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Abstract— The placement of tasks in a parallel application
on specific nodes of a supercomputer can significantly impact
performance. Traditionally, this task mapping has focused on re-
ducing the distance between communicating tasks on the physical
network. This minimizes the number of hops that point-to-point
messages travel and thus reduces link sharing between messages
and contention. However, for applications that use collectives over
sub-communicators, this heuristic may not be optimal. Many
collectives can benefit from an increase in bandwidth even at the
cost of an increase in hop count, especially when sending large
messages. For example, placing communicating tasks in a cube
configuration rather than a plane or a line on a torus network
increases the number of possible paths messages might take. This
increases the available bandwidth which can lead to significant
performance gains.

We have developed Rubik, a tool that provides a simple and
intuitive interface to create a wide variety of mappings for
structured communication patterns. Rubik supports a number
of elementary operations such as splits, tilts, or shifts, that can
be combined into a large number of unique patterns. Each
operation can be applied to disjoint groups of processes involved
in collectives to increase the effective bandwidth. We demonstrate
the use of Rubik for improving performance of two parallel codes,
pF3D and Qbox, which use collectives over sub-communicators.

I. INTRODUCTION

The mapping of parallel tasks in an application to the
network topology has traditionally been aimed at reducing
the distance between communicating tasks to minimize link
sharing and congestion [1], [2], [3], [4]. This works well
for applications that have point-to-point communication with
a small number of neighbors for each task and collectives
over global communicators. In these situations, minimizing
the number of hops for point-to-point messages is appropriate
since collectives over global communicators are, by definition,
uninfluenced by the mapping.

The increase in number of nodes and thus network diameters
has forced application developers to revisit the collectives
deployed in their codes and to restrict them wherever possible
to sub-communicators instead of the global communicator. In
such cases, the overall performance can be significantly im-
pacted by how these sub-communicators are placed on the net-
work. However, finding an optimal mapping for such groups of
collectives can be challenging. For example, creating compact
groups reduces the hop count, yet may leave a large number of

hardware links on their boundaries unused, limiting the overall
bandwidth utilization. Further, the actual performance of a
collective is heavily dependent on multiple layers of system
software starting with the MPI implementation to the packet
routing algorithms. Even though topology aware algorithms
have been developed for implementing collectives over torus
and fat-tree networks [5], [6], we are not aware of a systematic
study that deals with mapping applications to improve the
performance of collectives over sub-communicators.

This paper presents a preliminary study of the performance
of collectives, in particular all-to-alls and broadcasts, over sub-
communicators on n-dimensional (nD) torus networks. The
underlying premise is that placing communicators such that
they span multiple dimensions and utilize the wrap-around
torus links can increase the effective bandwidth as well as
provide more message routes which can reduce congestion.
For example, an all-to-all over eight nodes in a straight line
will typically be significantly slower than one over a cube of
2 × 2 × 2 nodes. While existing libraries [3], [4] focus on
minimizing the number of hops to reduce latency, we propose
a new tool called Rubik to maximize bandwidth utilization
through the use of links in as many dimensions as possible.

Optimizing the mapping of collectives can be challenging
as their performance may depend on several factors: the
algorithms used for implementing the collectives in the un-
derlying MPI layer; the protocols used for different message
sizes; and the strategies used for routing packets on the
hardware. Additionally, most non-trivial mappings will result
in a complex interference patterns among the simultaneous
collectives which are difficult to predict.

Exploring the entire set of potential mappings is infeasible
and developing an automatic optimization tool is non-trivial.
Instead, Rubik provides a simple and intuitive interface for
developers to use and create a wide variety of mappings aimed
at utilizing more hardware links while avoiding excessive
latency or congestion. In particular, Rubik provides:

• A simple notation to describe both machine and applica-
tion topologies as nD Cartesian spaces;

• The ability to hierarchically define and manipulate groups
of processes involved in some collective;

• A number of dimension-independent operations such as
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Fig. 1: Performance of all-to-all and broadcast operations with different mappings on Blue Gene/P (Intrepid)

tilt and mod which when applied to groups tend to
increase the number of links utilized by a collective; and

• An intuitive visualization tool for three-dimensional (3D)
machine topologies illustrating the resulting mapping.

We demonstrate the applicability of Rubik using two highly
scalable production applications deployed at Lawrence Liver-
more National Laboratory (LLNL): pF3D, a laser-plasma in-
teraction code and Qbox, a first-principles molecular dynamics
application. We show that using Rubik, we can easily create
hundreds of mappings with few lines of Python code. Further,
we compare the observed network traffic of some of the best
and worst mappings to provide initial insights into the causes
for the differences in performance.

II. INCREASING LINK UTILIZATION AND BANDWIDTH

On nD torus networks such as those on the IBM Blue
Gene machines, sufficiently large messages may be routed
adaptively to minimize hot-spots or congestion on the network.
A careful mapping of communicating tasks to the physical
network can assist the system software and hardware in
achieving this goal. Consider a message sent between two
nodes on an nD Cartesian network. Depending on where these
tasks are located, there are one, two, or more routes that the
message can take. Looking at Fig. 2, we see that if the tasks are
placed on a line, there is a single shortest path route between
them. If we place the tasks on the diagonally opposite corners
of a 2× 2 plane, there exist two shortest paths between them,
and twice the available bandwidth. Also, when one of these
paths is being used by other messages, the other path can be
used to avoid congested links.

1D

2D

3D 4D

Fig. 2: Disjoint (non-overlapping) paths and “spare” links between a pair of
nodes on n-dimensional topologies

Increasing the number of dimensions and placing the nodes
at opposite corners of a hypercube results in more paths that

can be used to route packets of a message. For the 2× 2× 2
box shown in Fig. 2, there are six shortest paths. However,
each of these shares one link with another path. Consequently,
there are only three disjoint paths emerging from the source
node and ending at the destination, but there are three extra
links (shown in black) that can be used to split the traffic after
the first hop. With a 3 × 3 × 3 box (not shown), the number
of disjoint paths stays the same (decided by the number of
outgoing links from the source node) but there exist more extra
links. For a 2 × 2 × 2 × 2 hypercube, there are four disjoint
paths and 16 extra links. In general, increasing the number
of dimensions increases the number of disjoint shortest paths
as well as the number of “spare” links while increasing the
distance between nodes increases the number of “spare” links.

The total number of links for a mesh with d dimensions and
n nodes in each dimension is nd−1(n − 1) × d. The number
of disjoint paths between a source-destination pair at opposite
corners of the mesh is the number of outgoing links, d. The
total number of links used in those d routes is d×d. Hence the
number of spare intermediate links is: (nd−1(n−1)×d)−d2.
This number increases exponentially with the increase in the
number of dimensions. So, as we go to higher dimensional
meshes or tori, we drastically increase the number of available
paths a message can be routed along.

Another way of increasing the number of routes is adding
wrap-around torus links to a mesh which increases the total
number of links by a factor of n/(n− 1) (number of links on
a torus is nd×d). Having extra links that can be used to route
messages increases the available bandwidth and reduces the
chances of network congestion. In this paper, we investigate
mapping strategies that exploit these three different ways of
optimizing the layout of collectives:

• Placing communicating tasks on the corners of a plane/
box or mesh of higher dimension instead of a line.

• Increasing the distance between communicating pairs to
create more spare links

• Using wraparound torus links as additional routes.
In Fig. 1 and 3, we support our hypothesis by comparing

several mappings of two different collective operations on the
Blue Gene/P (BG/P) and Blue Gene/Q (BG/Q) architectures.
We chose MPI Alltoall and MPI Bcast as the two operations
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Fig. 3: Performance of all-to-all and broadcast operations with different mappings on Blue Gene/Q (Veas)

because they are heavily used in the application codes used
later in the paper. Fig. 1 compares the performance of map-
ping these collectives over 16 nodes of a 4,096 node BG/P
allocation (a 8× 16× 32 torus). We can arrange the 16 nodes
in different ways: all 16 nodes in a line (mesh or torus), a
plane of 8× 2 or 4× 4 and a box of 4× 2× 2.

For the all-to-all plot in Fig. 1, doing the collective over
a 16 × 1 torus instead of a mesh improves the performance
by 50% for 1 MB messages. When the all-to-all is done
over a 8 × 2 mesh, we get the same improvement. If we
change the longer dimension of this mesh to a torus, we
get an additional 22% improvement. Having more routes in
a 4 × 4 plane or a 4 × 2 × 2 box also gives the same
performance boost. These results clearly support the strategies
outlined above for improving communication performance.
The broadcast also achieves similar improvements with a
maximum reduction in runtime of 60% for 1 MB messages
with the best mapping (compared to 75% for the all-to-all). It
is important to note that for the broadcast, a 16×1 torus leads
to better improvements than using a plane. Hence, mapping
requires a careful consideration of the communication patterns
one is trying to optimize and an understanding of how they
are implemented in software and the underlying hardware.

Fig. 3 shows similar results for the five-dimensional (5D)
BG/Q network using an all-to-all and broadcast over 8 nodes.
The size of the allocated partition was 1024 nodes (a 4× 4×
4×8×2 torus). The improvements are smaller as compared to
BG/P but still significant - 40% reduction in time for the all-to-
all and 44% for the broadcast using the best mapping for 1 MB
messages. Hence, even on higher dimensional networks that
provide more routes, higher bisection bandwidth, and lower
latencies, a careful mapping may still improve performance.

III. THE RUBIK MAPPING TOOL

We have developed Rubik, a tool that simplifies the process
of creating task mappings for structured applications. Rubik
allows an application developer to specify communicating
groups of processes in a virtual application topology succinctly
and map them onto groups of processors in a physical network
topology. Both the application topology and the network
topology must be Cartesian, but the dimensionality of either

is arbitrary. This allows users to easily map low-dimensional
structures such as planes to higher-dimensional structures like
cubes to increase the number of links used for routing.

Rubik also provides embedding operations that adjust the
way tasks are laid out within groups. These operations are
intended to optimize particular types of communication among
ranks in a group, either by shifting them to increase the number
of available links for communication between processor pairs
(as in Fig. 2), or by moving communicating ranks closer
together on the Cartesian topology to reduce latency. In
conjunction with Rubik’s mapping semantics, these operations
allow users to create a wide variety of task layouts for
structured codes by composing a few fundamental operations,
which we describe in the following sections.

A. Partition trees

The fundamental data structure in Rubik is the partition
tree, a hierarchy of nD Cartesian spaces. We use partition
trees to specify groups of tasks (or processes) in the paral-
lel application and groups of processors (or nodes) on the
network. Nodes of a partition tree represent boxes, where a
box is an nD Cartesian space. Each element in a box is an
object that could be a task or a processor. New boxes are
filled by default with objects numbered by rank (much like
MPI communicators).

Every partition tree starts with a single root box repre-
senting the full nD Cartesian space to be partitioned. We
construct a box from a list of its dimensions, e.g., a 4× 4× 4
3D application domain. From the root, the tree is subdivided
into smaller child boxes representing communication groups
(MPI sub-communicators) in the application. Child boxes in
a partition tree are disjoint, and the union of any node’s
child boxes is its own box. Unlike other tools, which are are
restricted to two or three dimensions, Rubik’s syntax works for
any number of dimensions. An arbitrary number of dimensions
can be specified when a box is constructed.

Fig. 4 shows the Rubik code to construct a partition tree,
with incremental views of the data structure as it is built.
On line 1, we construct a 4 × 4 × 4 domain using the box
command. This creates a one-level tree with a single box of
64 tasks (Fig. 4a). In line 2, we use Rubik’s div command to



1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut
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1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 × 4 × 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creating∏n−1

i=0 di child boxes. The child boxes form a d0×d1×...×dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1

d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 ×D1 × ...×Dn space is equivalent to div with divisors
D0

d0
, D1

d1
, ..., Dn

dn
. Figs. 5a and 5b show the same boxes created

using div and tile.

Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

∏n−1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).

Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping

Partition trees in Rubik are used not only to specify groups
of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping



1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4×4×4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks



in the manner described in Fig. 2. For example, by shifting
hyperplanes normal to X , we add links in the X dimension
that neighbors can use for communication. Successive tilts in
additional dimensions, as shown on the right in Fig. 8, add
links in more dimensions. The higher the dimension of the
network the more independent tilts can be performed and
the more links can be exploited.

Zigzag. The zigzag operation is similar to the tilt operation
in that it shifts hyperplanes along a dimension. However,
rather than shifting each successive plane by an increasing
amount, zigzag only shifts alternating segments by a con-
stant amount. This targets bandwidth in effectively the same
way that tilt does, by adding links along the permuted
dimension. However, zigzag has better latency properties
than tilt since tasks stay closer to their starting point after
a zigzag than they would with tilt. Figs. 7d and 7e show
illustrations of two zigzag operations applied to a 3D box.

Zorder. Z-ordering is a space-filling curve that maps a multi-
dimensional space to a linear curve while partially preserving
multi-dimensional locality. Space-filling curves have been used
heavily in the mapping literature for latency optimizations [7],
[8], [9], [10]. Rubik provides a zorder permutation operation
for this purpose, as well. Like other operations in Rubik,
our zorder operation can scale to an arbitrary number of
dimensions. Rubik dynamically constructs the necessary bit
filters to translate high-dimensional Z codes, and zorder can
be called on any type of box.

1 Z, Y, X = 0, 1, 2
2 net = box([12,4,4])
3 net.div([3,1,1])
4 net[0,0,0].tilt(Z,X,1)
5 net[0,0,0].tilt(X,Y,1)
6 net[1,0,0].zorder()
7 net[2,0,0].zigzag(Z,X,1)
8 net[2,0,0].zigzag(X,Y,1)

Fig. 9: tilt, zorder, and zigzag operations applied to sub-boxes

Hierarchical permutation. Rubik permutations can be ap-
plied to boxes at any level of a partition tree. Fig. 9 shows a
192-task partition tree, net. The tree has three 4×4×4 chil-
dren. Here, we apply a different permutation (tilt, zorder,
or zigzag) to each child. Accessing children is simple:
Rubik’s partitioning operations define a d0×d1× ...×dn sub-
space and each element can be accessed via the corresponding
subscript into this space. In the example, one could call any of
these operations on net, and they would apply to the entire
box instead of a subgroup.

E. Writing map files

Once Rubik has mapped a set of tasks to a network
decomposition, it can write out map files suitable for use on a
number of high performance computing systems. In this paper,
we make use of map files for IBM Blue Gene series machines,
but map files for, e.g., Cray’s XT machines or Fujitsu’s K
supercomputer could be easily added.

F. Dimensionality-independent operations

As described above, all of Rubik’s operations are
dimensionality-independent. They can apply to arbitrary num-
ber of dimensions, and the same operations that are used on a
3D BG/P or Cray XT torus could be used on a 5D BG/Q torus,
or on a 6-dimensional tofu network of the K supercomputer.
Each operation is designed so that it can be applied in a lower-
dimensional space that is easy to visualize, then scaled up in a
regular fashion to higher dimensional spaces. The visualization
tool used to generate the figures in this paper takes the same
Python scripts as input that are used to generate the mappings.
Developers can view their mapping operations as they work,
and this allows them to reason intuitively about the effects of
Rubik mappings in higher dimensions.

Rubik does not discover optimal network mappings auto-
matically, nor is it intended to do so. It allows developers to
leverage a priori knowledge of the application and architecture
and target latency and/or bandwidth optimizations as the case
maybe. It also provides a framework within which application
developers can make reasonable mapping choices to quickly
and intuitively embed their applications in higher-dimensional
Cartesian spaces.

Many topology mapping tools have been developed in prior
work, including ones that optimize for inter-process latency
in structured codes on Cartesian networks [5] and Infiniband
networks [6]. Other mapping tools allow users to change
process mappings globally on 3D Cartesian networks [3],
[4]. To the best of our knowledge, none of these tools scale
to an arbitrary number of dimensions, nor do any of them
allow application developers to describe hierarchical mappings
among groups of processes representing sub-communicators.

IV. MAPPING A LASER-PLASMA INTERACTION CODE

pF3D [11], [12] is a multi-physics code used to study laser
plasma-interactions in experiments conducted at the National
Ignition Facility (NIF) at LLNL. It is used to understand the
measurements of scattered light in NIF experiments and also
to predict the amount of scattering in proposed designs.

A. Communication structure

pF3D operates on a 3D process grid whose Z-direction is
aligned with the laser beam. The simulation has three distinct
phases and hence communication patterns: wave propagation
and coupling; advecting light and solving the hydrodynamic
equations. Wave propagation and coupling involves two-
dimensional (2D) Fast Fourier Transforms (FFTs) in planes
orthogonal to the laser, i.e. the XY -planes. More specifically,
these are solved through one-dimensional line FFTs along the
X and Y directions through MPI Alltoall calls.

The advection phase consists of MPI Send and MPI Recv
calls between consecutive planes in the Z-direction and the
hydrodynamic phase consists of near-neighbor data exchange
in the positive and negative X , Y and Z directions. The latter
happens less frequently than the light cycles (wave propagation
and advection). Given this structure, pF3D’s natural domain
decomposition is to have nz planes which are split further



into nx columns and ny rows resulting in nx × ny × nz sub-
domains. Within each plane, rows and columns are arranged
into sub-communicators for the all-to-all’s discussed above.
For the test problem used in this paper, pF3D uses nx =
16, ny = 8 and nz is calculated according to the number of
processors available. In particular, for weak scaling the mesh
is refined along the Z-direction, adding more XY planes and
thus using more processors.

Table I lists the percentage of time spent in the top three
MPI routines in pF3D when running on 2,048 and 16,384
cores of BG/P. A significant amount of the time is spent in
MPI Send (communication between adjacent XY planes) and
in MPI Alltoall over X and Y sub-communicators. The point-
to-point messages are 320 and 480 KB in size whereas the
all-to-all messages are 20 KB in size. Therefore, if we can
map the XY planes such that we optimize the point-to-point
sends between the planes while simultaneously improving the
collective communication for the X and Y FFTs, we can
expect performance improvements.

2048 cores 16384 cores
MPI call Total % MPI % Total % MPI %

Send 4.90 28.45 23.10 57.21
Alltoall 8.10 46.94 7.30 18.07
Barrier 2.78 16.10 8.13 20.15

TABLE I: Breakdown of the time spent in different MPI calls for pF3D
running on 2,048 and 16,384 cores of Blue Gene/P (for the TXYZ mapping)

B. Baseline performance

To establish a baseline performance, we ran pF3D with the
default mapping on BG/P. The default mapping, referred to as
TXYZ, takes the MPI processes in rank order and assigns them
to cores within a node first (the T dimension), then moving
along the X direction of the torus, then Y , and finally the Z
direction. The times spent in computation and communication
are shown as a stacked bar chart in Fig. 10.
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Fig. 10: Weak scaling performance of pF3D on Blue Gene/P for the default
TXYZ mapping

The trend suggests that as more processors are used, com-
munication takes up an increasing fraction of the total runtime,

culminating in 35% for 65,536 cores. For applications with
near-neighbor communication, the TXYZ mapping typically
represents a decent default as processes that are close in MPI
rank space are generally placed close on the torus network.
Further, since both the application domain as well as the
mapping are XYZ-ordered, while not optimal, it is a scalable
mapping. However, considering the results of Section II and
the large message sizes of pF3D’s point-to-point communica-
tions, a slightly higher latency in exchange for more effective
bandwidth may be beneficial. In the next section, we explore
mappings that aim at further improving the performance.

C. Mapping on 2,048 cores

Based on the understanding of the communication structure
of pF3D, one can use Rubik to generate mappings aimed at
optimizing both its point-to-point and collective communica-
tion. Here, we use mappings for 2048 cores (512 nodes) as
an example to explain the process of using Rubik as well as
to explore why certain mappings perform better than others.
At 2048 cores, the BG/P partition is a 8 × 8 × 8 torus with
four cores per node and the pF3D process grid is 16×8×16.
Following the discussion above, the goal is to place all MPI
processes within a pF3D plane close on the network. The
corresponding Rubik code (below) first tiles the application
domain (line 2) into 16×8 planes and the torus into 8×8×2
slabs (line 5) as shown below. In the rest of the paper, we
refer to this basic mapping as tiled. Subsequently, we tilt the
planes along the X (line 8) and Y (line 9) directions. These
mappings are referred to as tiltX and tiltXY respectively.

1 app = box([16, 8, 16])
2 app.tile([16, 8, 1])
3

4 torus = box([8, 8, 8, 4])
5 torus.tile([8, 8, 2, 1])
6

7 torus.map(app)
8 torus.tilt(Z, X, 1) # tilt XY planes along X
9 torus.tilt(Z, Y, 1) # tilt XY planes along Y

10

11 torus.write_map_file(f)

Fig. 11 shows the reduction in the time spent in the top
four MPI routines using each of the optimized mappings –
XYZT, tile, tiltX and tiltXY. The XYZT mapping reduces
the time spent in MPI Sends significantly because compared
to the TXYZ mapping, there is less contention for links
during message exchanges between pF3D planes. In the TXYZ
mapping, four cores on each node and also nodes with the
same X coordinate contend for Y direction links. This is
avoided in the XYZT mapping by spreading each pF3D plane
to two torus planes and hence using more links (in Z) for the
inter-plane communication. In the tiled mapping, four adjacent
pF3D planes are placed on the four cores of each node of two
adjacent XY -planes of the torus network. As shown in Fig. 11,
this provides a good and scalable mapping which outperforms
the XYZT mapping also. Inter-plane communication is now
confined within a node to the extent possible.
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Fig. 12: Two-dimensional projections of the 3D torus network. Each column displays the network traffic along the three directions, X , Y and Z for five
mappings of pF3D on 512 nodes: TXYZ, XYZT, tile, tiltX, tiltXY
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Fig. 11: Time spent in different MPI calls for five different mappings of a
16× 8× 16 pF3D grid to 512 nodes (2,048 cores) of Blue Gene/P

In the XYZT and tiled mappings, each all-to-all within the
pF3D planes uses only X or Y direction links and some Z
links on the network. To increase the number of potential
routes for the all-to-all sub-communicators, we therefore apply
either one tilt in X (referred to as tiltX) or a tilt in both X
and Y (referred to as tiltXY). Both mappings make links in the
Z direction of the torus available to the all-to-alls. The twice-
tilted tiltXY mapping reduces the time spent in both send-
receives and all-to-alls (by optimizing the intra- and inter-plane
communication). At 2048 cores, the communication is only
10% of the total execution time, hence the overall performance
improvements are not as significant. The iteration time for
the five mappings are 467.76, 429.22, 422.38, 420.580 and
417.095 seconds respectively.

To better understand the impact of mapping and routing on
the performance, we collected network counter data for all
links of the torus for the five mappings described above (see
Fig. 12). We use a novel projection of the 3D network topology

provided by Boxfish, an integrated performance analysis and
visualization tool we have developed [13]. Each image of
Fig. 12 shows all network links along two torus dimensions
aggregated into bundles along the third dimension.

It is easy to see that the first three mappings lead to under-
utilization of the Z links while the X and Y links are heavily
used. Another noticeable pattern is that the first three mappings
lead to uneven distribution of traffic on links in a particular
direction. This is less noticeable for the tiltX mapping even
though there does exist some unevenness in the Z direction.
The tiltXY mapping is able to homogenize the traffic for any
given direction. Even though this mapping seems to now over-
utilize Z links (compared to tiltX) it improves performance.

D. Mapping on 8,192 cores

Rubik facilitates the process of generating mappings for
structured communication patterns. Each mapping can be
generated using a few lines of Python code and they can
be scaled up easily to larger number of processors or higher
dimensions. In the process of writing this paper, we generated
more than two hundred mappings for pF3D using Rubik and
tested all of them on BG/P. Such an extensive exploration
would have been infeasible with mappings created by hand.
Generating efficient mappings by hand can be a significant
effort in terms of the time spent in designing the strategy,
writing a program that creates the mapping and debugging and
verifying that the logic is correct. Also, extending a mapping
for a 3D torus to a 5D torus can be non-trivial. Typically,
application developers will stop after finding the first custom
mapping that is ”good enough” because it is difficult and time-
consuming to generate mappings.

In Fig. 13, we present the results of twenty-five different
mappings that were used on 8,192 cores. The pF3D mesh



# Cores Application Torus Best mapping

2048 16× 8× 16 8× 8× 8× 4 torus.tile([8, 8, 2, 1]) tilt(Z, X, 1) tilt(Z, Y, 1)
4096 16× 8× 32 8× 8× 16× 4 torus.tile([1, 8, 16, 1]) tilt(X, Y, 1) tilt(X, Z, 1)
8192 16× 8× 64 8× 8× 32× 4 torus.tile([8, 8, 2, 1]) tilt(X, Y, 1)

16384 16× 8× 128 8× 16× 32× 4 torus.tile([8, 16, 1, 1])
32768 16× 8× 256 8× 32× 32× 4 torus.tile([2, 8, 8, 1]) tilt(X, Y, 1) tilt(X, Z, 1)
65536 16× 8× 512 16× 32× 32× 4 torus.tile([1, 8, 16, 1]) tilt(X, Y, 1) tilt(X, Z, 1)

TABLE II: Rubik operations corresponding to the best mappings (out of the ones tried) for running pF3D on different core counts
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Fig. 14: Weak scaling performance of pF3D for the two default mappings as well as the three best mappings for each core count.
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Fig. 13: The ease of generating mappings using Rubik enables us to try a lot
of runs guided by our knowledge of the application

at this scale is 16 × 8 × 64 and the network topology is
8×8×32×4. The mappings have been grouped by the different
operations that Rubik supports: tile, mod, tilt, and hierarchical
permutations. Hierarchical permutations refers to the use of
operations on child boxes instead of the entire domain. The
data plotted is the average messaging rate for one iteration of
pF3D (a higher messaging rate is better as it reflects a higher
bandwidth utilization). This plot shows that several Rubik
operations can help achieve a higher bandwidth utilization than
that for the XYZT mapping. Further, the fastest messaging rate
on 8,192 cores is nearly four times higher than the slowest,
with the default mappings somewhere in between these two
extremes. So, a good mapping can improve performance but a
bad mapping can also make it significantly worse. We discuss
the scaling performance of pF3D with different mappings in
the next section.

E. Weak scaling performance

On average we explored twenty-five different mappings for
every core count. Interestingly, in all our tests the mapping that
leads to the best performance is unique for each core count
and does not perform as well at another scale. Table II lists
the operations performed that give the best mapping among
the ones we tried for each core count.

Fig. 14 (left) plots the messaging rates in MB/s achieved
for one iteration of pF3D for the two default and three best
mappings (a higher messaging rate is better). Even though
the messaging rates continually decrease as we run on more
cores, the top mappings are able to significantly improve the
bandwidth utilization in comparison to the default one. This
translates into non-trivial performance increases as shown in
Fig. 14 (right). The default TXYZ and XYZT mappings do
not scale well. Since this is a weak scaling problem, ideally
the bars should be of the same height at different core counts.
The TXYZ mapping loses 89% efficiency going from 2,048
to 65,536 cores. The best mapping loses only 28% parallel
efficiency at scale and is better than the TXYZ mapping by
40% at 65,536 cores.

V. MAPPING A FIRST-PRINCIPLES MD CODE

Qbox [14] is a first-principles molecular dynamics code
used to study the electronic structures of molecular systems
to understand their material properties. It is a computationally
intensive code and strong scaling of molecular systems leads
to significant communication.

A. Communication structure

Qbox uses a 2D process grid for its data distribution and
communication. 3D FFTs are done within each column of the



grid implemented as three 1D FFTs and two transposes. The
other major communication phase is matrix multiplication over
the entire 2D grid that involves calls to ScaLAPACK [15]. Ta-
ble III shows a breakdown of the times spent in different MPI
routines for two systems of 512 and 1728 atoms respectively at
2,048 cores. MPI Alltoallv is a major portion of the MPI time,
especially for the larger system. Also, in contrast to pF3D, a
larger fraction of the communication time in Qbox is spent in
collective operations.

512 atoms 1728 atoms
MPI call Total % MPI % Total % MPI %

Alltoallv 8.85 14.87 27.55 41.12
Recv 19.89 33.43 9.00 13.45
Reduce 1.82 3.05 8.51 12.72
Allreduce 6.04 10.14 6.78 10.12
Send 8.40 14.12 - -

TABLE III: Breakdown of the time spent in different MPI calls for Qbox
running on 2,048 cores of Blue Gene/P (for the TXYZ mapping)

B. Performance improvements

We tried mappings for two molecular systems of 512 and
1728 atoms on 2,048 cores of Blue Gene/P. Code for an
example mapping that interleaves columns in Qbox on the
same torus planes using the mod operation is shown below:

1 app = box([256, 8])
2 app.tile([256, 1])
3

4 torus = box([8, 8, 8, 4])
5 torus.cut([2, 1, 4, 1], [mod, div, div, div])
6

7 torus.map(app)
8 torus.write_map_file(f)

Table IV shows the performance improvements in the over-
all execution time of Qbox using different mappings. Similar
to pF3d, the XYZT mapping improves the performance over
the default. On 2,048 cores, for the smaller system, the best
performance is achieved using a tiled and tilted mapping
(tiltY). We first tile the Qbox 2D grid into process columns and
then map each column to some planes of the torus. We then
tilt the YZ planes along the Y direction. However, the same
mapping performs poorly for the larger system where it is the
interleaved mapping (mod) that gives the best performance.

System TXYZ XYZT tiltY tiltYZ mod

512 atoms 13.01 10.39 7.81 9.63 9.63
1728 atoms 11.73 10.52 14.29 9.89 9.83

TABLE IV: Total execution time for a Qbox run of five iterations (in seconds)
for different mappings

VI. RELATED WORK

The problem of mapping a task graph on to a network
graph has been studied for some time [1]. There are several

algorithms, heuristics and mapping frameworks to map a
communication graph to an interconnect topology graph [2],
[3], [4], [16], [17], [18], [19]. Most of this body of work
has focused on reducing the latency of message exchanges by
bringing communicating tasks closer. On torus networks with
adaptive routing, it can be efficient to place communicating
tasks apart to increase the potential routes between them. As
far as we know, this paper presents the first systematic study
and a tool for mapping sub-communicators to torus networks
with an emphasis on maximizing bandwidth utilization.

Work that comes close to this paper is the development
of topology aware algorithms for implementing collectives in
MPI implementations. Faraj et al. present rectangular algo-
rithms that exploit the cuboidal nature of 3D tori to optimize
broadcasts and all-reduce [5]. Kandalla et al. do a similar study
with scatter and gather collectives on large-scale Infiniband
networks (fat-tree topology) [6]. Solomonik et al. present the
mapping of 2D matrix multiplication and LU factorization to
exploit the existence of rectangular collectives on Blue Gene
machines [20]. In contrast, our paper breaks the regularity
of the default mappings of structured communication patterns
with operations such as tilt and zigzag with a hope of achieving
higher bandwidth.

VII. LESSONS LEARNED

We presented benchmarking results for all-to-all and broad-
cast operations on Blue Gene/P and Blue Gene/Q that suggest
that making more links available to the system software and
hardware to route packets can optimize performance. This
is especially true for large messages where the spare links
and extra bandwidth can be useful in reducing congestion.
Mappings that try to achieve this can lead to longer latencies
and increased link sharing. Hence, we need to consider the
trade-offs between increasing bandwidth utilization and longer
latencies and increased congestion carefully.

The mappings for pF3D and Qbox that we present in the
paper support our initial hypothesis that the following mapping
techniques can improve performance:

• Placing communicating tasks on the corners of a plane/
box or mesh of higher dimension instead of a line.

• Increasing the distance between communicating pairs to
create more spare links

• Using wraparound torus links as additional routes.
Even though topology aware task mapping has been studied

extensively, little attention has been paid to systematically
placing closely-linked groups of tasks. Applications that per-
form collective operations over sub-communicators fall under
this category. We have developed Rubik, a tool that provides
a simple and intuitive interface to create a wide variety
of mappings for structured communication patterns. Rubik
supports a number of elementary operations such as splits,
tilts, or shifts, that can be combined into a large number
of unique patterns. Each mapping can be applied to disjoint
groups of processes involved in collectives to increase the
effective bandwidth.
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