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Comments on the
“Meshless Helmholtz-Hodge decomposition”
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Abstract—The Helmholtz-Hodge decomposition (HHD) is one of the fundamental theorems of fluids describing the decomposition of
a flow field into its divergence-free, curl-free and harmonic components. Solving for an HDD is intimately connected to the choice of
boundary conditions which determine the uniqueness and orthogonality of the decomposition. This article points out that one of the
boundary conditions used in a recent paper “Meshless Helmholtz-Hodge decomposition” [5] is, in general, invalid and provides an
analytical example demonstrating the problem. We hope that this clarification on the theory will foster further research in this area and
prevent undue problems in applying and extending the original approach.

Index Terms—Vector Fields, Boundary Conditions, Helmholtz-Hodge Decomposition.
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1 INTRODUCTION

THE Helmholtz-Hodge decomposition (HHD) decom-
poses a vector field defined on a bounded or an

unbounded domain into divergence-free, curl-free and
harmonic components. Due to ubiquitous nature of vec-
tor fields, the HHD is used in a variety of applications
in areas such as fluid modeling, computer graphics,
computer vision, and topological analysis. In the case of
bounded domains the boundary conditions play a cru-
cial role in the decomposition, determine the existence,
orthogonality, and the uniqueness of the decomposition.

In a “Meshless Helmholtz-Hodge decomposition” [5]
Petronetto et al. propose a novel approach to compute
the discrete HHD using smoothed particle hydrodynam-
ics (SPH). As usual, they solve two Poisson equations to
compute the HHD in this case based on a particle system
framework. The meshless nature of this approach makes
it attractive in many applications and the underlying
framework is technically sound.

However, while surveying the HHD literature, a dis-
crepancy in one of the boundary conditions proposed
in [5] has emerged. In particular, Petronetto et al. suggest
two sets of boundary conditions: The first are the tradi-
tional conditions found elsewhere in the field imposing
a normal boundary flow on the curl-free and a tangential
flow on the divergence-free component. The second set
of boundary conditions is the inverse with normal flow
in the divergence-free and tangential flow in the curl-
free component. In this article, we point out that the
second set of boundary conditions is invalid for general
vector fields. Below, we provide an analytical example
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and show that the second set of boundary conditions
violate the divergence theorem. For completeness, we
first provide a brief description of the theory of HHD
and the correct boundary conditions.

2 THE HELMHOLTZ-HODGE DECOMPOSITION

Consider a vector field �ξ defined on a simply-connected,
bounded domain Ω

(⊂ R
2,R3

)
with boundary ∂Ω. The

divergence and curl of �ξ are given by ∇ · �ξ and ∇ × �ξ.
According to the HHD, �ξ can be decomposed into a curl-
free (purely divergent) vector field �d, a divergence-free
(purely rotational) vector field �r and a harmonic vector
field �h. Furthermore, the curl-free component can be
represented as the gradient of a scalar potential function,
i.e. �d = ∇D, and the divergence-free component can be
represented as the curl of a vector potential function, i.e.
�r = ∇× �R.

�ξ = �d+ �r + �h

= ∇D +∇× �R+ �h
(1)

Here, �d represents all the divergence in �ξ, i.e. ∇·�ξ = ∇· �d,
and �r represents all the curl in �ξ, i.e. ∇× �ξ = ∇× �r.

Note, that for simply-connected domains, sometimes
the rotation-free and the harmonic components are to-
gether represented as the gradient of a scalar field, i.e.
�d + �h = ∇D, which gives the two-component form of
the Helmholtz-Hodge decomposition, e.g. as explained
by Chorin and Marsden [1], Denaro [2] and Lamb [4].
However, when the domain is non-simply-connected,
or when it is desirable to represent the harmonic as a
separate component, the three-component form (Eq. 1)
is used, e.g. Polthier and Preuß [6], [7], Tong et al. [8]
and Petronetto et al. [5].

Digital Object Indentifier 10.1109/TVCG.2012.62 1077-2626/12/$31.00 ©  2012 IEEE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



COMMENTS ON THE “MESHLESS HELMHOLTZ-HODGE DECOMPOSITION”, VOL. XXXX, NO. YYYY, ZZZZ 2012 2

For a unique and L2-orthogonal decomposition, the
commonly used boundary conditions are:

1) The curl-free component is normal to the boundary,
i.e. �d× �n = 0.

2) The divergence-free component is parallel to the
boundary, i.e. �r · �n = 0.

where, �n is the outward normal to the boundary.
The proof of uniqueness and orthogonality for these

boundary conditions can be found in [1], [2]. For short-
hand, we call these the normal-parallel (N-P) boundary
conditions. Most of the literature available in visualiza-
tion and graphics and fluid modeling enforces the N-
P boundary conditions for a unique decomposition. To
compute HHD, first the potentials D and �R are solved
for, giving �d and �r, and then the harmonic component
is computed as the residual �h = �ξ − �d− �r.

HHD in 2D. For R2 or 2-manifolds embedded in R
3, curl

is just a scalar quantity normal to the manifold. Hence,
the divergence-free component can be represented as the
gradient of a scalar potential. Consider an operator J
which rotates a vector counter-clockwise by π/2. Using
J , it can be shown that

• ∇× �v = −∇ · (J�v)
• (J�v) · �n = �v ⊥ �n = component of �v parallel to the

boundary, where �n is the outward normal to the
boundary.

• �v = J∇V gives a divergence-free vector field, where
V is a scalar field.

For details, we refer the reader to [7]. Thus, the 2D HHD
can be written as

�ξ = ∇D + J∇R+ �h (2)

where, R is a scalar potential. Now, for the curl-free
component, ∇ × �d = ∇ ·

(
J �d

)
= 0. By the divergence

theorem and the properties of J ,∫
Ω

∇ ·
(
J �d

)
dA =

∫
∂Ω

(
J �d

)
· �n dS

0 =

∫
∂Ω

�d ⊥ �n dS

Thus, the boundary condition �d×�n = 0 can be replaced
by �d ⊥ �n = 0 for an orthogonal decomposition.

3 THE BOUNDARY CONDITIONS IN [5]
In addition to the N-P boundary conditions, Petronetto
et al. [5] show results for another set of boundary
conditions for HHD in R

2, which are opposite to the
N-P boundary conditions. According to [5],

1) The curl-free component is parallel to the bound-
ary, i.e. �d · �n = 0.

2) The divergence-free component is normal to the
boundary, i.e. �r ⊥ �n = 0.

We call these as the parallel-normal (P-N) boundary con-
ditions, and provide an example demonstrating that in
general the P-N boundary conditions are invalid.

Invalidity of the P-N boundary conditions. Consider
a vector field defined by a source at the origin of R

2.
Such a field is given by �ξ = (x, y). For �ξ, ∇ · �ξ = 2, and
∇ × �ξ = 0. Since �ξ is irrotational, �r = 0. Also, since the
field is purely divergent, �h = 0. Thus, computing the
HHD for �ξ should give �ξ = �d.

The divergence of �d is simply ∇ · �d = ∇ · �ξ = 2.
Combining the divergence theorem [3] and the P-N
boundary conditions leads to,∫

Ω

∇ · �d dA =

∫
∂Ω

�d · �n dS (3)

⇔
∫
Ω

2 dA =

∫
∂Ω

0 dS (4)

⇔ 2

∫
Ω

dA = 0 (5)

Thus, for this example, a P-N style decomposition for
�ξ exists only for a domain with zero area. Essentially,
by the divergence theorem, any P-N decomposition has
zero global divergence and thus does not apply to most
vector fields. More specifically, it can be applied only
to the vector fields with

∫
Ω
∇ · �ξ dA =

∫
∂Ω

�ξ · �n = 0.
Similarly, one can show that for a purely rotational field(
�ξ = (−y, x)

)
, �r ⊥ �n = 0 cannot be maintained. The

combined result is that P-N boundary conditions are not
valid for general vector fields.

4 CONCLUSION

Boundary conditions determine the existence and math-
ematical properties of the HHD. Appropriate boundary
conditions lead to a unique and L2-orthogonal decom-
position while improper boundary conditions can lead
to an ill-posed problem. To avoid unnecessary complica-
tions when extending [5] we would like to caution the
readers to avoid P-N boundary conditions for non-trivial
boundary flow.
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