum. Hence, there is
a need for procedures to provide a stable solution.

1) Traditional Tikhonov Regularization:One common me-
thod of stabilizing the inverse solution is to use Tikhonov
regularization [4], [7], [31]

(2)

where is the regularization parameter and the matrix
, represents a regularizing side constraint. In

this formulation, if is, for example, the identity matrix,
the solution , is the Tikhonov zero-order solution and is
constrained in energy norm). If approximates the first
or second spatial derivative, thenis the Tikhonov first- or
second-order solution, respectively, and is constrained to have
a smooth surface gradient or curvature.

The solution to (2) is

(3)

Choice of Regularization Parameter:Many a posteriori
techniques have been proposed to find regularization pa-
rameters. One which has been specifically proposed for the
electrocardiographic inverse problem is the CRESO technique
[11]. Here we have focused our attention on a standard method
in the literature, the L-Curve, advocated for general discrete
inverse problems by Hansen [12], because it can be expanded
in a straightforward fashion to include multiple constraints
(see Section III-B).

The L-Curve method requires the construction of a paramet-
ric graph, for many regularization parameters, of the (semi)
norm of the regularized solution versus the corre-
sponding residual (semi) norm . This graph, called
the L-Curve, varies monotonically with the regularization pa-
rameter and has a characteristic L-shaped appearance (hence,
its name) when plotted inlog-log scale. The curve usually
has a distinct corner separating the vertical and horizontal
portions; this corner identifies a close-to-optimal regularization
parameter. An example of an L-Curve for an electrocardio-
graphic inverse solution is shown in Fig. 1. The first (vertical)
part of the L-Curve corresponds to solutions, obtained with
small values of , which are dominated by the side constraint
error— increases sharply with decreasingwhile the

Fig. 1. An example of an L-Curve showing the solution norm as a function
of the residual norm. This figure is based an inverse solution using the matrix
AAA from the realistic human torso model, as described in Section IV withRRR

the identity matrix.

residual norm decreases only slightly. In contrast, in the
horizontal part of the L-Curve, obtained by over regularizing,

only decreases a little with increasing regularization
parameter while the residual error norm rises rapidly. The “”
in the figure marks the corner of the L-Curve, corresponding to
a good choice for the regularization parameter. Changing the
parameter from very close to this point on the curve will begin
to either drastically increase the constraint error without signif-
icantly reducing the residual error or to drastically increase the
residual error without significantly decreasing the constraint
error. Thus, the L-Curve clearly demonstrates the tradeoff
between minimizing the residual norm and minimizing the
side constraint.

C. Regularization with Two Constraints

1) Multiple Spatial Constraint Regularization:The minim-
ization problem using spatial constraints can be written as

(4)

Note that each constraint employed requires its own regular-
ization parameter .

2) Augmented Problem to Introduce Temporal Constraints:
As described in Section I, several investigators have used
the correlation between the temporal samples of electrograms
to improve inverse solutions, notwithstanding the quasi-static
nature of ECG propagation in the torso volume conductor.
Our approach is based on the assumption that electrograms
are reasonably correlated in time (or low pass in frequency).
Although the temporal constraint here is not strictly a regular-
izer, we will refer to this approach as joint time/space (JTS)
regularization.

We begin by defining an augmented forward model [13]

(5)
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where , and are defined simi-

larly, , where is the Kronecker product,
represents an identity matrix, and is the number of
time samples included. Thus, is block diagonal and has the
form

(6)

An optimization problem which imposes ajoint constraint
in space (over the epicardial surface) and in time (over the time
samples recorded at each sensor) can, then, be formulated as

(7)

We concentrate on the simplest case, one spatial and one
temporal constraint, so that , and and

are denoted as and . has the same structure
as , repeating the spatial regularization constraint at each
time instant (note that in principle this regularization can be

made time varying), and , defined as , has the
following block-Toeplitz structure with Toeplitz (and diagonal)
blocks:

(8)

Thus, picks out the same time instant from all sensors and
constrains temporal behavior according to the rows of. These
rows can be seen as discrete estimates of a temporal derivative
operator or as unit sample responses of high-pass filters. In the
latter interpretation, becomes the corresponding convolution
matrix. The temporal filters can be made space varying, i.e.,

can be a non-Toeplitz matrix, and time varying, in which
case is not block Toeplitz.

III. SOLUTION APPROACHES

In this section, we first present the solutions to the joint reg-
ularization problems formulated in the previous section. These
solutions require the choice of two regularization parameters,
and we next describe an extension of the L-Curve technique
to the two parameter case. Finally, the problem size of the
augmented time/space regularization problem grows linearly
with the number of time samples included and, thus, there
is an increase in the computational load for the solution of
the associated system of equations which is cubic in. In
the last part of this section we present two techniques which,
under certain conditions, allow an efficient solution to this
augmented system of equations.

A. Forms of the Solution for Joint Regularization

In the case of multiple spatial regularization (4), the solution
can be written as

(9)

Thus, the solution for regularization with two spatial con-
straints is

(10)

For the case of the augmented time/space problem (7), the
solution is

(11)

For the solution can be written

(12)

In the filtering interpretation of the matrix described in
Section II-C, the rows of the matrix from which is
constructed, contain the deterministic autocorrelation sequence
of the filter unit sample response.

B. Choice of Regularization Parameter Pair: The L-Surface

To solve either of these joint regularization schemes it is
necessary to have a method to choose the values of the pair

of regularization parameters or
Previously known methods are limited to only one parameter,
so we have developed a new method based on the L-Curve,
which we have denoted the L-Surface [15], [26]. Determining
three or more parameters is beyond the scope of currently
available methods and, thus, in this paper we deal only with
two simultaneous constraints. The L-Surface is applicable both
to regularization with two spatial constraints on a time-instant-
by-time-instant basis and to the JTS problem in the augmented
problem space. The L-Surface is drawn by plotting the residual
norm against the two side constraint norms for each pair of
regularization parameters, thus forming a surface as a bivariate
parametric function of the regularization parameter pair. The
“corner” of this surface then indicates an estimate of a good
regularization parameter pair.

C. Efficient Solutions to the Augmented Problem

As mentioned above, the size of the augmented scheme (12)
is critical. As the number of time instants increases, standard
block solutions quickly become prohibitive. This is especially
true if we employ a posteriori techniques such as the L-
Surface to obtain a good as we then have to solve (12)
many times for each inverse solution. However, the matrix
is highly structured: it is a positive definite sparse symmetric
matrix, nonzero only in the diagonal blocks and along the



BROOKS et al.: INVERSE ELECTROCARDIOGRAPHY BY SIMULTANEOUS IMPOSITION 7

diagonals of some off-diagonal blocks. Under certain condi-
tions, this structure allows us to achieve efficient solutions
via either iterative or diagonalization techniques. The iterative
scheme, in addition to being computationally more efficient
than a direct solution, has an interpretation which allows us
to track a progression of inverse solutions; we go from a
standard, spatial-only regularization, to a first-step solution
obtained by post-filtering of the spatially regularized solution
(similar to the method in [19]), through a series of increasing
degrees of temporal filtering, until we converge to the jointly
optimal solution to (12). The diagonalization method when
the spatial regularization is Tikhonov zero order is even more
efficient than the iterative scheme, especially when multiple
solutions are required (as when constructing an L-Surface),
since it requires only one diagonalization each of the “small”
matrices and , followed for any by scalar and matrix
multiplications only.

1) Block Jacobi Iterative Scheme:Writing (12) as

(13)

we can denote this system as

(14)

The matrix has a block structure

(15)

where the blocks are square matrices of size The
diagonal blocks are well conditioned due to regularization. If

the vectors and are divided into blocks accordingly, the
th block equation can be written

(16)

Thus, we can solve for as

(17)

The problem in implementing this last equation is that we

need the unknown values of the other block vectorsto

find . A “natural” iterative scheme would be to proceed as
follows: At the st iteration, set

(18)

initialized by (i.e., the usual spatially regu-
larized solution with some additional two-norm regularization
due to the zeroth lag of the filter autocorrelation sequence).

This scheme can be interpreted as initially solving a spatial
system only, then at each iteration, for each time instant,

resolving the combined problem using results of the previous
iterations in the temporal filter. Under what conditions will this
scheme converge to the correct minimum of the augmented
problem? It can be shown that this scheme is of the block
Jacobi type [32] and that the matrix has to haveblock
diagonal dominance to guarantee convergence. This turned
out to be the case for all our tests; more detail on convergence
conditions can be found in Appendix A. This iterative solution
reduces the computational complexity to the same order as the
single time instant case. Its speed of convergence is a function
of the degree to which the diagonal block matrices dominate.
The convergence conditions can be determined directly, or at
least bounded, in terms of the coefficients of the temporal
filter (since the matrices are diagonal) and the magnitude
of the regularization parameters.

2) Pre/Post Diagonalization Scheme:An even more com-
putationally efficient solution to (12) can be achieved for the
case of Tikhonov zero-order spatial regularization
by a pre/post diagonalization method adapted from a method
described for a different problem in [33]. This method requires
one-time diagonalizations of two matrices whose sizes are
of the order of the spatial and temporal size of the problem
respectively, followed by simple matrix multiplication.

The solution depends on noticing that (13) can be written as

(19)

where , and , is
a matrix of the unknown epicardial potentials with rows and
columns as its spatial and temporal dimensions, respectively
(i.e., the th row of is the desired unknown time signal at
the th epicardial node and theth column of contains the
desired epicardial potentials at time), and , where

contains the known data on the torso surface organized in
an analogous fashion to . Details of the solution are given
in Appendix A. The key advantage of this approach is that if

, we only need to decompose the “small” matrices
and once; solutions for many different regularization pairs
require only scalar operations and matrix multiplication. If

, then we can still use this approach but we would need
to decompose the matrix separately for each value of

IV. RESULTS AND DISCUSSION

A. Simulation Experiments

We have applied the methods discussed in this paper to
simulated torso data and numerical forward solutions from
two different heart/torso and source models. In one model, a
single dipole was used to simulate the source of epicardial
and torso potentials. In the other model, measured epicardial
potentials served as an equivalent source for generating torso
potentials. In both cases, the geometrical model was treated as
homogeneous between the epicardial and torso surfaces, torso
surface potentials were simulated as described below, Gaussian
white noise was added to the forward computed torso data at
specified signal-to-noise ratios (SNR’s), and from these data
we estimated epicardial potentials.
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1) Dipole Model: The geometric model for this forward
solution was based on a human subject (the Dalhousie torso
[16]) and consisted of 352 torso nodes connected to form
700 triangles and 98 epicardial nodes connected to form 192
triangles. The cardiac source was a single dipole located
near the center of the ventricles from which we calculated
both epicardial and torso surface potentials by two different
numerical pathways.

a) We computed both epicardial and torso potentials di-
rectly from the dipole source.

b) We computed epicardial potentials from the dipole as
above, and then, using these computed epicardial po-
tentials as an equivalent source, we used the forward
solution matrix to compute the torso potentials.

In the second path, we computed the torso potential using
the same forward matrix used in the inverse solution; hence,
we have exactly complementary ormatchedconditions. The
first path, on the other hand, produces slightly different torso
potentials, computed without using the matrix, resulting in
a model mismatchthat is more representative of any practical
application of the inverse solution. Neither case is an exact
forward solution, of course, and both have bias. However,
robustness to this type of model mismatch is an important
attribute for which inverse solution methods should be tested.

Three orientations of the dipole were used, aligned with the
-, -, and -axes of the torso geometry, in addition to linear

combinations of these three orientations. In each case, the
epicardial potentials computed from the dipole source were the
true solution against which inverse solutions were evaluated.
One major limitation of the dipole experiments is that it is
difficult to reproduce realistically complex epicardial potential
distributions due to the simplicity of the model. A second is
that there is no natural way to produce realistic simulations
of the time-varying epicardial distributions needed to test the
JTS method.

2) Tank Preparations:To test our inverse methods using
realistic time-varying data, we used epicardial data recorded at
the Cardiovascular Research and Training Institute (CVRTI),
University of Utah, Salt Lake City, from an isolated canine
heart preparation during experiments conducted as part of
other projects. The heart was suspended in a fiberglass tank
molded in the shape of an adolescent human torso and filled
with electrolytic solution at a resistivity of 500 -cm, rep-
resentative of a typical torso volume conductor. Circulation
was provided via cannulation and retrograde perfusion of the
aorta by a support dog. Epicardial potentials were recorded at
a sampling rate of 1000 Hz/channel via 64 electrodes sewn
into a nylon sock placed over the suspended heart [34]. The
heart was paced by one of the sock electrodes or by means
of a hook electrode in the right atrium. From each acquisition
epoch of 4–7 s of potentials we averaged over 5–8 sequential,
time aligned, beats to derive a representative beat for each
epoch. Simulated potentials at 658 torso surface nodes were
computed using a forward model based on a BEM solution for
a nominal heart location within the tank geometry.

3) Error Measures: We report error measures which are
standard in the literature, namely, relative mean square error

Fig. 2. Polar projection of the epicardium used for plotting IPM’s of
epicardial potential distributions.

(RMSE) and correlation coefficients (CC) [4]. Although global
error measures such as RMSE and CC are incomplete, there
is currently a dearth of accepted and physiologically based
quantitativemeasures based on features of the potential dis-
tributions. Thus, the literature on inverse solutions tends to
rely on RMSE and CC. To partially alleviate this problem we
also present several figures showing epicardial time signals
(electrograms) and isopotential maps (IPM’s) [1], [35] of
original data and inverse-computed solutions, so that the reader
can visually compare the quality of the results. The format
for the IPM’s is a polar projection with the apex of the
heart in the center and the atrioventricular ring around the
outside [16], [34], as illustrated in Fig. 2. The problem of
illustrating and quantifying results is compounded for the case
of joint spatial and temporal reconstruction by the need to
present a temporal sequence of IPM’s of sufficient length to
be able to properly evaluate the results. Readers who wish
to see more detail of the results are encouraged to see [36],
as well as an animation of one simulation, both available at:
http://www.cdsp.neu.edu/info/faculty/brooks/brooks.html.

B. Results

We describe specific results using the L-Surface and inverse
solutions computed using joint regularization with 1) two
constraints and 2) a spatial constraint coupled with a temporal
constraint.

1) Estimation of Regularization Parameters—the L-Surface:
To determine the regularization coefficient pairs required for
both joint spatial and joint time-space regularization we calcu-
lated the L-Surface over a reasonable range of regularization
parameters. Fig. 3 depicts a typical L-Surface for joint time
and space regularization. The upper figure shows the sur-
face over a wide range of regularization parameters and
the bottom figure is an enlargement of the corner where
good regularization parameter pairs are located. As indicated
by the labels on the upper figure, the horizontal axis is
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Fig. 3. The L-Surface: an extension to the L-Curve, showing the log of the
two-norms of the two constraint terms as a function of the log of the residual
norm over a range of values of the parameter pair(�; �); constructed from
torso tank data. The upper figure illustrates the surface over a wide variety
of regularization parameters, while the lower figure is an enlargement of the
“corner” where good regularization parameters are localized. The format of
the figure is described in the text.

the residual norm, the vertical axis is the spatial constraint
norm, and the axis coming out of the page is the temporal
constraint norm, all plotted on a log scale. The matrix
used was the transformation matrix from the tank experiment
described in Section IV-A, the spatial constraint was an energy
constraint, and the temporal constraint was the one given
in Section IV-B3. To draw the figure, we connected line
segments between points with constant temporal regularization
parameter as the spatial regularization parameterchanged,
and then connected line segments between points of constant
spatial regularization parameter as the temporal regularization
parameter changed. Thus, every intersection in the figure
corresponds to a particular pair. The standard Tikhonov
zero-order solution corresponds to the “front-most”
such line, (i.e., the front edge of the surface, enhanced in the
figure) and as the temporal regularization parameter increases
the curves progress into the plane of the paper. The shaded
region labeled “optimal region” in the figure is the “corner”
of the L-Surface—the region analogous to the corner of
the traditional L-curve for a single regularization constraint.
L-Surfaces for the joint spatial regularization method were
similar, although narrower, due to fact, already explained, that
both constraints were true spatial regularizers.

There are several aspects of joint regularization which can
be observed by inspection of Fig. 3 and which are typical of
the L-Surfaces we have studied.

a) Robustness:The density of intersections is greater near
the optimal region than along the line. In the left
(front) portion of the L-Surface plot one can see that
the spacing between intersections along each constant
temporal regularization parameter curve, which reflects
the sensitivity of the regularization to the choice of,
was considerably smaller in the optimal region than
near the edge. The change in error norms
with regularization parameter was smaller in the optimal
region than for smaller values of, even for an optimal
choice of . The four values of the spatial regularization
parameter which correspond to the center of the optimal
region range in value from 5 10 to 1 10 .

b) Better definition of the corner of the surface:moving
from the edge toward the optimal zone, the
corner became sharper with increasing values of the,
even as more intersection points moved into the corner.
The combined result is that through the presence of the
second constraint, it becomes easier to locate the optimal
region and less critical to select its center.

c) Less weight on the spatial constraint norm:The opti-
mal region occurred at smaller values of the energy
regularization parameter than the corner of the
edge.

This observation indicates less “bias” in the solution im-
posed by the joint constraint norms, compared to only the
energy norm, for a comparable level of stability. Comparisons
are made here to the case (only a spatial constraint) but
not to the case (only a temporal constraint) because
of the fact that the temporal constraint by itself is not a
regularizer, as explained in Section I.

In all the tests we performed for joint inverse procedures, the
“corner” of the L-Surface showed less sensitivity to changes
in either regularization parameter than did the corresponding
single regularization L-Curves. This indicates that with joint
regularization the norms of inverse solutions are more robust
to error in the choice of regularization parameters. As we
illustrate below, in our experience not only the norms but also
the solutions themselves are more robust.

2) Joint Spatial Regularization:We combined Tikhonov
zero-order and Tikhonov second-order constraints in our
test. Thus, in (10) we took as the identity matrix, to
constrain the solution in energy norm), and as the
second spatial derivative (Laplacian) to constrainto be
smooth.1 Inverse epicardial potentials were calculated from
body surface potentials for both types of data sets at various
levels of SNR.

a) Dipole results with and without model mismatch:As
described above, we generated two types of body surface
potentials, with and without model mismatch between forward
and inverse models, using the human torso geometry. We
added noise at three SNR levels and then used Tikhonov zero-
order regularization, Tikhonov second-order regularization,
and joint solutions using both regularization constraints, and
calculated inverse solutions over a wide range of regularization

1The Laplacian for our geometry was estimated using a method developed
for an irregular triangular mesh on a three-dimensional surface [37].
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TABLE I
THE RMSE FOR JOINT SPATIAL REGULARIZATION USING DIPOLE

DATA WITH NO MODEL MISMATCH, 40-dB SNR. THE FIRST

ROW IS THE LAPLACIAN REGULARIZATION PARAMETER AND THE

FIRST COLUMN IS THE ENERGY REGULARIZATION PARAMETER

TABLE II
SAME FORMAT AS TABLE I FOR DIPOLE DATA WITH MODEL MISMATCH

parameter pairs. At all SNR’s tested, the lowest relative error
and highest correlation coefficient were obtained with joint
spatial regularization. However, the improvement was often
not very large. RMSE results for a selection of regularization
parameter pairs are shown in Tables I and II, for the exact and
mismatched model cases, respectively. The results of these
tests led us to the following set of observations.

i) Inverse solutions using Laplacian regularization alone
performed better than with energy regularization alone,
especially in the case of model mismatch. Moreover,
Laplacian regularization was generally less sensitive to
the value of .

ii) RMSE was lower using joint spatial regularization than
with either constraint alone. On the other hand, the CC
showed only slight improvement even for the case with
model mismatch. This may suggest that, at least for
these relatively simple epicardial distributions, all three
methods capture the basicshapeof the epicardial po-
tentials, but using both constraints improved amplitude
recovery.

iii) The best solution found using any method and ei-
ther error measure involved more regularization in the

Fig. 4. RMSE as a function of the regularization parameter for the case
without model mismatch. SNR= 40 dB. Top graph: Solid line for only
energy regularization and dotted line for joint regularization with the Laplacian
parameter fixed at the “best” value of 15. Lower graph: Solid line for Laplacian
regularization only and dotted line for joint regularization with the energy
regularization parameter fixed at 10�6:

model mismatch case than in the exact model case.
Moreover, in the model mismatch case the best results
involved more regularization withbothconstraints and,
thus, would suffer under either type of single-constraint
regularization. For instance, in Table I the best result
(row two, column five in the table) was only very
slightly improved over using Laplacian regularization
alone, and the energy regularization was quite small.
On the other hand, in Table II, the best result (row
seven, column six) was more significantly improved in
comparison to the best result obtained using only one
regularizer and the balance between the contributions
of energy and Laplacian regularization was much more
even.

iv) The best joint spatial solution always involved equal or
smaller (usually smaller) values of the’s than the best
single-constraint solution.

v) Using RMSE as a criterion, the difference between
using Laplacian regularization alone and joint spatial
regularization was minimal when the Laplacian regu-
larization parameter was large enough. However, if this
parameter was even slightly smaller than “optimal,” a
small amount of energy regularization greatly stabilized
the inverse solution. This was true with both exact and
mismatched models. In the model mismatch case 1)
the amount of joint energy regularization required was
greater, and 2) the degree of improvement was better.

This last effect, i.e., the greater robustness of joint spatial
regularization to under-regularizing values of either regular-
ization parameter, is illustrated in Figs. 4 and 5. These figures
show how the RMSE varies with one regularization parameter
while the other is held constant. Fig. 4 is for the exact model
case. In the top graph, the RMSE is plotted as a function of the
energy regularization parameter when the Laplacian parameter
is held constant at the optimal value, while in the bottom graph,
the RMSE is shown as a function of Laplacian regularization
parameter when the energy regularization parameter is held
constant, again at its optimal value. Fig. 5 shows the same
results for the model mismatch case. In other words, the figures
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Fig. 5. Same as the previous figure for the case with model mismatch.
Top part, Laplacian regularization parameter= 60. Lower part, energy
regularization parameter= 10�4.

show one row (top graph) and one column (bottom graph) each
from Tables I and II. Clearly, the jointly regularized result was
much less sensitive to under regularization, and this effect was
much stronger in the model mismatch case.

b) Results using tank model:To give a visual representa-
tion of the degree and types of errors in the various reconstruc-
tions with a more realistically complex epicardial distribution,
Fig. 6 shows IPM’s of inverse results computed from the
simulations based on the measured epicardial potentials. The
results are shown for a single mid-QRS time sample from
an beat initiated from a right-ventricular epicardial site, with
an SNR of 30 dB. The original measured distribution is at
the top of the figure. The second row shows Tikhonov zero-
order reconstructions at three values of the regularization
parameter, while the third row shows Tikhonov second-order
reconstructions. The remaining two rows show joint spatial
reconstructions using various combinations of the regulariza-
tion parameter pairs. In all cases, zero-order regularization
parameters are shown above and to the left of the maps and
second-order parameters to the upper right. The regularization
parameters were chosen to illustrate what happens with various
degrees of under- or over regularization.

We will discuss these results in terms of the following five
features of the original distribution specific to the distribution
we selected:

i) the values and positions of maxima and minima;
ii) the accuracy of the shape of the region of negative

potential around the 10–12 o’clock position (under the
LAD as shown in Fig. 2);

iii) the position and density of the bundle of isocon-
tours that mark the wavefront near the 6 o’clock po-
sition—this shows the wavefront just crossing from
the right to the left ventricle as it passes under the
left-anterior descending artery,

iv) the shape and density of the wavefront around 2 o’clock
v) The presence of two distinct maxima, the larger one on

the anterior and the other on the posterior midline of
the heart, in the broad positive region on the right side
of the map.

For each item listed above we will compare the zero-order
(ZO) and second-order (SO) single regularized reconstructions

Fig. 6. IPM for one time sample of tank data at 30-dB SNR. The original
distribution is on the top row. The second row shows energy regularization
and the third row Laplacian regularization. The rest of the maps show joint
spatial regularization. The energy regularization parameters are shown to the
upper left of the maps and the Laplacian parameters to the upper right.

to the most under-regularized joint reconstruction, shown at the
left of the fourth row (denoted as J1 in the sequel). (We will
use and to denote the ZO and SO regularization
parameters respectively.) In addition we will look at the
change from the lowest to middle with and without added
Laplacian regularization (i.e., comparing the first and second
maps of row two to those of row four). We note that many
other comparisons can be made and we simply chose these to
illustrate typical results and features often examined in exper-
imental and clinical evaluation of epicardial potential maps.
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i) The ZO and SO reconstructions either had difficulty
locating the maximum or minimum at low values of
their respective ’s or underestimated the magnitude
of one or both extrema at high values of. The
J1 reconstruction seemed to find a better compromise
between amplitude and position of both maxima and
minimum. Also, we note that the change in extrema
amplitude with regularization parameter was smaller in
the joint reconstructions than in the case of single ZO
regularization.

ii) The J1 reconstruction captured the shape of the contours
surrounding the negative area better than any of the
single regularization reconstructions. It had more noisy
spurious minima than the single regularization recon-
structions with higher values of but less than either
single regularization with its regularization parameter
at the same value as in J1. Again, the reconstructions
were more stable with variations in the .

iii) All of the reconstructions showed the degradation in
the density of contours on the wavefront typical of
regularized solutions. The SO reconstruction produced
a higher density of contour lines, and was, thus, more
accurate in this sense than the ZO reconstruction, but
showed a marked change in shape and location, a bend
to the left near the 6 o’clock position along the atrio-
ventricular (AV) ring. The J1 reconstruction again found
a compromise, more densely packed than ZO though
not as densely as SO, but more accurate in position
and shape than SO. The reconstructions showed only
small changes with variations in in either case.

iv) The SO reconstruction of the wavefront was more
accurate than ZO in both density and shape in this part
of the map, and the J1 reconstruction was similar to
SO. Again changes with increased were slight in
both cases.

v) The J1 reconstruction found both maxima in the original
map, although the locations were shifted down toward
the apex and somewhat and slightly toward the left side
of the heart. The SO reconstruction also found both
extrema but the smaller one was more diffuse than the
original, while the ZO reconstruction missed the second
entirely. Increasing the ZO parameter caused even the
joint reconstruction to miss the second maximum.

3) JTS Regularization:We tested the JTS method at vari-
ous segments of the cardiac cycle using only the potentials
from the torso tank. We used energy regularization as the
spatial constraint and employed a simple high-pass filter with
impulse response (with
modifications to handle edge effects). Thus, the matrixhad
the form

...
...

... (20)

The SNR’s for the tests ranged from 20 to 60 dB—results
from values as low as 15 dB had an almost random appearance.

Fig. 7. JTS regularization: the effect on electrogram shape during QRS. The
first and fourth rows show two selected original electrograms. The second
and fifth rows show energy-only regularization and the third and sixth JTS
regularization for the respective originals. For the energy regularization�;

from left to right, is 10�6, 5�10�6, and 10�5. For the JTS regularization,
the parameter pair��� is (10�6, 10�5), (5�10�6, 10�4), and (10�5,
5�10�4).

To evaluate the effect of the number of time instants used in
the augmented scheme, the intervals were varied from 5 to
60 ms, with several different SNR levels for each test. Thus,
since the tank epicardial model had 64 points, the matrix size
in (12) varied from 1280 1280 to 3840 3840. To calculate
inverse reconstructions using 20- to 40-ms intervals we used
the block Jacobi method, while for intervals longer than 40 ms
we used the diagonalization method. Reconstructions using
a standard block solution took several hours on a mid-level
workstation when coded in MATLAB with no particular effort
to optimize the code; the block Jacobi method with a 20- to
40-ms interval took several minutes, and the pre/post method
only a few seconds. Single-constraint regularization on the
same machine would require about 0.2–0.4 s for the same
number of time samples. All results shown here are from the
same epicardially paced heartbeat as the results for joint spatial
regularization shown in Fig. 6.

Fig. 7 illustrates the effect on the temporal electrogram
waveforms of using JTS reconstructions over temporal in-
tervals of 60 ms during QRS at two epicardial nodes, one
with a comparatively smooth time course and one with a
much sharper deflection, both with an SNR of 40 dB. The
60-ms interval used in the reconstruction is shown for the first
electrogram in the first row and for the electrogram with a
sharper deflection in the fourth row. Rows two and three show
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inverse-computed solutions for the electrogram in row one;
row two contains results using only energy regularization and
row three contains results with JTS regularization. The left-
most plot is under-regularized, the middle plot shows L-Curve
or L-Surface values, and the right plot is over-regularized.
Rows five and six are the same as rows two and three
but for the original electrogram in row four. In both cases,
even the best regularization failed to capture all the details
of the electrogram when the temporal derivative was high.
But it is clear from this figure that using the JTS method
we could dampen considerably the unrealistic, uncorrelated
temporal behavior in the singly regularized results. In addition,
the JTS results were quite insensitive to the exact choice of
regularization parameter pair, in comparison to the spatially
regularized solution.

To illustrate the spatial behavior of the JTS method we
present IPM’s for some of the JTS regularization cases de-
scribed in the previous paragraph in Figs. 8 and 9. Fig. 8
focuses on two time instants during QRS (105 and 122,
as illustrated by the vertical bars on the plot of the time
signal at the top of the figure). The format of this figure is
similar to that of Fig. 7. The original two maps are shown
by themselves on the first and fourth rows, each followed
by a row of three energy regularization reconstructions, and
then by a row of three JTS reconstructions. The regularization
parameters are also the same as in Fig. 7 and are indicated in
the upper left (energy) and right (Laplacian) corner of each
map. Both time instants showed considerably less variability
with changing regularization parameters for JTS than purely
spatial regularization. For instance, there were several spurious
maxima and minima on the left ventricle (right side of the
projection) at time 105 in the spatial reconstructions which
were smoothed by increasing energy regularization at the
cost of underestimated amplitudes. The same was true over
the right ventricle in maps from time instant 112, rows five
and six of Fig. 8. The JTS result was more stable across
values of regularization parameters with fewer spurious local
maxima and minima and less damping of the global maxima
and minima. JTS regularization showed even more improve-
ment during other segments of the cardiac cycle in which
the temporal filtering of the JTS method was more helpful
since the SNR was lower. Fig. 9 shows reconstructions for a
sequence of the six time instants 111–116, again marked by
vertical bars on the time signal plotted at the top of the figure.
In this figure, the first column shows the original epicardial
potentials, the second column shows inverse reconstructions
using energy regularization with , and the third
column shows reconstructions using JTS regularization with

. Although at particular time instants the
energy regularization was as good as or better than the JTS
regularization, there was considerable oscillatory behavior in
the energy regularization that did not appear at all in the JTS
results, such as the positive/negative fluctuation around the 3
o’clock position or the large jump in the global minimum at
time 112 (the second row of maps). The main features of the
original maps in this sequence were a) the distinct wavefront
that moved slowly across the map from upper left to lower
right as time progressed and separated the map into a region of

Fig. 8. IPM’s for time instants 105 and 122 as show by bars in time signal
plot. For format of the maps see previous figure, for layout of the figure see
text. Regularization parameters match Fig. 7 and are shown to the upper left
(spatial) and right (temporal) of the maps.

positive potential on the right and bottom and one of negative
potential on the upper left, and b) the pattern of one negative
and two positive extrema. The JTS reconstruction provided a
more accurate estimate of the location, density, and movement
of the wavefront. In addition, the positive region appeared in
both the original and the JTS result, in contrast to the energy
regularized result.

a) Comparison to two-step regularization:Using the
block Jacobi iterative scheme to monitor the changes in
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Fig. 9. IPM’s for time instants 111–116 as show by bars in time signal plot.
Format of the maps as in previous figures. See text for details on layout of
the figure.

inverse solutions as we iteratively approached the jointly
optimal solution, we observed how the results changed as
the iterations proceeded. (We note again that the result after
one iteration step has undergone a two-step regularization
similar to that presented in [19].) Not unexpectedly given the
convergence conditions in (A-1) or (A-2), we found that there

was an interaction among the relative sizes ofand , the
spatial and temporal regularization parameters, the SNR, and
the rate of convergence. In general, reasonably accurate results
could be achieved in several steps of the iterative algorithm
when was close to optimal and the optimalwas small,
as for instance when the interval used was entirely within the
QRS complex and the SNR was, thus, comparatively high.
If a smaller than optimal was used, even more iteration
steps were required for reasonable results. When the local
SNR was low (e.g., during the ST segment or at a low-
amplitude epicardial node) then improvements continued until
the JTS scheme had completely converged. Using global error
measures, such as CC and RMSE, we rarely saw significant
improvement from only one step of the algorithm. Inspection
of the intermediate results, both as time signals and IPM’s,
revealed that generally the first few iterations were somewhat
smoother in time, but at a cost in accuracy. As the algorithm
iterated, temporal and spatial smoothness and accuracy were
played off against each other as the optimal solution was
approached.

To illustrate these results, in Fig. 10 both temporal plots
of three leads and IPM’s at two time instants are shown.
The parameters of the simulation were the same as for the
previous two figures, except that only 20 time instants, rather
than 60, were included in the optimization, so that the final
result did not correspond exactly to that in the previous figures.
Convergence was reached after 274 iterations. In the top half
of the figure, the upper left-hand panel contains the original
signal at node 47, with vertical bars marking the interval shown
in the other panels. Each of the other three panels shows four
inverse calculated waveforms for each of three nodes; one
obtained with only spatial (energy) regularization, one each
after one and four iterations of the block Jacobi algorithm,
and the fourth after convergence. In each panel, the smooth
solid line is the original epicardial signal and the jagged solid
line the spatially regularized reconstruction. The dotted line is
the reconstruction after one iteration, the dashed line is after
four iterations, and the dot-dashed line is the reconstruction
after convergence. We note that the solution after the first
iteration was quite smooth in time, but was also less able to
follow more rapid variations in the temporal waveform than
the converged solution.

In the bottom half of this figure, we show IPM’s for two
time instants within the interval shown in the top half, denoted
as 112 and 113 ms and corresponding to two of the time
samples shown in Fig. 9. The correct solution and the solution
found with only spatial regularization can be seen in this
latter figure: in Fig. 10 we show results after one, four, and
50 iterations and at convergence. As the algorithms iterated
we saw minor but significant improvements in accuracy, both
in terms of amplitudes and in terms of the details of the
distribution, especially the shape and density of the bundles of
isocontours that mark the location of the activation wavefront
(see, for instance, the region near the 8 o’clock position) and
the locations of maxima and minima (for example, the leftward
shift of the local maxima near the 6 o’clock position).

b) Effect of the interval length L:We tested the effect of
varying interval lengths in the JTS scheme by holding the filter
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Fig. 10. Electrograms and IPM’s at various iterations of the block Jacobi
solver. The top four panels show reconstructions at three nodes for 20 ms
(time instants 105–124 as shown by the bars on the top left graph). The
curves are identified in the text. The bottom eight panels show IPM’s for time
instants 112 and 113. Format as in previous figure. See text for details.

length constant and letting range from 5 to 60 ms; a larger
meant a longer interval over which the weighted sum of the

three norms was minimized. We generally saw improvement
over single time instant regularization for intervals in the
range of 10–60 ms, with no clear “best” length. An example
comparison can be made by contrasting the results in Fig. 9
for time instants 112 and 113 with the corresponding fully
converged results in Fig. 10. For instance, at time 112 the
amplitudes of the two local maxima were more accurately
reproduced in the former figure (with than in the

latter (with In particular, with the smaller value of
the maximum near the 8 o’clock position was underestimated,
an example of a more general tendency noted below.

It was difficult to draw definitive conclusions from these
tests and we consider future development of a method to
determine a good interval length to be a priority. Results were
generally better with longer segments during low SNR parts
of the cycle such as the ST segment, but better with shorter
segments when the interval included parts of the cycle with
distinct temporal characteristics (such as the QRS complex
and the ST region), suggesting that there may be an interac-
tion between the interval length used and the type of filter
employed, another topic of future research. We also observed
that JTS regularization over longer intervals seemed to be
able to reconstruct both maximum and minimum amplitudes
more accurately across a wavefront without the instability and
temporal oscillation present with spatial regularization alone.
Shorter intervals seemed to often capture one extremum while
smoothing the other. We speculate this may happen because
we are minimizing two-norms and the longer temporal interval
may allow a greater local excursion of the spatial amplitudes
without affecting the overall combined norm as much.

V. CONCLUSIONS AND FUTURE WORK

In Section I, we listed three motivations for exploring the
use of more than one simultaneous regularizing constraint. In
evaluating the results of our tests we found the following.

1) Our conjecture that we might be able to take advan-
tage of the “reasonableness” of both constraints when
two constraints were imposed jointly was upheld, in
particular by the results of the experiments using JTS
regularization with the tank data. We were able to
successfully dampen unrealistic noise in inverse solu-
tions while simultaneously regularizing against spatial
sensitivity to noise.

2) Our conjecture that using two regularization constraints
jointly would decrease dependence on a particular con-
straint and generally require smaller values of the cor-
responding regularization parameters was also upheld.
The optimal regularization values as determined us-
ing our extended L-Surface approach when applied to
both dipole simulation data and measured potentials
supported this hypothesis.

3) Furthermore, the conjecture that using two constraints
would increase robustness to error in the value of
regularization parameters was also upheld. This was
evident in the behavior of the L-Surface near its corner
in comparison to the corner of the L-Curve and in the
results of the dipole and tank model experiments.

4) Temporal behavior of the electrograms was generally
much more realistic using the JTS method than with
spatial regularization alone, and more accurate than
simply post-filtering spatially regularized estimates. If
temporal characteristics of the resulting estimates are
important, for instance to estimate activation or recovery
times, then use of temporal constraints could be very
useful.
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In the process of developing and testing these methods we
performed the following:

1) introduced the L-Surface as an extension to the L-Curve
for the purpose of evaluating candidate regularization
parameter pairs for two constraints;

2) found that joint spatial regularization with Laplacian
and energy constraints showed some improvement in
the inverse solution over single-parameter regularization,
but that the most significant contribution was increased
robustness to the exact choice of regularization parame-
ters, especially for under-regularized solutions;

3) found that JTS regularization significantly improved the
accuracy of the temporal behavior of the inverse solution
as compared to spatial regularization only:

4) developed efficient schemes to solve the JTS equation
under certain mild conditions;

5) compared results from the dipole simulations between i)
inverse solutions computed when the same model is used
to generate the data via a forward solution as is used in
the inverse solution, and ii) inverse solutions computed
when there is a mismatch between the model used to
generate the forward data and that used in the inverse
solutions. We found the expected result that in the case
of mismatch between forward and inverse models, at
least for dipole simulations, more regularization was
required than when the correct forward model was used
in the inverse solution. We also found the unanticipated
result that in the model mismatch case joint spatial
regularization provided considerably more improvement
over either regularization alone than it did in the exact
model case;

6) found that a significant percentage of the improvement
over spatial regularization achieved by the JTS scheme,
when implemented in an iterative fashion, came after
the first iteration, indicating that spatial regularization
followed by simple post-filtering temporal regularization
is often not close to the optimal JTS regularization;

7) found that for some regularization parameters there is
significant degradation compared to intermediate iterates
if the block Jacobi algorithm is allowed to iterate to full
convergence, even though the result at convergence is
better than with no temporal regularization or with only
one iteration of temporal filtering. This is due to residual
illconditioning of the block matrix used in the iteration
and suggests the possibility of additional regularization
via truncation of the iterations, as in [8] and [15].

Current work is proceeding in the following areas:
1) acquiring tank data with measured epicardial and body

surface potentials and geometry to enable testing of the
effects of model mismatch in a more realistic scenario;

2) further analysis of joint spatial and JTS regularization
via modified simultaneous diagonalization techniques;

3) further study of more detailed questions regarding the
application of the JTS method. For instance, we are
studying ways to find an optimal interval length for
the JTS method, looking at the effect of using different
filters in the JTS matrix , and exploring the effects of
space-varying and time-varying JTS schemes.

APPENDIX

CONVERGENCEANALYSIS OF BLOCK JACOBI METHOD

As stated in Section III-C.1, the iterative scheme described
is a block Jacobi method [32], and, in analogy to “scalar”
Jacobi iterative methods, which require diagonal dominance
of the system matrix for convergence, here the matrixhas
to haveblock diagonal dominance. This is guaranteed if the
maximum over all for any induced matrix norm satisfies
the condition

(A-1)

If the spatial regularization is Tikhonov zero order, and we
take as the induced two-norm, this condition reduces to

(A-2)

where are the elements of the Toeplitz
correlation matrix and is the smallest nonzero
singular value of the matrix If we let and assume
that is small, relative to the spatial regularization parameter

and, thus, , we can approximate the condition
by the simple expression

(A-3)

A. Details of Pre/Post Diagonalization Method

Proceeding from (19), if , and can be decom-
posed using the SVD as

(A-4)

and

(A-5)

where and are the right singular matrices of
and respectively. The singular values of are

, where the are the singular
values of , and , the singular value matrix of , is

, with the singular values
of Let

(A-6)

and

(A-7)

for and where denotes the
element of a matrix . Then the solution to the joint

regularization equation is

(A-8)

As noted in the text, if we would need to decompose
the matrix separately for each value of
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