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Abstract

As Web applications manipulate an increasing amount of
XML, there is a growing interest in storing XML data in re-
lational databases. Due to the mismatch between the com-
plexity of XML’s tree structure and the simplicity of flat re-
lational tables, there are many ways to store the same doc-
ument in an RDBMS, and a number of heuristic techniques
have been proposed. These techniques typically define fixed
mappings and do not take application characteristics into
account. However, a fixed mapping is unlikely to work well
for all possible applications. In contrast, LegoDB is a cost-
based XML storage mapping engine that explores a space of
possible XML-to-relational mappings and selects the best
mapping for a given application. LegoDB leverages cur-
rent XML and relational technologies: 1) it models the tar-
get application with an XML Schema, XML data statistics,
and an XQuery workload; 2) the space of configurations is
generated through XML-Schema rewritings; and 3) the best
among the derived configurations is selected using cost es-
timates obtained through a standard relational optimizer. In
this paper, we describe the LegoDB storage engine and pro-
vide experimental results that demonstrate the effectiveness
of this approach.

1 Introduction

XML has become an important medium for represent-
ing, exchanging and accessing data over the Internet. As
applications are processing an increasing amount of XML,
there is a growing interest in storing XML data in relational
databases so that these applications can use a complete set
of data management services (including concurrency con-
trol, crash recovery, and scalability) and benefit from the
highly optimized relational query processors. Due to the
mismatch between the complexity of XML’s tree structure
and the simplicity of flat relational tables, there are many
ways to store the same documentin an RDBMS, and a num-
ber of fixed heuristic XML-to-relational mapping strategies

have been proposed [7, 10, 13, 17, 18]. However, a fixed
mapping is unlikely to work well for all of the possible ac-
cess patterns different applications may present. For ex-
ample, a Web site may perform a large volume of simple
lookup queries, whereas a catalog printing application may
require large and complex queries with deeply nested re-
sults. On the other hand, recent versions of commercial
RDBMSs (see e.g., [22]) allow the developer to specify
their own XML to relational mapping. Although more flexi-
ble, this approach requires development effort, and the mas-
tering of two complex technologies (XML and RDBMS).
Moreover, it might be hard, even for an expert, to deter-
mine a good mapping for a complex application. In this
paper, we introduce a novel cost-based approach to XML
storage design. We describe the design and implementa-
tion of LegoDB, an XML storage mapping system based on
this approach, that automatically finds an efficient relational
configuration for a target XML application.

The three main design principles behind LegoDB are:
cost-based search, logical/physical independence, and re-
use of existing technology. Since the effectiveness of a one-
size-fits-all mapping is improbable given the wide variety
of XML applications (with data ranging from flat to nested,
schemas ranging from structured to semistructured, and ac-
cess patterns ranging from traditional SPJ queries to full-
text or recursive queries), our first principle is to take the ap-
plication into account. More precisely, given some param-
eters describing the target XML application, the LegoDB
engine explores various relational configurations in order to
find the most efficient for the target application. Our sec-
ond principle is to support logical/physical independence.
Developers of XML applications should deal with XML
structures and queries, and should not be concerned with
the physical storage. The LegoDB interface is purely XML-
based, and isolates the developer from the underlying stor-
age engine—in our case, relational. Our third principle is to
leverage existing XML and relational technologies when-
ever possible. LegoDB relies on: 1) XML Schema and
XQuery to model the target application, 2) XML Schema
rewritings to generate a search space of storage mappings,



and 3) a traditional relational optimizer to obtain cost esti-
mates for these mappings. The paper makes the following
contributions:

e We introduce the notion of physical XML Schemas (p-
schemas) which extend XML Schemas in two significant
ways: they contain data statistics and they can be easily
mapped into relational tables. We define a fixed mapping
from p-schemas to relational configurations, and the cor-
responding mapping from XML documents to databases
(Section 3).

e \We propose a set of p-schema rewritings: when succes-
sively applied to a p-schema, these rewritings lead to a space
of alternative storage configurations. Because the proposed
rewritings exploit XML Schema structures, the resulting
search space contains new storage configurations that have
not be explored by previous approaches (Section 4).

e We use a relational optimizer to obtain cost estimates for
each storage configuration. For a given p-schema, we map
XML data statistics into relational statistics, and an XQuery
workload into SQL to provide as inputs to the optimizer.

o Due to the nature of XML Schema, p-schema transforma-
tions may lead to a large (possibly infinite) search space. We
present a simple greedy evaluation strategy that explores an
interesting subset of this space (Section 4.2).

o We give experimental results which show that LegoDB is
able to find efficient storage designs for a variety of work-
loads in a reasonable time. Our results indicate that our
cost-based exploration selects storage designs which would
not be arrived at by previously-proposed heuristics, and that
in most cases, these designs have significantly lower costs
(Section 5).

Our goal is to cover the main components of the mapping
engine, but to keep with space limitations, discussions on
statistics and query translation are omitted.

2 LegoDB Approach and Architecture

We motivate our approach with an XML applica-
tion scenario inspired from the Internet Movie Database
(IMDB) [12]. Figure 1(a) shows a Document Type Defini-
tion (DTD) [3] for a subset of the IMDB information. The
IMDB DTD contains a collection of shows, movie directors
and actors. Each show can be either a movie or a TV show.
Movies and TV shows share some elements (e.g., title
and year of production), but there are also elements that
are specific to each show type (e.g., only movies have a
box_office, and only TV shows have seasons). Fig-
ure 1(b) shows an XML Schema description of the IMDB
data written in the type syntax of the XML Query Alge-

bra [8].1 A full description of DTD, XML Schema and
XML Query Algebra types for the IMDB scenario, as well
as a sample document, can be found in the full version of
the paper [2].

DTDs vs. XML Schema Like the DTD, an XML
Schema describes elements (e.g., show) and attributes (e.g.,
@type), and uses regular expressions to describe allowed
subelements (e.g., imdb contains Show*, Director?*,
Actor¥*). XML Schema also has specific features that are
useful for storage. First, one can specify precise data types
(e.g., String, Integer) instead of just text. Also, reg-
ular expressions are extended with more precise cardinal-
ity annotations for collections (e.g., {1,10} indicates that
there can be between 1 to 10 aka elements for show).
Finally, XML Schema supports wildcards: for instance,
“[AnyType] indicates that the review element can con-
tain an element with arbitrary name and content. As a result,
XML Schema can specify parts of a schema for which no
precise structural information is available.

XML Schema, p-schema, and storage mapping Another
important difference between XML Schema and DTDs is
that the former distinguishes between elements (e.g., a
show element) and their types (e.g., the Show type). The
type name never appears in the document, but can be used
to classify nodes in the XML tree. LegoDB uses this clas-
sification as the basis for storage mappings. Figures 2(b)
and (c) illustrate a simple XML Schema to relational map-
ping. Each XML Schema type groups a set of elements and
attributes together. The LegoDB mapping engine creates a
table for each such type (e.g., Show) and maps the contents
of the elements (e.g., type, title) into columns of that
table. Finally, the mapping generates a key column that con-
tains the i1d of the corresponding element (e.g., Show_id
column), and a foreign key that keeps track of the parent-
child relationship (e.g., parent_Show column). Clearly,
it is not always possible to map types into relations. For
instance, the schema in Figure 2(a), although equivalent to
that of Figure 2(b), indicates that the type Show can contain
many review elements. These elements cannot be directly
mapped into one column of a table. In Section 3, we intro-
duce physical schemas as the subset of XML Schemas that
can be directly mapped into relations.

Schema transformations  There are many different
XML Schemas that describe the exact same set of doc-
uments: different regular expressions (e.g., (a(b]c*))
((a,b) ] (a,c*))) can be used to describe the same el-
ement content; and the children of an element can be di-
rectly included (e.g., title in Show) or can be referred
to through a type name (e.g., see the type Year). As our

1This notation captures the core semantics of XML Schema, abstract-
ing away some of the complex features of XML Schema which are not
relevant for our purposes (e.g., the distinction between groups and com-
plexTypes, local vs. global declarations, etc).



<! DOCTYPE i mib [
<! ELEMENT i mdb (showt, director*, actor*)>
<! ELEMENT show
(title, year, aka+, reviews*,
((box_office, video_sales)
| (seasons, description, episode*)))>
<! ATTLI ST show
type CDATA #REQUI RED>

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

title (#PCDATA) >
year (#PCDATA) >
aka (#PCDATA) >
revi ew (#PCDATA) >

<! ELEMENT
<! ELEMENT

box_of fice (#PCDATA)) >
vi deo_sal es (#PCDATA)) >

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

seasons (#PCDATA)) >

descri ption (#PCDATA)) >

epi sode (nane, guest_director)>
nane (#PCDATA) >

guest _director (#PCDATA)>

(a)

type IMDB =
inmdb [ Show*, Director*, Actor* ]
type Show =
show [ @ype[ String ],
title[ String ],
Year, Aka{l, 10}, Review*,
(Movie | TV) ]

Year = year[ Integer ]
Aka = aka[ String ]
Review = review ~ [ String ] ]

type
type
type

type Movie =
box_of fi ce[
vi deo_sal es[

Integer ],
Integer |

type TV =
seasons[ Integer ],
description[ String ],
epi sode[ nane[ String ],
guest _director[ String ]]*

(b)

Figure 1. DTD and XML Schema for the IMDB documents

ype Show =

show [ @ype[ String ],
title [ String ],
year[ Integer ],

reviews[ String ]*,

(@ Initial XML Schema

type Show =
show [ @ype[ String ],
title [ String ],
year[ Integer ],
Reviews*,

type Reviews =
reviews[ String ]

(b) P-schema

TABLE Show
( Show_id INT,
type STRING
title STRING
year |INT )
TABLE Revi ew
( Review.id,
review String,
par ent _Show I NT )

(c) Relational confi guration

Figure 2. XML Schema, p-schema, and relational configuration

TABLE Show

( Show_id INT,
type STRING
title STRING
year | NT,
box_of fice INT,
vi deo_sal es | NT,
seasons | NT,
description STRING )

TABLE Revi ew
( Reviews_id INT,
tilde STRING
revi ews STRI NG
parent _Show | NT )

TABLE Show

( Show_id INT,
type STRING
title STRING
year | NT,
box_of fice INT,
vi deo_sal es I NT,
seasons | NT,
description STRING )

TABLE NYT_Revi ews
( Reviews_id INT,
revi ew STRI NG
par ent _Show | NT )

TABLE Revi ews
( Reviews_id INT,
tilde STRI NG
revi ew STRI NG
par ent _Show | NT )

(b)

TABLE Show Part 1
( Show_ Parti1_id INT,

type STRING
title STRING
year | NT,

box_of fice INT,
video_sales INT )

TABLE Show Part 2
( Show_Part2_id INT,

type STRI NG,
title STRING
year | NT,

seasons | NT,
description STRING )

TABLE Revi ews
( Reviews_id INT,
tilde STRI NG
revi ew STRI NG
par ent _Show I NT )

©

Figure 3. Three storage mappings for shows



cost(Qi)

XML Schema l lXML data statistics

Physical Schema
Transformation

Generate Physical Schema}%
PSO

RS: Relational Schema/Queries/Sats

PS: Physical Schema Optimal configuration

}% Query/Schema Translati on}% Query Optimizer
PS RS

XQuery workload

Figure 4. Architecture of the Mapping Engine

mapping generates one relation for each type, the presence
or absence of type names affects the resulting relational
schema. In Section 4, we define a space of storage con-
figurations by introducing rewritings that preserve the se-
mantics of the schema, but yield different storage configu-
rations.

Cost-based evaluation of XML storage Figure 3 shows
three possible relational storage mappings that are gener-
ated, from the schema in Figure 1, by our transformations.
Configuration (a) results from inlining as many elements
as possible in a given table, roughly corresponding to the
strategies presented in [18]. Configuration (b) is obtained
from configuration (a) by partitioning the Reviews table
into two tables: one that contains New York Times reviews,
and another for reviews from other sources. Finally, con-
figuration (c) is obtained from configuration (a) by splitting
the Show (Show_Partl) or TV shows (Show_Part2).
Even though each of these configurations can be the best
for a given application, there are cases where they perform
poorly. The key remark that justifies the LegoDB approach
is that one cannot decide which of these configurations will
perform well without taking the application (i.e., a query
workload and data statistics) into account.

For instance, consider the following XQuery [5] queries:
Q1:

FOR $v in indb/show Q4:
WHERE $v/year = 1999 FOR $v in indb/ show

RETURN ($v/title, $v/year, RETURN
$v/ nyt _revi ews) <resul t>

{ $vititle,
Q2: $v/ year,
FOR $v in indb/ show (FOR $e I N $v/ epi sode
RETURN $v VWHERE

$e/ guest _director = c4

Q3: RETURN $e)

FOR $v in indb/ show
WHERE $v/title = c3
RETURN $v/ description

</resul t>

Query Q1 returns the title, year, and the New York Times
reviews for all 1999 shows and query Q2 publishes all the
information available for all shows in the database. Queries
1 and 2 are typical of a publishing scenario (i.e., to send
a movie catalog to an interested partner). Query Q3 re-
trieves the description of a show based on the title, and
query Q4 retrieves episodes of shows directed by a particu-
lar guest director c4. Queries 3 and 4 contain selection cri-

teria and are typical of interactive lookup queries, such as
the ones issued against the IMDB Web site itself. We then
define two workloads, Publish and Lookup, where Publish
={Q1:04,Q2:04,Q3 :0.1,Q4 : 0.1} and Lookup
={Q1:0.1,Q2: 0.1,Q3 : 0.4,Q4 : 0.4}, where each
workload contains a set of queries and an associated weight
that reflects the importance of each query for the applica-
tion. The following table shows the cost, as estimated by
the LegoDB optimizer, for each query and workload, when
run against the storage configurations shown in Figure 3.
(These costs are normalized by the costs of Storage Map 1.)

StorageMap 1 | StorageMap 2 | Storage Map 3
(Fig 3(a) (Fig 3(b)) (Fig 3(c))
Q1 1.00 0.83 1.27
Q2 1.00 0.50 0.48
Q3 1.00 1.00 0.17
Q4 1.00 1.19 0.40
Publish 1.00 0.75 0.75
Lookup 1.00 1.01 0.40

It is important to remark that only the first one of the
three storage mappings shown in Figure 3 can be generated
by previous heuristic approaches (of which we are aware).
However, this mapping has significant disadvantages for the
workloads we considered. First, due to its treatment of
union, it inlines several fields which are not present in all
the data, making the Show relation wider than necessary.
Second, when the entire Show relation is exported as a sin-
gle document, the records corresponding to movies need not
be joined with the Episode tables, but this join is required
by mappings 3(a) and (b). Finally, the (potentially large)
Descriptionelement need not be inlined unless it is fre-
quently queried.

LegoDB architecture The architecture of the LegoDB
mapping engine is depicted in Figure 4. Given an XML
Schema and statistics extracted from an example XML
dataset, we first generate an initial physical schema (PSO0).
This physical schema and the XQuery workload are then
input into the Query/Schema Translation module, which in
turn generates the corresponding relational catalog (schema
and statistics) and SQL queries that are input into a rela-
tional optimizer for cost estimation. Schema transforma-
tion operations are then repeatedly applied to PS0, and the



process of Schema/Query translation and cost estimation is
repeated for each transformed PS until a good configuration
is found.

scaar type s
physica scdar ps

Integer | String | Boolean
ps<#size, #min,
#max, #distincts >

named type nt = X type name
nt | nt choice
0 empty choice
nt{n,m} < #count > repetition
optional type ot = nt named type
s optional scalar
l[ot] optional element
ot , ot optiona sequence
O empty sequence
physica type  pt = nt named type
ot{0,1} optiona type
s scalar
l[pt] element
pt , pt sequence
O empty sequence
schemaitem st = type X = pt type declaration
schema := schema Sn = si, si, -.. end

Figure 5. Stratified XML Schema Types

3 From XML Schemato Relations

Physical XML Schemas We now introduce the notion of
physical XML Schema (p-schema). P-schemas have the
following properties: (i) they are based on XML Schema,
(ii) they contain statistics about the XML data to be stored,
and (iii) there exists a fixed, simple mapping from p-
schemas into relational configurations. As we have seen
in the previous section, not all XML Schemas can be easily
mapped into relations. However, by inserting appropriate
type names for certain elements, one can satisfy condition
(iii) above, while preserving the semantics of the original
schema. The Show type of Figure 2(a) cannot be stored di-
rectly into a relational schema because there might be mul-
tiple reviews elements in the data. However, the equiv-
alent schema in Figure 2(b), where a separate type name
exists for that element, can be easily mapped into the re-
lational schema shown in Figure 2(c). The p-schema also
stores data statistics. These statistics are extracted from the
data and inserted in the original physical schema PSO dur-
ing its creation. A sample p-schema with statistics for the
type Show is given below:

type Show =

show [ @ype[ String<#8,#2> 1],
year[ | nteger<#4, #1800, #2100, #300> ],

title[ String<#50,#34798> ],
Review* <#10> ]

type Review =
review String<#800> ]

The notation Scal ar <#si ze, #m n, #max, #di sti nct s>
indicates for each XML Schema datatype the correspond-

ing size (e.g., 4 bytes for an integer), minimum and max-
imum values, and the number of distinct values. The no-
tation St ri ng<#si ze, #di sti nct s> indicates the length
of a string as well as the number of distinct values. The
notation *<#count> indicates the relative number of re-
views elements within each element of type Show (e.g.,
in this example, there are 10 reviews per show).

Stratified physical types The main difficulty in defining
p-schemas is to make sure the type structures allow an easy
mapping into relations. For that purpose, we introduce the
notion of stratified physical types, adapted from the original
syntax for types of [8]. The grammar for stratified phys-
ical types is shown on Figure 5. This grammar contains
three different productions for types: named, optional,
and physical types). Each production refers to the previ-
ous one, ensuring that type names are always used within
collections or unions in the schema. Physical types con-
tain only singleton elements, nested singleton elements, and
optional types. Optional types are used to represent op-
tional nested elements. Finally, named types only contain
named types and ensure that complex regular expressions
(such as union and repetition) do not contain nested ele-
ments.

Mapping p-schemas into relations Assuming the above
stratified types, mapping a p-schema into relations is now
straightforward:

o Create one relation R for each type name 7.

e For each relation R, create a key that will store the node
id of the corresponding element.

e For each relation R, create a foreign key To_PT Key to
all relations Rpr such that PT is a parent type of T’

e A column is created in Rt for each sub-element of 7" that
is a physical type.

o If the data type is contained within an optional type then
the corresponding column can contain a null value.

The mapping procedure follows the type stratification: el-
ements in the physical type layer are mapped to columns,
elements within the optional types layer are mapped to
columns that allow null values, and named types are used
only to keep track of the child-parent relationship and for
the generation of foreign keys. For a given p-schema ps,
the relational schema defined by the above mapping is re-
ferred to as rel(ps). A detailed definition of the mapping of
p-schemas into relations is given in [2].

It is noteworthy to mention that this mapping deals with
recursive types, and maps XML Schema wildcards (i.e.,”
elements) appropriately. Take for example the definition of
the AnyElement in the XML Query Algebra:

type AnyEl enent
type AnyScal ar

[ (AnyEl enent JAnyScal ar)* ]
String | Integer | --.



This type is valid for all possible elements with any con-
tent. In other words, this is a type for untyped XML doc-
uments. Note also that this definition uses both recursive
types (AnyElement is used in the content of any element)
and a wildcard (™). Again, applying the above rules, one
would construct the following relational schema:

TABLE String ..
( __data STRING, ...
parent INT )

TABLE AnyElement =
( Element_id INT,
tilde STRING,
parent_Element INT )

This also shows that using XML Schema and the pro-
posed mapping, LegoDB can deal with structured and
semistructured documents in an homogeneous way. Indeed
the AnyElement table is similar to the overflow relation
that was used to deal with semistructured document in the
STORED system [7].

Mapping XQuery queries Although query mapping is an
important part of the optimization process, rewriting XML
queries into their equivalent SQL counterparts is not the fo-
cus of this paper and we omit any further discussion on
this issue. We refer the interested reader to recently pro-
posed mapping algorithms from XML query languages to
SQL [4, 9].

4 Schema Transfor mations and Search

In this section, we describe possible transformations for
p-schemas. By repeatedly applying these transformations,
LegoDB generates a space of alternative p-schemas and cor-
responding relational configurations.

41 XML transformations

Before we define the p-schema transformations, it is
worth pointing out that there are important benefits to per-
forming these transformations at the XML Schema level
as opposed to transforming relational schemas. Much of
the semantics available in the XML schema is not present
in a given relational schema and performing the equiva-
lent rewriting at the relational level would imply complex
integrity constraints that are not within the scope of rela-
tional keys and foreign keys. As an example, consider the
rewriting on Figure 3(c): such partitioning of the Show ta-
ble would be very hard to come up with just considering
the original schema of Figure 3(a). On the other hand, we
will see that this is a natural rewriting to perform at the
XML level. In addition, working at the XML Schema level
makes the framework more easily extensible to other non-
relational stores such as native XML stores and flat files,
where a search space based on relational schemas would be
an obstacle.

There is a large number of possible rewritings applicable
to XML Schemas. Instead of trying to give an exhaustive set
of rewritings, we focus on a limited set of such rewritings
that correspond to interesting storage alternatives, and that
our experiments show to be beneficial in practice.

Inlining/Outlining  As we pointed out in Section 2, one
can either associate a type name to a given nested element
(outlining) or nest its definition directly within its parent
element (inlining). Rewriting an XML schema in that way
impacts the relational schema by inlining or outlining the
corresponding element within its parent table. Inlining is
illustrated in below:

type TV =
seasons[ Integer ], _
PR type TV =
Eg?ggégflon' — seasons[ Integer |,

description[ String ],

type Description = Episode*

description[ String ]

Inlining Transformation

Two conditions must be satisfied for this transformation to
be permissible. First, the type name must occur in a position
where it is not within the production of a named type (i.e.,
it must comply with the type stratification). Second, since
this rewriting implies that one table is removed from the
relational schema, the corresponding type cannot be shared.

Note that inlining is the basis of the strategies proposed
in [18]. Inlining has some similarities with vertical parti-
tioning. It reduces the need for joins when accessing the
content of an element, but at the same time it increases the
size of the corresponding table and the cost of retrieving in-
dividual tuples. In the inlining example above, the benefits
of inlining or outlining description element within the
TV type depend both on the frequence of accesses to this
element in the workload as well as its length. Our search
algorithm decides whether to outline or inline that element
based on the cost of each derived configuration.

Union Factorization/Distribution Union types are often
used to add some degree of flexibility to the schema. As
queries can have different access patterns on unions, e.g.,
access either parts together or independently, it is essen-
tial that appropriate storage structures can be derived. In
our framework, we use simple distribution laws on regular
expressions to explore alternative storage for union. The
firstlaw ((a, (b]c)) == (a,b]a,c))allows distribu-
tion of a union within a regular expression and is illustrated
in Figures 6(a) and (b). Note that the common part of the
schema (title, etc.) is now duplicated, while each part
of the union is distributed. The second law (a[tl1]t2]
== a[tl]]a[t2]) allows to distribute a union across an
element and is illustrated in Figure 6(c). Here the distri-
bution is done across element boundaries. Note that at the
relational level, this results in the schema on Figure 3(c).



type Show =
(Show_Partl | Show_Part2)

type Show =
show [ @ype[ String ],
title[ String ],

type Show =
show [ (@ype[ String ],
title[ String ],

type Show_Partl =
show [ @ype[ String ],
title[ String ],

year [ Integer ], year [ Integer ],
Aka{1l, 10}, Aka{1, 10}, yAﬁgr{lllg?t eger ],
Review*, Review*, Revie\’lv* !
(Movie | TV) ] box_of fice[ Integer ], box office[ Inte
h _ ger ],
== video_sal es[ Integer ]) S vi deo_sal es[ Integer ] ]

type Movie =
box_of fice[ Integer ],

| (@ype[ String ],

title[ String ], type Show_Part2 =

vi deo_sal es[ Integer ] Xﬁgf{l[ li)f}“ eger ], show [ @ype[ String |,

~ LY title[ String ],

type TV = Review*, ear [ Integer ]

seasons[ Integer |, seasons[ Integer ], Xka{l 10} 9 '
description[ String ], description[ String ], Review,

Episode* Episode*) ]

@ (b)

seasons|[ Integer ],
description[ String ],
Episode* ]

©

Figure 6. Union Distribution (XML Schema)

This transformation highlights the advantages of work-
ing in the space of XML Schemas. The corresponding hor-
izontal partitioning of the relational schema of Figure 3
would not be easily found by a relational physical-design
tool, since the information about the set of attributes in-
volved in the union would have been lost.

Repetition Merge/Split Another useful rewriting exploits
the relationship between sequencing and repetition in reg-
ular expressions, by turning one into the other. The cor-
responding law over regular expressions (a+ == a,a*)
is illustrated below for the aka element in the Show type
of Figure 1(b). Note that this transformation (followed by
inlining the unrolled occurrence of aka into Show) is an
alternative considered in [7].

type Show =

type Show = show [ @ype[ String ],
ti-

show [ @ype[ String ],
ti- tle [ String ],

tle [ St;legg[]inte— = year[ Inte-
ger 1,
ger 1, Aka
Aka{1,*} ] ’

Akaf{0, *} ]

Repetition Split Transformation

Wildcard rewritings Wildcards are used to indicate a set
of element names that can or cannot be used for a given el-
ement. We use "~ to indicate that any element name can
be used, and "~1a’ to indicate that any name but a can be
used. In some cases, queries access specific elements within
a wildcard. In that context, it might be interesting to mate-
rialize an element name as part of a wildcard as illustrated

below:
type Reviews =

revi eyf
(NYTReview
type Review = | OtherReview)*
revi ew ]
“[ String ]* =

] type NYTReview =
nyt[ String ]
type OtherReview =
("!'nyt) [ String ]

WiIdcard Rewriting Transformation

This transformation can be thought of as distributing of
the (implicit) union in the wildcard over the element con-
structor (i.e.,” = (nyt_reviews| (~!nyt_reviews))).
Here again this results in some form of non-trivial horizon-
tal partitioning over relations. As we show in Section 5, this
rewriting is useful if some queries access NY Times reviews
independently of reviews from other sources.

From union to options All of the previously proposed
rewritings preserve exactly the semantics of the original
XML schema. This last rewriting that was proposed in [18]
does not have this property, but allows to inline elements of
a union using null values. This relies on the fact that a union
is always contained in a sequence of optional types (i.e.,
(t1]t2) C (tl1?,t2?)). This often results in tables
with a large number of null values, but allows the system
to inline part of a union, which might improve performance
for certain queries.

4.2 Search Algorithm

The set of configurations that result from applying the
previous schema transformations is very large (possibly in-
finite, e.g., when applying repetition merge). For that rea-
son, we use a greedy heuristic to find an efficient configu-
ration. The exploration of the space of storage mappings is
described in Algorithm 4.1. The algorithm begins by deriv-
ing an initial configuration pSchema from the given XML
Schema xSchema (line 3). Next, the cost of this config-
uration, with respect to the given query workload xWkld
and the data statistics zStats is computed using the func-
tion Get PSchemaCost which will be described in a mo-
ment (line 3). The greedy search (lines 5-16) iteratively up-
dates pSchema to the cheapest configuration that can be de-
rived from pSchema using a single transformation. Specif-
ically, in each iteration, a list of candidate configurations
pSchemalList is created by applying all applicable trans-



formations to the current configuration pSchema (line 7).
Each of these candidate configurations is evaluated using
GetPSchemaCost and the configuration with the smallest
cost is selected (lines 8-14). This process is repeated until
the current configuration can no longer be improved.

Algorithm 4.1 Greedy Heuristic for Finding an Efficient
Configuration

Procedure GreedySearch
Input:  xSchema : XML schema,
XWKkId : XML query workload,
xStats : XML data statistics
Output: pSchema : an efficient physical schema
1 begin
minCost = oco;
pSchema = GetlnitialPhysicalSchema(xSchema)
cost = GetPSchemaCost(pSchema, xWkld, xStats)
5 while (cost < minCost) do
minCost = cost
pSchemalList = ApplyTransformations(pSchema)
for each pSchema’ € pSchemalList do
cost’ = GetPSchemaCost(pSchema’, xXWkld, xStats)
10 if cost’ < cost then
cost = cost’
pSchema = pSchema’
endif
endfor
15 endwhile
return pSchema
end.

We now outline how GetPSchemaCost computes the
cost of a configuration given a pSchema, the XML Query
workload zWkld, and the XML data statistics zStats.
First, pSchema is used to derive the corresponding re-
lational schema. This mapping is also used to translate
xStats into the corresponding statistics for the relational
data, as well as to translate individual queries in zW kld into
the corresponding relational queries in SQL. The resulting
relational schema and the statistics are taken as input by a
relational optimizer to compute the expected cost of com-
puting a query in the SQL workload derived as above; this
cost is returned as the cost of the given pSchema. Note
that the algorithm does not put any restriction on the kind
of optimizer used (transformational or rule-based, linear or
bushy, etc. [11]); though for the exercise to make sense it is
expected that it should be similar to the optimizer used in
the target relational system.

5 Experimental study

LegoDB prototype We have implemented the LegoDB
components shown in Figure 4. Our initial prototype is
limited to exploring inlining/outlining rules in the greedy
search—the other XML transformations are explored sepa-
rately. To evaluate the cost of alternative configurations in
our mapping engine, we used a variation of the Volcano re-
lational query optimizer [11], as described in [14]. This re-
lies on a cost model that takes into account number of seeks,
amount of data read, amount of data written, and CPU time

for in-memory processing. Our cost model is fairly sophis-
ticated and its accuracy has been verified by comparing its
estimates with numbers obtained by running queries on Mi-
crosoft SQL-Server 6.5 (see [14]).

Experimental Settings We use an XML Schema based
on the data from the Internet Movie Database (IMDB)[12]
which contains information about movies, actors and direc-
tors. We compose workloads by drawing on two classes of
queries: lookup queries and publishing queries. Lookup is
representative of interactive SPJ queries, such as Find the
alternate titles for a given show. Publishing queries are
more document-oriented and return all available informa-
tion about a particular element (or set of elements), for ex-
ample List all shows and their reviews. Detailed statistics
that include information about all elements (cardinalities,
sizes, etc), as well as the XML schema and XQuery work-
loads can be found in the full version of the paper [2].

Efficiency of Greedy Search In this experiment, we
demonstrate the efficiency of the greedy search heuristic
described in Section 4.2. We experimented with two varia-
tions of the greedy search: greedy-so and greedy-si. In the
greedy-so search, all elements in the initial physical schema
are outlined (except base types) and during the search, inlin-
ing transformations are applied. For greedy-si, all elements
are initially inlined (except elements with multiple occur-
rences) and during the search, outlining transformations are
applied.

For the purpose of this experiment, we considered two
workloads: Lookup, which contains five lookup queries,
and Publish, which consists of three queries that publish
information about shows, directors and actors. Figure 7
shows the cost of the configurations obtained by greedy-
so and greedy-si on successive iterations for each of these
workloads. Each iteration took approximately 3 seconds.

An interesting observation is that greedy-so converges to
the final configuration a lot faster than greedy-si for lookup
queries, while the opposite happens for publish queries, i.e.,
greedy-si converges faster. The traversals made by lookup
queries are localized. Therefore, the final configuration has
only a few inlined elements. Naturally, greedy-so can reach
this configuration earlier than greedy-si. On the other hand,
since the publish queries typically traverse larger number
of elements, the final configuration has several inlined el-
ements. In this case, therefore, greedy-si can reach this
configuration earlier than greedy-so. Also, the curves of-
ten have a point after which the improvement between it-
erations decreases considerably. This suggests that, as an
optimization, we could stop the search as soon as the im-
provement falls below a certain threshold.

As the graphs show, greedy-so has higher initial costs
for both workloads since it leads to a large number of tables
which must be joined to compute the queries. However,
note that both strategies converge to similar costs (the final
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Figure 7. Cost at each greedy iteration

configurations are also similar). This trend was observed
for all variations of schemas, statistics and workloads we
experimented with. For simplicity of presentation, greedy-
si is the search strategy used in the experiments below.

Sensitivity of configurations to varied workloads An
important feature of the LegoDB framework is that the stor-
age is designed taking an application and its query workload
into account. One interesting question is how the resulting
configuration performs if the workload changes. For ex-
ample, the search interface of IMDB offers users a fixed
set of queries. However, the frequency of these queries
may vary over time. For example, in the week before the
Academy Awards, the frequency of queries about movies
may increase considerably. Because in many instances it
may not be feasible to re-generate a new configuration and
re-load the data, it is important that a chosen storage con-
figuration leads to acceptable performance even when the
frequency of queries varies.

In order to assess the sensitivity of our resulting config-
urations to changes in workloads, we created a spectrum
of workloads that combined the lookup queries and publish
queries in the ratio k : (1 — k), where k € [0,1] is the
fraction of lookup queries in the particular workload. Us-
ing the same statistics and XML schema, we ran LegoDB
for three workloads corresponding to & = 0.25,0.50 and
0.75, resulting in the three configurations C[0.25], C[0.50]
and C[0.75] attuned to the respective workloads. Next, we
gathered these three resulting configurations and evaluated
their costs across the entire workload spectrum; the cost of
a configuration is defined as the average cost of process-
ing a query on that configuration. We did a similar evalua-
tion with the all-inlined configuration, C[ALL-INLINED].
For the sake of comparison, we also plotted a curve OPT
giving, for each workload in the spectrum, the cost of the
configuration obtained by LegoDB for that specific work-
load. (Note that, in contrast to the other curves, OPT does
not correspond to a fixed schema.) The results are shown in
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Figure 8.

Before discussing the results, it is important to under-
stand how inlining affects the cost of a configuration with
respect to a query workload. For queries that traverse the
schema contiguously and access all related attributes, inlin-
ing helps by precomputing the numerous joins that may be
required during the traversal. On the other hand, inlining
could be a bad idea for other kinds of queries, for example:
(a) the query does limited, localized traversals and/or does
not access all the attributes involved, and so does not ben-
efit from the inlining but nevertheless pays the overhead of
scanning wider relations; (b) the query has highly selective
selection predicates — this could render a selection scan
on the inlined wider relation more expensive than evalua-
tion of the query by joining the filtered non-inlined leaner
relations, especially in the presence of appropriate indexes;
(c) the query involves join of attributes not structurally ad-
jacent in the XML Schema (e.g., actor and director)
— since inlining causes respective relations to widen due
to the inclusion of several additional attributes not required
in the join, the join is significantly more expensive than in
the case of other configurations. These two opposing fac-
tors lead to the possibility of different inlining decisions for



1009 mm mm mE B B B B

80— —

60

== All Inlined
=1 Union distribution

Cost improvement for Union
I

20 1

@ @ Q@ @& Q3 Q6 QI
Query

Figure 9. Union distribution vs. all-inlined

different workloads, each optimal in a certain region in the
spectrum.

Overlap between the curves for C[0.25] and C[0.75] with
the curve for OPT in the graph suggests that we can parti-
tion our spectrum into two regions: the region defined by
k € [0,0.55) and the region defined by k£ € [0.55, 1] such
that C[0.25] is the optimal configuration for all workloads
in the former region and CJ[0.75] is the optimal configura-
tion for all workloads in the latter (or near enough). More-
over, the curves for C[0.25] and C[0.75] cross at a small
angle. This further implies that even if the two workloads
lie in different regions but are not too distant, the optimal
configurations for the two are close enough in cost. This
shows that the configurations found by LegoDB are very
robust with respect to the variations in the workloads.

At the extremes of the spectrum, however, we found a
significant difference in performance of the C[0.25] and
C[0.75]. Since these two configurations are based on
slightly differentinlining decisions, we see that both publish
and lookup queries are sensitive to these decisions, and that
inlining is indeed an important transformation. However,
C[ALL-INLINED] that includes all the inlining decisions
in the above configurations (and some more) performed two
to five times worse than optimal. This demonstrates that
beyond a point, the overheads due to inlining significantly
outweigh any benefits.

In summary, the above analysis clearly demonstrates that
the cost-based approach of LegoDB leads to configurations
that are not only 50% to 80% less costly than the rule-of-
the-thumb approach of ALL-INLINED, but also are very
robust with respect to the variations in the workloads.

Union Distribution In order to measure the effective-
ness of union distribution we compared the costs of vari-
ous queries for the configurations illustrated in Figure 3(a)
(all elements inlined) and Figure 3(c) (where union is dis-
tributed over show).

As shown on Figure 9, the configuration obtained
through union distribution has lower costs for all queries.

Total reviews 10,000 100,000
Query Q1 Q2
NYT perc. inlined | wild | inlined | wild
50% 5.42 6.3 | 48 26.3
25% 5.42 51 | 48 15
12.5% 5.42 4.4 |48 94

Table 1. Wildcard-transformed vs. all-inlined

As we explained in Section 4, the union distribution is
equivalent to horizontally partitioning over the Show ta-
ble into a table that contains information about movies,
and a table that contains information about TV shows.
Because the new tables are smaller, queries that refer
to elements in only one of those tables will be cheaper.
These results are rather intuitive. A less intuitive find-
ing is that even queries that access elements from both
movies and TV shows can become cheaper under the union
rewriting. For instance, the following selection query
Witte, description (Ttitie=c Shows) that returns the title and
description of a given show, must be rewritten as the
union of two queries: I¢ise boz_of fice (Ttitie=cmovies) and
yitte, description (Ttitle=ctv-shows) over the transformed
schema. Not only does each subquery operate on tables
with fewer tuples, but these tables are also narrower which
reduce the cost of selection.

Repetition Split Another transformation we considered
in Section 4 is splitting repetitions. The effectiveness of
such a transformation is highly dependent on the charac-
teristics of the data and on the query workload. Consider
for example two queries: a lookup query that finds all of
the alternate titles (akas) for a given show title; and a pub-
lishing query which retrieves all information for all shows.
The costs for these two queries under the All Inlined and
the Repetition-Split transformed configurations for a varied
number of total akas are given in Figure 10. For this exam-
ple, the main effect of the Repetition Split transformation
is that it reduces the size of the Aka table. As a result, the
cost reduction is bigger for the publishing query—since the
lookup query involves a selection on title and this selec-
tion can be pushed, the size of the Aka table will impact
the show-aka join to a lesser extent than in the publishing
query where no selection is performed. Also note that as the
size of the Aka table increases (and becomes much larger
than the Show table), the cost difference between the two
configurations decreases.

Wildcards  The wildcard’s rewriting proposed in Sec-
tion 4 effectively partitions the set of elements tagged
by the wildcard into two different sorts, corresponding to
the wildcard labels that are present in the data. Con-
sider for example the query Find the NYTimes reviews for
shows produced in 1999. The equivalent queries under
the configurations in Figure 3(a) and (b) are respectively:
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Miitic,data(Tyear=1909 (shows) >4 o s\ yT7(reviews))
and i;tie data (Tyear—=1999(shows) < nyt_reviews). Table 1
shows the cost of these two queries for varying percentage
of New York Times reviews, when the total number of re-
views is 10,000 and 100,000. As expected, whereas the cost
for Query 1 remains constant, the cost for Query 2 decreases
with the size of the nyt_reviews table.

6 Redated Work

Recently, many approaches have been suggested for
mapping XML documents to relations for storage [7, 10, 13,
17, 18, 19]. In [7], Deutsch, Fernandez and Suciu propose
the STORED system for mapping between (schemaless)
semi-structured data and the relational data model. They
focus on a data mining technique which simultaneously
solves schema discovery and storage mapping by identify-
ing “highly supported” tree patterns for storage in relations.
Even though they considered a cost optimization approach
to the problem, they found it to be impractical, as in the
absence of a schema, optimization is shown to be expo-
nential in the size of the data. In contrast, we explore a
space of storage structures but rely on the schema and statis-
tics rather than directly mining the data. We use heuristics
(e.g., the greedy approach) to avoid an exponential search,
but still explore a variety of useful mappings. In fact, the
LegoDB strategy may lead to substantially different config-
urations than what is produced by the data-mining approach
used by STORED. For example, we may break an extremely
common pattern of data into multiple relations if the result
is more efficient for the query workload.

In [18], Shanmugasundaram et al propose three strate-
gies to map DTDs into relational schemas. The basic idea
behind these mappings is to create tables that correspond
to XML elements defined in a DTD, inlining as many sub-
elements as possible so as to reduce fragmentation—multi-
valued elements and elements involved in recursive associ-

ations must be kept in separate tables. The three proposed
mappings differ from one another in the degree of redun-
dancy: they vary from being highly redundant (where an
element can be stored in multiple tables), to containing no
redundancy. While we do not consider mappings which du-
plicate data, we share with [18] the use of the schema to
derive a heuristically “good” initial storage mapping (e.g.,
for the greedy-si search strategy), and the use of a modified
schema for the storage mapping language. Regardless of
the particular strategy, the mapping process of [18] begins
by simplifying an input DTD into a DTD that can be easily
mapped into relations. Instead of simplifying away hard-
to-map XML Schema constructs, LegoDB takes advantage
of them (through the use of our schema transformations)
to generate a space of mappings. And as we have shown
in Section 5, mappings that result from the XML-specific
transformations may lead to significantly better configura-
tions for a given application than mappings based on an
inline-as-much-as-possible approach.

Schmidt et al [17] propose a highly fragmented rela-
tional storage model. Their experiments show that this ap-
proach performs well on the main-memaory-oriented Monet
database, a result in stark contrast to the conclusions pre-
sented in [18] where fragmentation and a large number of
joins is identified as a key problem. These disparate per-
formance results only emphasize the need for automated
tools, like LegoDB, to determine the appropriate storage
mapping for a given application and DBMS platform. Fi-
nally, while the search space in our work does not include
horizontal fragmentation of tables based on incoming paths,
our rewriting rules can be extended to consider this style of
transformation.

Florescu and Kossman [10] and Tian et al [20] com-
pare the performance of several approaches to XML stor-
age. Shimura et al [19] propose an inverted-list-style stor-
age structure in which nodes are mapped to regions in the
document, and paths are present as strings in a “Path” ta-



ble. In all three of these cases, one or more fixed mappings
are used, where we explore a space of storage mappings.
Mappings from DTDs into nested schema structures of OO
or OR/DBMS have been proposed [6, 13]. While Klettke
and Meyer consider statistics and queries in the proposed
heuristic mapping, no attempt is made to compare estimated
costs for multiple mappings.

Several commercial DBMSs already offer some support
for storing, querying, and exporting XML documents [22,
15]; however, the user must still design an appropriate stor-
age mapping.

While LegoDB is (to our knowledge) the first XML stor-
age mapping tool to take advantage of cost-based optimiza-
tion, similar approaches have been applied to problems in
relational storage design, such as index selection (e.g., [16])
and view materialization (e.g., [1, 21]) in physical optimiza-
tion for relational DBMSs. Note that physical design tools
are complementary to LegoDB, and can be applied to fur-
ther optimize the relational schemas produced by our map-
ping, either during the search process or simply on the final
schema produced.

7 Conclusions

We have introduced LegoDB, a cost-based framework
for XML storage. LegoDB explores a space of alternate
storage configurations and evaluates the quality of each con-
figuration by estimating its performance on an application
workload. We make original use of XML Schema as a sup-
port the description and exploration of new possible storage
configurations. The LegoDB system isolates the applica-
tion developer from the underlying storage engine by tak-
ing XML Schemas, an XQuery workload and XML statis-
tics as input. Our initial performance study indicates that
XML storage performances can be significantly improved
with such a cost-based approach. We consider this work
as a first step towards a general purpose storage configu-
ration engine for XML. As future work, we plan to adapt
our approach to other storage platforms, extend the subset
of XQuery we support, and possibly develop more efficient
search strategies.
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