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ABSTRACT
We describe several current approaches which include tem-
poral information into the inverse problem of electrocar-
diography. Some of these approaches operate directly on
potential-based source models, and we show how three re-
cent methods, introduced with rather distinct assumptions,
can be placed in a common framework and compared. Oth-
ers operate on parameterized models of the cardiac sources,
and we discuss briefly how recent developments in curve
evolution methods for inverse problems may allow more
physiologically complex parametric models to be employed.

1. INTRODUCTION

The quasi-static electromagnetics (Laplace’s or Poisson’s
equation) that describe quite accurately the relationship be-
tween cardiac electrical activity and heart surface potentials
imply that the inverse problem of electrocardiography can
be solved one time instant at a time—there is no tempo-
ral “memory” in the volume conductor at frequencies even
many orders of magnitude higher than those of the ECG.
On the other hand, any reasonable model of cardiac elec-
trical sources takes into account the spatio-temporal corre-
lation of cardiac depolarization and repolarization. Since
the inverse problem is ill-posed, uncorrelated components
of the measured potentials will tend to be amplified in the
inverse solutions. Thus it makes sense to model this cor-
relation of the sources and impose it on inverse solutions
as one means to combat ill-posedness and make solutions
more accurate and more robust. This approach to inverse
electrocardiography falls within a category of inverse solu-
tions frequently known as “dynamic imaging” or “dynamic
inverse problems.”

Although interest in using temporal information in in-
verse electrocardiography goes back at least as far as the
work of Martin et al. [1], there has been increasing in-
terest in recent years in this area. Indeed, there has been
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significant work in other application areas of biomedical
(and other) inverse problems along the same lines, includ-
ing not only other bioelectric field problems such as EEG
and MEG, but also problems with quite different physics
such as SPECT and Diffuse Optical Tomography. The na-
ture of any such inverse solution depends heavily on the
type of source model adopted; generally investigators in
this field divide source models, and their associated inverse
solutions, into two major categories: pixel-based, or non-
parameterized, models, and parametric models. In inverse
electrocardiography, pixel-based solutions generally corre-
spond, for instance, to solutions in terms of epicardial or
trans-membrane potentials, while parametric models would
include activation-time approaches.

In this paper, we attempt to accomplish two objectives
while discussing inverse electrocardiography in the context
of dynamic imaging problems; first we review some recent
non-parametric approaches and show how three of these
methods can be placed in a common framework, and, sec-
ond, we discuss the possibility of parametric approaches
with a more complex source model than standard activation-
time approaches. Given space constraints, of necessity both
objectives will be treated rather tersely, and we will concen-
trate on describing these relationships while leaving mathe-
matical detail for presentation elsewhere.

2. A COMMON FRAMEWORK FOR
NON-PARAMETRIC DYNAMIC INVERSE ECG

SOLUTIONS

A number of approaches have been introduced in recent
years for this problem, including Kalman filtering methods
[2, 3, 4, 5], combined spatial and temporal regularization
[6], structurally-constrained statistical methods [7, 8], and
convex optimization methods with linear [9] or non-linear
[10] temporal constraints. (We note that this list of cita-
tions is not complete, but rather just a space-limited sam-
pling.) Here we show how the first three of these approaches
can be put in a common statistical regularization framework
and, based on this understanding, make some observations
on their relationships and possible relative advantages and
disadvantages. More detail can be found in [11]



We model body surface potential measurements as a
space-by-time matrixY which is related to a similar space-
by-time matrix of epicardial potentialsX as follows:

Y = AX + N (1)

whereY ∈ RM×L, X ∈ RN×L, andN ∈ RM×L is a
zero-mean random noise matrix which is uncorrelated with
X. M,N, L are the number of body surface measure-
ments, modeled epicardial potentials, and time instants, re-
spectively. A ∈ RM×N is a time-invariant forward solu-
tion matrix. The goal is to estimateX given Y and A.
Eq. (1) can be equivalently written as

vec(Y)︸ ︷︷ ︸
Ȳ

= (IL ⊗A)︸ ︷︷ ︸
Ā

· vec(X)︸ ︷︷ ︸
X̄

+ vec(N)︸ ︷︷ ︸
N̄

(2)

If we assume that the unknown matrixX is random, we can
apply the LMMSE solution to Eq.(2) [12]:

ˆ̄X = E(X̄) + (CX̄
−1 + ĀT CN̄

−1Ā)
−1

ĀT CN̄
−1(Ȳ − E(Ȳ)), (3)

whereCX̄ is the spatiotemporal epicardial autocovariance
matrix, whose (i, j) block is the spatial cross-covariance
between the epicardial potentials at thei-th and j-th time
instants, andCN̄ is defined similarly for the noise.

Kalman filtering, especially variants of Rauch-Tung-Striebel
(RTS) fixed-interval Kalman smoothing [13], has been used
extensively in recent years for inverse problems (see [4] as
an example). It solves Eq. (3 by imposing structure on the
evolution of the unknown potentials, which in turn leads
to a particular structure forCX̄

−1. The deterministic joint
spatial and temporal regularization method of Brookset al.
[6] can also be seen as a solution of this equation with dis-
tinct assumptions about the structure ofCX̄

−1. Greensite’s
method [7, 8] starts from explicit assumptions aboutCX̄. In
the rest of this section we briefly describe the assumptions
these approaches make and comment on their relationships.

2.1. State-space Model for Kalman Smoothing

Suppose we assume the following state-space model to de-
scribe the source-measurement relationship in space and time:

x[l] = Hx[l − 1] + Bu[l][
y[l]
0

]
=

[
A
λR

]
· x[l] +

[
n[l]
0

]
,

(4)

where y[l],x[l],n[l] are the l-th columns ofY,X,N, re-
spectively at time indexl = 1, 2, . . . , L. H ∈ RN×N is
a known state transition matrix;B ∈ RN×N is called a
“control” matrix and u is state prediction noise.R is a spa-
tial regularization matrix andλ a fixed spatial regularization

parameter. We assumeu[l] ∼ N(0,Q), n[l] ∼ N(0,CN)
are Gaussian noise, independent in time and from each other.
We make some standard statistical assumptions about the
intial state ofx. The key assumption here is that we know
H, which models assumptions about the spatio-temporal
behavior of the epicardial potentials.

The consequence of this state-space model is thatCX̄
−1

is a symmetric block tri-diagonal matrix which has a nice
LDLT factorization in terms of the matrices in the state-
space model. In fact, the forward filtering pass of the RTS
algorithm is simply block Gaussian elimination and the back-
ward smoothing pass is block back-substitution.

2.2. Joint Regularization Model

Using spatial regularization jointly with temporal regular-
ization in a determinsitic framework, Brookset al. in [6]
proposed a straightforward formulation to findX:

ˆ̄X = argmin{||ĀX̄− Ȳ||2 + λ2||R̄X̄||2 + η2||T̄X̄||2}
(5)

where⊗ is the matrix Kronecker product,λ, η are spatial
and temporal regularization parameters,Ā = IL ⊗ A is
the block diagonal augmented forward matrix,R̄ has the
same structure as̄A and is a Tikhonov spatial regularization
matrix, andT̄ = T⊗IN is a temporal regularization matrix.
Note thatT̄ picks out the same spatial measurement from all
time instants and constrains temporal behavior according to
the rows ofT. The solution can be written as

ˆ̄X =
(
ĀT Ā + λ2R̄T R̄ + η2T̄T T̄

)−1
ĀT Ȳ

=
[
IL ⊗ (AT A + λ2RT R) + η2TT T⊗ IN

]−1·(
IL ⊗AT

)
Ȳ

(6)
Although formulated in the context of deterministic reg-

ularization, this approach can be re-interpreted in the LMMSE
estimator by settingCX̄

−1 = λ2IL ⊗ RT R + η2TT T ⊗
IN . This can be described as aKronecker sumstructure for
CX̄

−1. Thus for this methoda priori information about ex-
pected temporal behavior of̄X is captured in the temporal
filter matrixT, similar to the way in which expected tempo-
ral behavior is captured in the state transition matrix of the
state-space model.

Brookset al. suggested two efficient algorithms: one
used a block Jacobi iterative scheme, while the other one
took advantage of Kronecker product properties and is es-
pecially efficient whenR = I. We note that the method re-
quires joint determination of two regularization parameters.

2.3. Separability Condition

From a quite distinct viewpoint, Greensite in [7, 8] approached
Eq.(3) directly, suggesting three possible statistical assump-



tions onX, such that the structure ofCX̄ could be signifi-
cantly simplified and, to a greater or lesser extent, its tempo-
ral correlation structure could effectively be estimated from
the measurementsY. Among these three, here we discuss
one, which Greensite called “isotropy”.

Greensite’s isotropy condition corresponds to what is
called “separability” in random field theory (P82 in [14]):
separability occurs when the cross-covariance of any two
spatial-temporal random variables can be decomposed as
the product of a spatial covariance function by a temporal
covariance function. It is easy to show that under the sepa-
rability assumption,CX̄ has aKronecker productform:

CX̄ =
EX̃T X̃⊗ EX̃X̃T

E(||X̃||F
2
)

(7)

whereX̃ denotes the mean-removed unknown matrix and
|| · ||F is the matrix Frobenius norm.

Under separability, the orthogonal transform which di-
agonalizes the total temporal covariance matrix of the mea-
surements,EỸT Ỹ (Ỹ denotes the mean-removed measure-
ment matrix), also diagonalizesEX̃T X̃, and thus tempo-
rally whitens the entire problem. This happens because lin-
ear combinations of separable random variables are separa-
ble, and white noise will not affect separability.

Thus under separability, one can calculate the orthogo-
nal matrixZ which diagonalizes̃YT Ỹ as an estimate of the
matrix which diagonalizesEỸT Ỹ, and then solve a rotated
problem separately at each time instant:

(YZ)i = A(XZ)i + (NZ)i, (8)

where the subscripti means ith column of a matrix. Af-
ter that, the optimal estimate of original unknowns can be
obtained by rotating back withZT .

2.4. Comments on the Relationships Among These Ap-
proaches

First, we note none of the methods is a subset of any of
the others; all three have degrees of freedom not shared by
the other two, as can be seen in their implications on the
structure ofCX̄

−1 [11]. In fact, one can construct specific
restrictions on each method to make it match either of the
others, which space precludes us from illustrating here.

In terms of actually constructing the required matrices,
the state-space model allows us to implicitly model the spatio-
temporal correlation structure in terms of smaller matrices
with physically meaningful interpretations and to implicitly
solve it efficiently via the RTS algorithm. The joint regular-
ization model similarly allows a direct physical interpreta-
tion of the quantities required and has its own computation-
ally efficient solution. The separability model is more dif-
ficult to interpret; on the other hand it does not require the

assumption of any specific temporal operators—one simply
estimates the required temporal decorrelation matrix out of
the data and then solves an equivalent sequence of space-
only problems.

To be more specific, the state-space model restricts the
temporal memory structure to first-order (unless one “lifts”
the model by expanding the state space) but allows explicit
modeling of temporal correlation across different epicardial
nodes (i.e. spatio-temporal mixing) . The joint regulariza-
tion model (unless one relaxes the constraints on the struc-
ture of R̄ andT̄), on the other hand, is restricted to sepa-
rate imposition of spatial and temporal constraints, but has
no particular restriction on the length of temporal mem-
ory in the constraints. The separability structure implies
that there is no strong spatio-temporally coherent correla-
tion structure—one way to view this assumption is that all
the spatial covariance matrices, at every pair of time in-
stants, has the sameshape; they differ from each other only
by a scalar that can vary from one time pair to another.

Thus one would imagine, for instance, that the separa-
bility model would have difficulty modeling a propagating
wave, where spatio-temporal coherence is strong, but would
do well at modeling a problem where each region in space
has similar temporal dynamics (or equivalently each time
instant has similar spatial dynamics).

3. SOME COMMENTS ON PARAMETRIC
DYNAMIC INVERSE ECG SOLUTIONS

Besides the linear framework for spatial-temporal regular-
ization introduced above, there has been considerable recent
work in dynamic PET/SPECT, MRI, CT, and other medical
inverse problems on parameterized methods for incorporat-
ing temporal information with spatial regularization. Some
of these approaches model the temporal evolution with a pa-
rameterized model, such as sums of exponentials [15], and
others model the evolution as monotonically increasing, de-
creasing, or even an increase followed by a decrease [16].
However of particular interest here are methods which use a
parameterization of thespatialstructure as well as the tem-
poral structure. One approach which has been recently pre-
sented uses curve-evolution models [17] which lend them-
selves to level-set-based inverse solutions [18].

The level-set inverse solution idea is to assume that the
spatial region of interest can be divided into a small num-
ber of distinct regions (usually only two such “regions”, al-
though they can each be disjoint), and then to reconstruct
only the boundary between these regions and perhaps the
value of the unknown quantity in each region as well. The
extension to dynamic imaging seeks to impose reasonable
temporal evolution of the region boundaries.

The activation-based approach to inverse solutions [19]
can be seen as an extreme form of such models. One internal



boundary curve (the activation isochrone) is reconstructed
at each time instant. In addition, simplifications are made
which reduce the equivalent source to the intersection of
the wavefront with the epicardial and endocardial surfaces,
which allows joint reconstruction over all time instants. One
of the drawbacks of such methods, however, is that the re-
quired assumptions ignore known and important physiolog-
ical structure such as the presence of fiber anisotropy. With
the recent development of sophisticated methods for mod-
eling and reconstructing curve evolution behavior, many of
them based on diffusion-equation PDE methods which fit
nicely with cardiac electrical behavior, it would appear pos-
sible to develop new approaches which lie in the space be-
tween the lack of physiological constraints implied by re-
construction epicardial potentials or trans-membrane poten-
tials, even in a spatio-temporal fashion, on one hand, and the
inability to incorporate important physiology which charac-
terizes activation-based solutions, on the other.
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