Mesh Quality: A Function of Geometry, Error Estimates or Both?

M. Berzins*

Abstract. The issue of mesh quality for unstructured triangular and tetrahedral meshes is considered. The
theoretical background to finite element methods is used to understand the basis of present-day geometrical mesh
quality indicators. A survey of more recent work in the development of finite element methods reveals work on
anisotropic meshing algorithms and on providing good error estimates that reveal the relationship between the
error and both the mesh and the solution gradients. The realities of solving complex three dimensional problems 1s
that such indicators are presently not available for many problems of interest. A simple tetrahedral mesh quality
measure using both geometrical and solution information will be described. Some of the issues in mesh quality for
unstructured tetrahedral meshes will be illustrated by means of a simple example.
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1 Introduction

The range of problems solved by finite element and finite volume p.d.e. solvers based on triangular and tetrahedral
meshes e.g [7] [46] is rapidly increasing. The original applications problem class for many such solvers was in the
area of solid mechanics and elasticity in particular. These methods are being applied at present to a wide range of
problems in solid and fluid mechanics ranging from linear elasticity to turbulent flows, [24]. This very broad spectrum
of applications naturally raises the issue of whether or not the meshes being used are appropriate for the applications
being considered.

The issue of whether the mesh is appropriate to represent the solution has been investigated almost as long as finite
elements have been used. In order to state the important finite element results that formed a basis for existing
mesh quality measures it is necessary to introduce some notation. Without loss of generality the case of linear finite
elements on triangular or tetrahedral meshes will be considered. Define the error as being the difference between the
linear approximation, i, and the true solution w i.e. enn(z,y) = win(z,y) — u(z,y) . The L? error norm is defined
by ||€lin(7£,y)||L2 where

letin(e m)| 22 = / (etin(z,y))dady | (1)

The H' error norm is defined by ||esin(z,y)||z1  where

llewin(z, )l = /(enn(%,y))2 + (etin,o(2,9))" + (etiny(2,y)) dudy . (2)

The seminorm of the H? space is defined by |u|z where
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Aside from the notion that meshes with regular or smoothly varying element sizes are more aesthetically pleasing, the
starting point for the notion of mesh quality would appear to be the analysis leading to the minimum angle condition
that the smallest angle should be bounded away from zero. This perhaps originated with Zlamal [47] and is quoted
by Strang and Fix [40] together with a statement regarding how ”poorly shaped” triangles may have an effect on the
condition number of the linear algebra problem that must be solved. The correct version of this result came with the
analysis of Babuska and Aziz [5], who showed that the requirement for triangles was that there should be no large
angles. The general results of both Zlamal and Babuska and Aziz are of the form

llewin(z, )70 < T(8)|ul> (4)
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where Zlamal [47] showed that I'(8) = h/sin(fmin) for the minimum angle 6,5, = min(61,62,6s), see Figure 1. In
contrast Babuska and Aziz showed that I'(f) = h/¥(8) where U(8) is a positive continuous and finite function and
for § < v < w, U(#) > ¥(y) where v is a bound on the maximum interior angle of the triangle in Figure 1. This work
was extended, much later, to tetrahedral elements by Krizek [26] in a similar spirit.

The precise way that these results influenced mesh generation code writers is unclear. Early mesh generation papers
are covered by the surveys of Shephard [38] and Thacker [41]. In these surveys there is little explicit reference to how
the theoretical work has been adopted, though Thacker does say that elements should be nearly equilateral otherwise
instability may result. More recent surveys by Bern and Epstein [12] and Nielson [33], do mention the theoretical
results and the monographs of Carey [16] and George and Borouchaki [20] treat the subject in more detail. The
perceived meshing wisdom has thus been that if possible elements should have no small or large angles. In the case
of tetrahedral meshes this has has led to geometric mesh quality indicators as described in Liu and Joe [28]. One
example being Weatherill’s edge quality estimator for tetrahedra of volume V' and edge lengths h;:

@ = s (9] (5)

Such indicators do a good job of identifying geometric imperfections in the mesh -an important task before any
solution is computed on the mesh. The difficulty is that it is unclear that such indicators are valid for every solution
on every mesh. The ideal solution is thus to understand the relationship between the error and the mesh. Recently
there have been many attempts to dynamically modify triangular meshes so as to fit the solution better. Some of
these methods will be described below - most of them lead to stretched meshes for anisotropic solutions. The main
requirement is thus for error estimators that include both solution and geometry information. Such estimators are
still in their infancy especially in 3D but it will be shown that it is possible to use interpolation errors, [13] and
through a simple example on a tetrahedral mesh that the accuracy in the solution can depend critically on the mesh.

2 A Quality Indicator Based upon Finite Element Interpolation Theory

The decision as to whether or not (and how) a mesh should be refined should be based on an error estimate that
reflects not only the interpolation error caused by approximating the solution by a finite element space on a given
mesh but also the discretization error of the numerical method used to approximate the p.d.e. and the choice of norm
used to measure the error. Rippa [36] makes a convincing case based on interpolation errors that long thin triangles
do indeed form part of a good mesh for strongly anisotropic solutions. A good discussion of this topic also occurs in
Nielson [33].

Berzins [13] derives a new mesh quality indicator from the work of Nadler [31] which gives a particularly appropriate
expression for the interpolation error when a quadratic function is approximated by a piecewise linear function on a
triangle. Consider the triangle 7" defined by the vertices v1,v2 and vs as shown in Figure 1. Let h; be the length of
the edge connecting v; and v;+1 where v4 = v1 . Nadler [31] considers the case in which a quadratic function

]T

, (6)
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where H is a constant 222 real matrix, is approximated by a linear function w;in(z,y) , as defined by linear interpo-
lation based on the values of u at the vertices and shows that the error denoted by equation (1) above satisfies

A
/(elin(xa y))2d75 dy = 130 [((d1 +ds + d3)2 +di® 4+ d5 + dg] (7)
T

where A is the area of the triangle and d; = L(vig1 — v;)T H (vig1 — v;) is the edge derivative along the v; and v,
edge. Berzins [12] uses this result as the basis for an indicator that takes into account both the geometry and the

solution behaviour by defining scaled edge derivatives by d; = |di|/dmaz where dmax = maz[|d1],|d2]|,|ds|] . For

notational convenience define i = [d~1, d~2, d~3]T and
id) = (d+do+do)* +di + d5 + &3 (8)
A measure of the anisotropy in the derivative contributions to the error is then provided by

Janiso = {7(4)/12 . (9)



The relationship between ¢uniso and the linear interpolation error is that in the case when the matrix H is positive
definite, i.e. d; > 0, then the indicator ganiso is a scaled form of the interpolation error, [13], in this special case.

A consistent and related but geometry-only based indicator is then defined by:

gm(h) = §(R)/(16 V3 A), where b = [h1, hs, ha]”, (10)

has value 1 for an equilateral triangle and tends to the value infinity as the area of a triangle tends to zero but at
least one of its sides is constant. Bank [7] and Weatherill’s [46] indicators are denoted by g¢» and g., and defined by

11
b 43 A
respectively. Hence, from equations (8) and (9) the connection between these indicators is that

1 V3
gm(h) = 4—Qb + quw 16 (12)

[(RT+h3+103], qu = i [(h1 + k2 + ha)?] (11)

The choice of norm is not often considered but may be critical in deciding what is the best mesh. Given the linear
interpolation error defined by equation (2), Berzins [12] considers the example of Babuska and Aziz [5] in which
triangles of the form of that in Figure 1 are used to interpolate the function z with ¢ horizontal. Berzins [14] shows
that in the L, norm the isosceles triangle is more accurate whereas in the H' norm right triangles are more accurate
and the isosceles triangle is the worst choice as o | 0 in Figure 1. Hence a good mesh in one norm is not a good mesh
in another norm.

The extension to the case of non-quadratic functions may be considered by assuming that the exact solution is locally
quadratic. Bank [7] uses such an approach inside the code PLTMG and calculates estimates of second derivatives.
Adjerid, Babuska and Flaherty [1] use a similar approach based on derivative jumps across edges to estimate the
error. An alternative approach is to use the ideas of Hlavacek et al. [21] to estimate nodal derivatives and hence
second derivatives.

3 Mesh Movement Redistribution in 2/3D

The idea that it is important for the the shape of the elements to reflect local solution behaviour, particularly for
highly directional flow problems, is well-known [15, 9, 27]. One of the significant steps in realising this understanding
was the Moving Finite Element method of Keith Miller, see Baines [6], which continuously moves the mesh for
transient problems. Some of the meshes shown by Baines are highly distorted. A similar approach, but rather
simpler, was derived by Peraire et al. [34], who applied a simple local iterative procedure based on quantities such as
pressure gradients to produce stretched meshes for highly-directional Euler equations flow problems. A key part of
their algorithm is a simple Laplacian smoothing approach that has also been used by many others, e.g. Barth [9, 10].

A slightly different approach still is employed by Tourigny and Baines [42], who investigate the construction of locally
optimal piecewise polynomial fits to data and produce meshes which vary from smooth to skewed, depending on the
solution. The idea is further extended by Tourigny and Hulseman [43], who minimise an energy functional using a
Gauss-Siedel method locally to get similarly skewed meshes.

Beinert and Kroner [11] move edges so that they are aligned with shock waves and also define a Blue directional
refinement approach. For example in the right side of Figure 1 if the edges €71, €75 are parallel and aligned with the
flow direction then the pairs of triangles is replaced by four anisotropic triangles. Although the indicator used to guide
refinement is the gradient of the Mach number rather than an explicit error estimator, the results are nevertheless
impressive.

The relative size of the edge indicators, d; defined by equation(7) in the previous section gives a means of indicating
which edges should be refined to reduce the error. One recent method to take advantage of such local gradients is
the modified Delaunay approach of Borouchaki et al. [15] in which the local gradient information, of the form of d;
values, is used in conjunction with the Delaunay mesh generator to compute highly stretched grids for anisotropic
flows in two space dimensions. The results presented by Borouchaki et al. show that this approach can give good
results on problems with highly directional flows.

Other methods using the gradient quantities d; defined in the previous section are the mesh generation procedure
of Simpson [37] and the mesh modification procedure of Ait-Ali-Yahia et al.[2]. In the latter case the H matrix is
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Figure 1: Babuska and Aziz Example Triangle and Blue Refinement of T'wo Triangles into Four.

modified to be positive definite and edge indicators, defined in the notation used here by d;//Az? + Ay?, are used

to move the mesh. This approach thus scales the edge error component by the edge length. Ait-Ali-Yahia et al. [2]
interpret d; as the edge length in the H norm.

Mesh redistribution in 3D is less common but Freitag and Ollivier-Gooch [19] and Tliescu [23] give interesting algo-
rithms for splitting tetrahedra. In Iliescu’s approach pairs of tetrahedra satisfying convexity and angle conditions
related to the flow direction are split into three tetrahedra so as to be aligned with the flow direction, see Fig-
ure (2). Freitag and Ollivier-Gooch [19] also provide convincing evidence that mesh smoothing can have beneficial
consequences for the rate of convergence of the iterative solver.

A common feature of all the methods listed in this section is that although the mesh is improved in some sense, the
criterion used is only indirectly related to the error.

4 Error estimators with Geometry effects

Recent work in error estimates is starting to reveal the explicit dependence of the error on both solution derivatives
and on the mesh. An important stepping stone in this process was the work of Appel, [3, 4], which proved that one
can benefit from the presence of small and even large angles of the elements. Appel also shows for bilinear elements
that the interpolation and finite element errors coincide. Tsukerman [44, 45] derives a maximal eigenvalue condition
which shows that it is the maximum eigenvalue of the element stiff matrix that characterises the impact of the shape
of the element on the energy norm of the error of the finite element approximation.

Bank and Smith [7], in error analysis for the method used in the PLTMG code shows how the error can be written
using d; and ¢ from Section 2 as a quotient of solution and geometry information:

d? +d3 + &2
/| V €lin(z, y)|de = * (13)
t

This somewhat simpler form than the expressions in equation(7) and [14] comes about because Bank and Smith
consider only the diagonal terms in a matrix to arrive at their approximation. While this error estimator only
applies to steady problems Lang [27] considers transient problems and explicitly includes both solution derivative and
geometry information in the error estimates he derives. For 2D reaction-diffusion p.d.e.s modelling highly-directional
phenomena such as flame propagation, Lang proves the error estimate:

1/2
llewn(z, 9)|[7n < & Zn% (14)

TeTy,

where the local error estimator 93 = C?(7, A, T), D3U and D3U is a computed approximation to |u|s as defined by
equation (3). The constant C(r, A, T") is defined by

1 1
C(r, A T) = (14| + A%)%R*(0.2587(1 + )b + = (1 + |A| + A?)) (15)
T s
and where with reference to Figure 1, A = tan(¢) , h is the longest edge and 7 is the timestep. This estimate thus
precisely describes the effect of both the geometry and the solution on the error and enables decisions regarding
directional refinement to be taken.
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Figure 2: Example Tetrahedron and Iliescu’s Directional Refinement Procedure.

5 Linear Tetrahedral Approximation of a Quadratic Function

Although there are now data-dependent tetrahedralisations, see Nielson [33], there are unfortunately very few error
estimates for tetrahedral meshes that show the explicit dependence of the error on the mesh and the solution. The
natural starting point is perhaps to try and use the interpolation error to assess how appropriate the mesh is for
the computed solution. The simple mesh quality indicator of Berzins [13, 14] is based on linear interpolation error
estimates and is derived by extending Nadler’s [31] approach to tetrahedra by considering the case in which a quadratic
function

2T H z where z = [z,y,2]" (16)

[N

w(z,y,z) =

is approximated by a linear function win (2, y, z) defined by linear interpolation based on the values of « at the vertices
of a tetrahedron 7' defined by the vertices vi, v , v3 and vs4 as shown in Figure 2.

Let h; be the length of the edge connecting v; and v;41 where vs = v1 . With reference to Figure 2 define the vectors
2 9 % & dandd@byv=vi+E va=va+§ vi=vat+iva=v1—8, vi=v2+D, vs=0v3+ 8 Berzins

[13] defines the vector of second directional derivatives along edges by

d' =2 [di,de] = o [27HE, §"Hy, 2'H: &"Ha, o Hb, &'H

].

and shows that the error may written in terms of the six directional derivatives along the edges d; as:

[ SR
[ SR
I
&

V = [(Sdi)* — dids — dods — dade + 2d7 | . (17)

PN
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/ (erin(z,y,2)) de dy dz =
T

It is then possible to define the mesh quality indicator in the same way as in Section 2 in that the error is scaled by
the maximum directional derivative dyqz, the integral is scaled by the volume before taking the square root. In a
similar way to as in Section 2 define

Q(i) = (E(L)2 — d~1d~4 — d~2d~5 — d~3d~6 —|— E(L2 :| where i: [d~1, J2, (ZS, Jz}, J5, J6]T~ (18)

A measure of the anisotropy in the derivative contributions to the error is then provided by Quniso and a related
geometry based indicator by @, where

[ Q(h)]

wlce

Qaniso = Q(i)/gg and Qm(ﬁ) = (19)

<lQ

where C is a scaling factor to ensure that the indicator has value one when h; = A . A comparison between this
geometry indicator, @ (h), with that of Weatherill (2., as defined by equation(5) was done by Berzins [13] who showed
that the values of the two indicators are very similar. The anisotropic interpolation example used by Berzins, [14],
shows that in such circumstances it is important to use indicators such as Qgniso which involve solution information.



Figure 3: Example Mesh of Four Tetrahedra: ABCE,ABED,ACED and BCED

6 Example Laplace’s Equation with Anisotropic Tetrahedra and Finite Element/Volume Schemes

The issue of mesh suitability for a given solution and numerical solver is recognised as a complex one with no easy
answers. There are a variety of views concerning the sensitivity of numerical schemes to distorted meshes. Shephard
[39] states that the stabilized FEM for example, appear to have no real problem with elements with angles of 179
degrees and 1,000,000 to 1 aspect ratios and that tetrahedra with small angles are well-understood to be needed for
boundary layer calculations. In contrast, Millar [29, 30], et al. state that for Laplace’s equation, finite volume schemes
are less sensitive than finite element schemes to sliver-type tetrahedra in meshes. Given the similarity between the
finite volume and element schemes in this case, see [9] the difference may be due to implementation issues such as
those discussed by Putti and Cordes [35].

In order to understand better the dependency between the mesh and the error, the Laplaces equation, V2U = 0, in
three space dimensions of [29] will be used. The mesh of five points consists of a single tetrahedrob sub-divided into
four by the addition of an internal point and is shown in Figure 3. The analytic solution given by

u(z,y,z) = e cos(my/V2)sin(x(x + 0.5)/V2) (20)

0=1[0,0,0", A=[-05,-05,0]", B=[0.5-05,0" C=[0,1,01", D=1[0,0,1]",and E =][0,0,¢]"

where € is a parameter that will be varied to test the sensitivity of the numerical solution to the mesh and in particular
to distorted elements. The values at A, B, C, D are given by the exact solution and denoted by U, U, Uc, Up. The
scheme used to approximate the Laplacian is Barth’s cell-vertex scheme [9, 10]. This gives a challenging situation for
mesh quality indicators as the region associated with each node is composed of parts of all neighbouring tetrahedra.
At point E the Laplacian is approximated by

ViU = Wga(Ua—ug)+Wes(Us —ug) + Wegp(Ua — ug) + Wep(Up — ug) (21)
where ug is the numerical approximation to the exact value Ug and is explicitly defined by the equation
ug = ( WeaUa+WepUp +WecUc + WepUp )/(Wra + Wes + Wree + Web) (22)

In order that the solution satisfies a maximum principle all the weights W.. must be positive. [9, 10]. Barth also
shows how this condition may not be met on a distorted mesh, but Putti and Cordes [35] show how to modify the
method to avoid this and that this also improves the accuracy.

Denote the exact solution of the problem at node E by Ug then the p.d.e. truncation error, T.Error, is defined by
TFError = WEA(UA — UE) =+ WEB(UB — UE) =+ WED(UA — UE) =+ WED(UD — UE) (23)
and the relationship between the truncation error and the error is

ETTOT:UE—UEZ—TETTOT/(WEA +WEB+WEC+WED) (24)

Table 1 (Note this is revised from that in the proceedings of the Roundtable) shows the different mesh quality
indicators and the interpolation error as the value of € changes for two tetrahedra given by the points ABCE and
ACED. The values for the tetrahedra ABED and BCED being similar to those of ACED. With reference to Table
1 Interp is the square of the interpolation error based on the exact solution. Error and T.Error are the error and
truncation error defined by equations (23) and (24) respectively. The results in Table 1 show that the anisotropy
indicator follows ( not surprisingly) the trend of the interpolation error, but that the pointwise discretization error



Table 1: Qaniso , Standard Mesh Quality @, and Error Values

Tet. ABCE Tet. ACED Numerical Error
€ Qaniso | Quw | Interp | Qaniso | @nw | Interp Ug Err T. Err
0.001 0.35 621 3.4e-6 0.15 2.2 1.0e-3 -2.6e-2 0.42 -107.
0.01 0.35 62 3.4e-5 0.15 2.2 1.0e-3 -1.7e-2 0.41 -11.4
0.5 0.38 1.5 1.6e-3 0.17 3.9 6.2e-4 5.2e-1 0.01 -0.65
0.99 0.21 1.1 3.6e-3 0.22 211 2.0e-5 1.07 3.2e-3 -0.07
0.999 0.20 1.1 3.6e-3 0.23 211 2.1e-6 1.08 2.8e-5 -0.06

Table 2: Values of the coefficients Weq, Wep, Wee, Weq

€ Wea, Wep, Wee Wea
0.001 8.0e+1 2.52e-1
0.01 9.0 2.72e-1

0.5 8.3e-1 2.5
0.99 7.5e-1 2.2e42
0.999 7.5e-1 2.4e43

behaves very differently, especially for small values of €. The low values of the anisotropy indicator QQuniso indicate
potential problems. The geometry indicator does a good job of picking up the very large error for small ¢ but also
erroneously identifies a problem with € close to one, when the error is small.

The interesting result is that both mesh quality indicators do not really identify the relationship between the mesh
and the error in the numerical solution. It is the differing size of the truncation error as caused by the method
coefficients that has a dramatic effect on the error. In the case when ¢ = 0.001 the large size of the coefficient W.,
and similarly We.y, We. arises because the face angle between faces such as EBC and ABC is very close to # . Hence
in this case the value Upplay little part in determining wg. In contrast when € is close to one only one coefficient is
large and up is determined almost solely by Up its closest neighbour. The values of these coefficients are shown in
Table 2, the negative values indicating that the mesh is not a good one from the point of view of approximating the
diffusion operator, [9].

7 Conclusions

The overall conclusion is that the only really satisfactory approach would seem to be to have an error estimator based
on both solution and geometry information This would appear to be true for strongly directional fluid flows for which
highly distorted meshes appear to be very effective. One approach to resolving this issue is to have computable error
estimates for each solution component. At present, it is still often the case that such estimates may not be available
or may not be reliable. It is also the case that the availability of such error estimates will always lag behind the
problems being solved by practitioners. Hence the requirement must be to allow the user to supply mesh quality
measures and to choose anisotropic remeshing options. There are, of course, many applications areas in which it
is still rather difficult to even understand what constitutes a good mesh. One such area is turbulent combustion
which may involve the interaction between many chemical species and complex fluid flows. Such problems are like to
provide interesting challenges to the meshing community for some time to come.
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