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Abstract. The issue of mesh quality for unstruc-

tured triangular and tetrahedral meshes is considered. The

theoretical background to finite element methods is used

to understand the basis of present-day geometrical mesh

quality indicators. A survey of more recent research in

the development of finite element methods reveals work on

anisotropic meshing algorithms and on providing good er-

ror estimates that reveal the relationship between the error

and both the mesh and the solution gradients. The reality

of solving complex three dimensional problems is that such

indicators are presently not available for many problems

of interest. A simple tetrahedral mesh quality measure us-

ing both geometrical and solution information is described.

Some of the issues in mesh quality for unstructured tetra-

hedral meshes are illustrated by means of two simple ex-

amples.
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error estimates, mesh generation.

1 Introduction

The range of partial differential equations problems
(p.d.e.s) solved by finite element and finite volume
solvers based on triangular and tetrahedral meshes
e.g [1] [2] is rapidly increasing. The original appli-
cations problem class for many such solvers was in
the area of solid mechanics and elasticity in particu-
lar. These methods are being applied at present to
a wide range of problems in solid and fluid mechan-
ics ranging from linear elasticity to turbulent flows,
[3, 4]. This very broad spectrum of applications nat-
urally raises the issue of whether or not the meshes
being used are appropriate for the applications being
considered. This issue of what is an appropriate mesh
is as old as the finite element method itself, but the
increasingly complex nature of 3D applications may
involve dealing with multicomponent problems with

∗Correspondence and offprint requests to: Dr M.Berzins
Computational PDEs Unit, School of Computer Studies, The
University, Leeds LS2 9JT. Email: martin@scs.leeds.ac.uk

time dependence, turbulence and anisotropy to name
but some of many possible complications.

A relatively simple example which is useful to il-
lustrate the difficulties is the following 3D advection
reaction problem, which is taken from a model of at-
mospheric dispersion from a power station plume - a
concentrated source of NOx emissions, [5]. The photo-
chemical reaction of this NOx with polluted air leads
to the generation of ozone at large distances downwind
from the source. An accurate description of the distri-
bution of pollutant concentrations is needed over large
spatial regions in order to compare with field measure-
ment calculations. The present trend is to use mod-
els incorporating an ever larger number of reactions
and chemical species in the atmospheric chemistry
model. The complex chemical kinetics in the atmo-
spheric model gives rise to abrupt and sudden changes
in the concentration of the chemical species in both
space and time. These changes must be matched by
changes in the spatial mesh and the timesteps if high
resolution is required, [5]. This application is mod-
elled by the atmospheric diffusion equation in three
space dimensions given by:

∂cs

∂t
+

∂ucs

∂x
+

∂vcs

∂y
+

∂wcs

∂z
= D+Rs+Es−κscs, (1)

where cs is the concentration of the s’th compound,
u,v and w, are wind velocities and κs is the sum of
the wet and dry deposition velocities. Es describes the
distribution of emission sources for s’th compound and
Rs is the chemical reaction term which may contain
nonlinear terms in cs. D is the diffusion term set to
zero here. For n chemical species an set of n partial
differential equations (p.d.e’s) is formed where each is
coupled to the others through the nonlinear chemical
reaction terms.

The test case model is based on that used by [5]
and covers a region of 300 x 500 km. The chemi-
cal mechanism contains only 7 species but still repre-
sents the main features of a tropospheric mechanism,
namely the competition of the fast inorganic reactions,
[5], with the chemistry of volatile organic compounds
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Figure 1: Tetrahedral Mesh for Reacting Flow P.D.E.

(VOC’s), which occurs on a much slower time-scale.
The power station is taken to be the only source of
NOx and hence the initial grid will contain more ele-
ments close to this concentrated emission source.

Figure 1 shows the plume developing with the adap-
tive mesh clustered around the developed portion
of the solution. The visualisation was realised by
running the parallel code in conjunction with the
SCIRUN system at the University of Utah, see [6].
The main area of mesh refinement is along the plume
edges close to the chimney. Using the adaptive mesh,
we can clearly see the plume edges and can easily iden-
tify areas of high concentrations. The effects of the
plume on ozone concentrations also provides some in-
teresting results. Close to the plume the concentration
of O3 is much lower than that in the background. Due
to the high NOx concentrations the inorganic chem-
istry is dominant in this region and ozone is consumed.
As the plume travels downwind and the NOx levels
decrease, the plume gradually picks up emissions of
VOC’s and leads to the production of NO2 which in
turn causes levels of ozone to rise above the back-
ground levels at quite large distances downwind from
the source of NOx.

The issue of whether the mesh is appropriate for
this application is somewhat more complex than for
a simple linear problem. Strong local variations in
solution component values make it difficult to assess
the quality of the mesh for each component without
somehow incorporating solution behaviour.

1.1 Background Results

In order to start to understand the issue of mesh qual-
ity it is important to review the important finite el-

ement results that formed a basis for existing mesh
quality measures. In order to state these results it is
necessary to introduce some notation. Without loss
of generality the case of linear finite elements on tri-
angular or tetrahedral meshes will be considered. De-
fine the error as being the difference between the lin-
ear approximation, ulin and the true solution u i.e.
elin(x, y) = ulin(x, y) − u(x, y) . The L2 error norm
is defined by ||elin(x, y)||L2 where

||elin(x, y)||2L2 =

∫

T

(elin(x, y))2dxdy . (2)

The H1 error norm is defined by ||elin(x, y)||H1 where

||elin(x, y)||2H1 =

∫

T

(elin(x, y))2 + (elin,x(x, y))2+

(elin,y(x, y))2dxdy . (3)

The seminorm of the H2 space is defined by |u|2
where

|u|2 =





∑

|δ|=2

2!

δ1!δ2!
||(∂x)δ1(∂y)δ2u||2L2





1/2

. (4)

Aside from the notion that meshes with regular or
smoothly varying element sizes are more aesthetically
pleasing, the starting point for the notion of mesh
quality would appear to be the analysis leading to
the minimum angle condition that the smallest an-
gle should be bounded away from zero. This perhaps
originated with Zlamal [7] and is quoted by Strang
and Fix [8] together with a statement regarding how
poorly shaped triangles may have an effect on the con-
dition number of the linear algebra problem that must
be solved. This result was improved by Babuska and
Aziz [9], who showed that the correct requirement for
triangles was that there should be no large angles.
The general results of both Zlamal and Babuska and
Aziz are of the form

||elin(x, y)||2H1 ≤ Γ(θ)|u|2 (5)

where Zlamal [7] showed that Γ(θ) = h/sin(θmin) for
the minimum angle θmin = min(θ1, θ2, θ3), see Fig-
ure 2. In improving this result Babuska and Aziz
[9] showed that Γ(θ) = h/Ψ(θ) where Ψ(θ) is a pos-
itive continuous and finite function and for θ ≤ γ <
π, Ψ(θ) ≥ Ψ(γ) where γ is a bound on the maximum
interior angle of the triangle in Figure 2. Many other
similar results were proved at around the same time.
The comprehensive Habilitationschrift thesis of Ap-
pel [10] contains a unified theory of interpolation er-
ror estimates and also describes and references these
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Figure 2: Babuska and Aziz Example Triangle.

results. Appel’s work also extends to tetrahedra and
includes a discussion of the work of Krizek [11] and
others which extends the work of Babuska and Aziz
to three dimensions.

Anecdotal evidence confirms that these results in-
fluenced mesh generation code writers. Early mesh
generation papers are covered by the surveys of Shep-
hard [12] and Thacker [13]. In these surveys there
is little explicit reference to how the theoretical work
has been adopted, though Thacker does say that el-
ements should be nearly equilateral otherwise insta-
bility may result. More recent surveys by Bern and
Epstein [14] and Nielson [15], do mention the theo-
retical results and the monographs of Carey [16] and
George and Borouchaki [17] treat the subject in more
detail. The perceived meshing wisdom has thus been
that if possible elements should have no small or large
angles. In the case of tetrahedral meshes this has has
led to geometric mesh quality indicators as described
in Liu and Joe [18], one example being Weatherill’s
edge quality estimator [2] for tetrahedra of volume V
and edge lengths hi:

Qw =
1

8.48528V

[

(Σ
hi

6
)3
]

. (6)

Such indicators do a good job of identifying geometric
imperfections in the mesh -an important task before
any solution is computed on the mesh. The difficulty
is that it is unclear that such indicators are valid for
every solution on every mesh. The ideal solution is
thus to understand the relationship between the er-
ror and the mesh. Recently there have been many
attempts to dynamically modify triangular meshes
so as to fit the solution better. Some of these ap-
proaches will be described below - most of them lead
to stretched meshes for anisotropic solutions. The
main requirement is thus for error estimators that in-
clude both solution and geometry information. Such
estimators are still in their infancy especially in 3D
but it will be shown that it is possible to use inter-
polation errors, [19] and, through simple examples on

tetrahedral meshes, that the accuracy in the solution
can depend critically on the mesh.

2 A Finite Element Theory
Based Quality Indicator

The decision as to whether or not (and how) a mesh
should be refined should be based on an error estimate
that reflects not only the interpolation error caused by
approximating the solution by a finite element space
on a given mesh but also the discretization error of the
numerical method used to approximate the p.d.e. and
the choice of norm used to measure the error. Rippa
[20] makes a convincing case based on interpolation
errors that long thin triangles do indeed form part of a
good mesh for strongly anisotropic solutions. A good
discussion of this topic also occurs in Nielson [15] and
a very precise and complete mathematical analysis in
Appel [10].

Berzins [19] derives a new mesh quality indicator
from the work of Nadler [21] which gives a particu-
larly appropriate expression for the interpolation error
when a quadratic function is approximated by a piece-
wise linear function on a triangle. Consider the trian-
gle T defined by the vertices v1, v2 and v3 as shown in
Figure 2. Let hi be the length of the edge connecting
vi and vi+1 where v4 = v1 . Nadler [21] considers the
case in which a quadratic function

u(x, y) =
1

2
xT H x where x = [x, y]

T
, (7)

where H is a constant 2 × 2 real matrix, which is
also the Hessian matrix, is approximated by a linear
function ulin(x, y) , as defined by linear interpolation
based on the values of u at the vertices and shows that
the error denoted by equation (2) above satisfies

∫

T

(elin(x, y))2dx dy =

A

180

[

((d1 + d2 + d3)
2 + d1

2 + d2
2 + d3

3

]

(8)

where A is the area of the triangle and di = 1

2
(vi+1 −

vi)
T H (vi+1 − vi) is the edge derivative along the

vi and vi+1 edge. Berzins [14] uses this result as the
basis for an indicator that takes into account both
the geometry and the solution behaviour by defin-
ing scaled edge derivatives by d̃i = |di|/dmax where
dmax = max [|d1|, |d2|, |d3|] . For notational conve-
nience define d̃ = [d̃1, d̃2, d̃3]

T and

q̃(d̃) = (d̃1 + d̃2 + d̃3)
2 + d̃2

1 + d̃2
2 + d̃2

3 (9)
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A measure of the anisotropy in the derivative contri-
butions to the error is then provided by

qaniso = q̃(d̃)/12. (10)

The relationship between qaniso and the linear inter-
polation error is that in the case when the matrix H
is positive definite, i.e. di > 0 , then the indicator
qaniso is a scaled form of the interpolation error, [19],
in this special case.

A consistent and related but geometry-only based
indicator is then defined by:

qm(h) = q̃(h)/(16
√

3 A), (11)

where h = [h1, h2, h3]
T , has value 1 for an equilateral

triangle and tends to the value infinity as the area of
a triangle tends to zero but at least one of its sides is
constant. Bank [1] and Weatherill’s [2] indicators are
denoted by qb and qw and defined by

1

qb
=

1

4
√

3 A

[

(h2
1 + h2

2 + h2
3

]

,

qw =
1

3 A

[

(h1 + h2 + h3)
2
]

(12)

respectively, where hi is the edge length from xi+1 to
xi. Hence, from equations (8) and (9) the connection
between these indicators is that

qm(h) =
1

4 qb
+ qw

√
3

16
. (13)

The choice of norm is not often considered but may
be critical in deciding what is the best mesh. Given
the linear interpolation error defined by equation (2),
Berzins [14] considers the example of Babuska and
Aziz [9] in which triangles of the form of that in Fig-
ure 2 are used to interpolate the function x2 with x
horizontal. Furthermore Berzins [23] shows that in
the L2 norm the isosceles triangle is more accurate
whereas in the H1 norm right triangles are more ac-
curate and the isosceles triangle is the worst choice as
α ↓ 0 in Figure 2. Hence a good mesh in one norm is
not necessarily a good mesh in another norm.

The extension to the case of non-quadratic func-
tions may be considered by assuming that the exact
solution is locally quadratic and H is thus a local Hes-
sian matrix. Bank [1] uses such an approach inside
the code PLTMG and calculates estimates of second
derivatives. Adjerid, Babuska and Flaherty [24] use
a similar approach based on derivative jumps across
edges to estimate the error. An alternative approach
is to use the ideas of Hlavacek et al. [25] to estimate
nodal derivatives and hence second derivatives.

Figure 3: Energy minimisation - original and modified
meshes

3 Mesh Movement in 2/3D

The idea that it is important for the the shape of
the elements to reflect local solution behaviour, par-
ticularly for highly directional flow problems, is well-
known [26, 27, 28]. One of the significant steps in
realising this understanding was the Moving Finite El-
ement method of Keith Miller, see Baines [29], which
continuously moves the mesh for transient problems.
Some of the meshes shown by Baines are highly dis-
torted. A similar approach, but rather simpler, was
derived by Peraire et al. [30], who applied a sim-
ple local iterative procedure based on quantities such
as pressure gradients to produce stretched meshes
for highly-directional Euler equations flow problems.
A key part of their algorithm is a simple Laplacian
smoothing approach that has also been used by many
others, e.g. Barth [27, 31].

A slightly different approach still is employed by
Tourigny and Baines [32], who investigate the con-
struction of locally optimal piecewise polynomial fits
to data and produce meshes which vary from smooth
to skewed, depending on the solution. The idea is fur-
ther extended by Tourigny and Hulsemann [33], who
minimise an energy functional using a Gauss-Siedel
method locally to get similarly skewed meshes. This
idea dates back as far as Delfour et al. [34]. Figure
3 shows the original and final meshes for the example
used in Section 6.2 of Delfour et al. in which the p.d.e.
is given by

∂2u

∂x2
+

∂2u

∂y2
+ 56(1 − x − y)6 = 0 (14)

with zero Dirichlet boundary conditions. Rippa and
Schiff, [35], present algorithms for constructing mini-
mum energy triangulations by using local operations
and also present convincing results to show that these
improve the quality of the solution.

Beinert and Kroner [36] move edges so that they are
aligned with shock waves and also define a Blue direc-
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Figure 4: Blue Refinement of Two Triangles into Four.

tional refinement approach. For example in Figure 4
if the edges eT1, eT2 are parallel and aligned with the
flow direction then the pair of triangles is replaced
by four anisotropic triangles. Although the indicator
used to guide refinement is the gradient of the Mach
number rather than an explicit error estimator, the
results are nevertheless impressive.

The relative size of the edge indicators, di defined
by equation(8) in the previous section gives a means of
indicating which edges should be refined to reduce the
error. The approach of generating stretched meshes
has been used for some time for highly-directional
aerospace problems by practitioners such as Mavriplis
[37], although the stretching criteria have usually been
derived from physical quantities rather than the er-
ror directly. One recent method to take advantage
of such local gradients is the modified Delaunay ap-
proach of Borouchaki et al. [26] in which the local
gradient information, of the form of di values, is used
in conjunction with the Delaunay mesh generator to
compute highly stretched grids for anisotropic flows
in two space dimensions. The results presented by
Borouchaki et al. show that this approach can give
good results on problems with highly directional flows.
The monograph of George and Borouchaki, [17], uses
metrics to define stretched meshes and gives several
convincing and realistic examples involving high speed
flows regarding the effectiveness of this approach. In
addition, a good survey of this type of approach, to-
gether with several examples is given by [38].

Other methods using the gradient quantities di de-
fined in the previous section are the mesh generation
procedure of Simpson [39] and the mesh modification
procedure of Ait-Ali-Yahia et al.[40] and Dolejsi [41].
In the latter cases the H matrix is modified to be pos-
itive definite by using the absolute values of the eigen-
values. It is not clear that this approach is necessarily
valid. Consider for example the function

u(x, y) = ax2+2bxy+ay2, where b > a > 0. (15)

The Hessian matrix of this function has eigenvalues

Flow

A

B

C

E

D

Figure 5: Iliescu’s Directional Refinement Procedure.

(a − b) and (a + b) while the Hessian matrix having
eigenvalues (b−a) and (a+b) corresponds to the func-
tion

v(x, y) = bx2 + 2axy + by2. (16)

The difference between these functions is only zero
when x = y or a = b and otherwise varies greatly over
the xy plane, hence casting some doubt on the choice
of using the modified Hessian. Ait-Ali-Yahia et al.[40]
also use edge indicators, defined in the notation used
here by di/

√

∆x2
i + ∆y2

i , to move the mesh points.
This approach thus scales the edge error component
by the edge length. Ait-Ali-Yahia et al. [40] also
interpret di as the edge length in the H norm.

Mesh redistribution in 3D is less common but Fre-
itag and Ollivier-Gooch [42] and Iliescu [44] give in-
teresting algorithms for splitting tetrahedra. In Ili-
escu’s approach pairs of tetrahedra satisfying convex-
ity and angle conditions related to the flow direction
are split into three tetrahedra so as to be aligned with
the flow direction, see Figure (5). Freitag and Ollivier-
Gooch [42] also provide convincing evidence that mesh
smoothing can have beneficial consequences for the
rate of convergence of the iterative solver.

A common feature of all the methods listed in this
section is that although the mesh is improved in some
sense, the criterion used is only indirectly related to
the error.

4 Error Estimators with Ex-

plicit Geometry Dependence

Recent work in error estimates is starting to reveal
the explicit dependence of the error on both solution
derivatives and on the mesh. An important stepping
stone in this process was the work of Appel, [45, 46],
which proved that one can benefit from the presence
of small and even large angles of the elements. Appel
also shows for bilinear elements that the interpolation
and finite element errors coincide. Tsukerman [47, 48]
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derives a maximal eigenvalue condition which shows
that it is the maximum eigenvalue of the element stiff-
ness matrix that characterises the impact of the shape
of the element on the energy norm of the error of the
finite element approximation.

Bank and Smith [1], in error analysis for the method
used in the PLTMG code, show how the error can be
written using di and qb (see Section 2) as a quotient
of solution and geometry information:

∫

t

| ▽ elin(x, y)|dx ≈ d2
1 + d2

2 + d2
3

qb
(17)

This somewhat simpler form than the expressions in
equation(8) and [23] comes about because Bank and
Smith consider only the diagonal terms in a matrix to
arrive at their approximation. While this error esti-
mator only applies to steady problems, Lang [28] con-
siders transient problems and explicitly includes both
solution derivative and geometry information in the
error estimates he derives. For 2D reaction-diffusion
p.d.e.s modelling highly-directional phenomena such
as flame propagation, Lang proves the error estimate:

||elin(x, y)||2H1 ≤ c̃

(

∑

TǫTk

η2
T

)1/2

(18)

where the local error estimator η2
T = C2(τ, λ, T ) D2

T U
and D2

T U is a computed approximation to |u|2 as de-
fined by equation (4). The constant C(τ, λ, T ) is de-
fined by

C(τ, λ, T ) = (1 + |λ| + λ2)2h2[0.2587(1 +
1

τ
)h2

+
1

π2
(1 + |λ| + λ2)] (19)

and where with reference to Figure 2, λ = tan(φ),
h is the longest edge and τ is the timestep. This
estimate thus precisely describes the effect of both
the geometry and the solution on the error and enables
decisions regarding directional refinement to be taken.

The same approach of explicitly defining the rela-
tionship between the geometry and the error is also
investigated by Barnette [49] in the context of finite
difference/volume schemes for simple models of the
Navier-Stokes equations. The thesis of Appel [10] con-
siders anisotropic error estimates for singularly per-
turbed convection-diffusion problems.

5 Linear Tetrahedral Approxi-

mation of Quadratics

Although there are now data-dependent tetrahedrali-
sations, see Nielson [15], there are unfortunately very

v v
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z

2

3

4

y

Figure 6: Example Tetrahedron.

few error estimates for tetrahedral meshes that show
the explicit dependence of the error on the mesh and
the solution. The natural starting point is perhaps
to try and use the interpolation error to assess how
appropriate the mesh is for the computed solution.
The simple mesh quality indicator of Berzins [19, 23]
is based on linear interpolation error estimates and is
derived by extending Nadler’s [21] approach to tetra-
hedra by considering the case in which a quadratic
function

u(x, y, z) =
1

2
xT H x where x = [x, y, z]T (20)

is approximated by a linear function ulin(x, y, z) de-
fined by linear interpolation based on the values of
u at the vertices of a tetrahedron T defined by the
vertices v1, v2 , v3 and v4 as shown in Figure 6.

Let hi be the length of the edge connecting vi and
vi+1 where v5 = v1 . With reference to Figure 6 define
the vectors x̂, ŷ, ẑ, û, v̂ and ŵ by v2 = v1+x̂, v3 =
v2+ŷ, v1 = v3+ẑv4 = v1−v̂, v4 = v2+ŵ, v4 = v3+
û. Berzins [19] defines the vector of second directional
derivatives along edges by

dT =
1

2
[d1, d2, d3, d4, d5, d6 ] =

1

2

[

x̂T Hx̂, ŷT Hŷ, ẑT Hẑ, ûT Hû, v̂T Hv̂, ŵT Hŵ
]

and shows that the error may be written in terms of
the six directional derivatives along the edges di as:
∫

T

(elin(x, y, z))2dx dy dz =
6

4
V

8

7!
[(Σdi)

2

−d1d4 − d2d5 − d3d6 + Σd2
i ]. (21)

It is then possible to define the mesh quality indi-
cator in the same way as in Section 2 in that the error
is scaled by the maximum directional derivative dmax,
the integral is scaled by the volume before taking the
square root. In a similar way to as in Section 2 define

Q̃(d̃) =
[

(Σd̃i)
2 − d̃1d̃4 − d̃2d̃5 − d̃3d̃6 + Σd̃i

2
]

(22)
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Table 1: Interpretation of Qd Values

Edges Active 1 2 3 4 5 6
Q(d) 2 5-6 9-12 19-22 27-28 39

Q(d)/40 1/20 1/8 1/4 1/2 7/10 1

where d̃ = [d̃1, d̃2, d̃3, d̃4, d̃5, d̃6]
T . A measure of the

anisotropy in the derivative contributions to the error
is then provided by Qaniso and a related geometry
based indicator by Qm where

Qaniso = Q̃(d̃)/39 and Qm(h) =
C

V

[

Q̃(h̃)
]

3

2

(23)

where C is a scaling factor to ensure that the indi-
cator has value one when hi = h . A comparison
between this geometry indicator, Qm(h), with that
of Weatherill Qw as defined by equation(5) was done
by Berzins [19] who showed that the values of the two
indicators are very similar. The anisotropic interpola-
tion example used by Berzins, [23], shows that in such
circumstances it is important to use indicators such as
Qaniso which involve solution information. The indi-
cator Qm(h) is related to the mean ratio indicator of
Liu and Joe, [18], as defined by η where

1

η3/2
=

C2

V

[

(Σh2
i )

3/2
]

. (24)

where C2 is a constant, and to the indicator of Weath-
erill, Qw defined in equation (6).

Table 1 shows the values of the indicator if 1 to 6
edges are active in that they have equal values of the
edge gradients di and the remaining edges have zero
values of di. The variation in the values of Qd takes
into account different permutations of zero and non-
zero values of di. The table thus provides a way of
understanding the meaning of the values produced by
the indicator.

6 Laplace’s Equation Examples
with Finite Element/Volume

Tetrahedral Schemes

The issue of mesh suitability for a given solution and
numerical solver is recognised as a complex one with
no easy answers. There are a variety of views concern-
ing the sensitivity of numerical schemes to distorted
meshes. Shephard [50] states that the stabilized FEM
for example, appears to have no real problem with ele-
ments with angles close to 180 degrees and very large
aspect ratios and that tetrahedra with small angles

are well-understood to be needed for boundary layer
calculations. In contrast, Millar [51, 52], et al. state
that for Laplace’s equation, finite volume schemes are
less sensitive than finite element schemes to sliver-type
tetrahedra in meshes. Given the similarity between
the finite volume and element schemes in this case,
see [27], the difference may be due to implementation
issues such as those discussed by Putti and Cordes
[53].

In order to understand better the dependency be-
tween the mesh and the error, the Laplace equation,
∇2U = 0, in three space dimensions of [51] will be
used in two simple examples.

6.1 Example 1

In the first case, the mesh of five points consists of
a single tetrahedron sub-divided into four by the ad-
dition of an internal point and is shown in Figure 7.
The analytic solution is given by

u(x, y, z) = eπzcos(πy/
√

2)sin(π(x + 0.5)/
√

2) (25)

where the points O, A, B, C, D and E are defined by:

O = [0, 0, 0]T , A = −[0.5, 0.5, 0]T , B = [0.5,−0.5, 0]T

C = [0, 1, 0]T , D = [0, 0, 1]T , and E = [0, 0, ǫ]T

where ǫ is a parameter that will be varied to test
the sensitivity of the numerical solution to the mesh
and in particular to distorted elements. The values at
A, B, C, D are given by the exact solution and denoted
by UA, UB, UC , UD. The scheme used to approximate
the Laplacian is Barth’s cell-vertex scheme [27, 31].
This gives a challenging situation for mesh quality in-
dicators as the region associated with each node is
composed of parts of all neighbouring tetrahedra. At
point E the Laplacian is approximated by

∇2U = WEA(UA − uE) + WEB(UB − uE) +

WEC(UC − uE) + WED(UD − uE) (26)

where uE is the numerical approximation to the exact
value UE and is explicitly defined by the equation

uE = (WEAUA + WEBUB + WECUC + WEDUD)/

(WEA + WEB + WEC + WED) (27)

In order that the solution satisfies a maximum prin-
ciple all the weights W∗∗ must be positive, [27, 31].
Barth also shows how this condition may not be met
on a distorted mesh, but Putti and Cordes [53] show
how to modify the method to avoid this and that this
also improves the accuracy. This issue is of critical
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Figure 7: Example Mesh of Four Tetrahedra:
ABCE,ABED,ACED and BCED

importance in reacting flow applications such as that
outlined in Section 1 because the computation of non-
physical negative values will cause the reaction terms
to have unphysical values.

Denote the exact solution of the problem at node
E by UE then the p.d.e. truncation error, TError, is
defined by

TError = WEA(UA − UE) + WEB(UB − UE) +

WEC(UC − UE) + WED(UD − UE) (28)

and the relationship between the truncation error and
the error at point E, Error = UE − uE is

UE − uE = − TError

(WEA + WEB + WEC + WED)
(29)

Table 2 shows the different mesh quality indica-
tors and the interpolation error as the value of ǫ
changes for two tetrahedra given by the points ABCE
and ACED. The values for the tetrahedra ABED and
BCED being similar to those of ACED. With refer-
ence to Table 2, Interp is the square of the interpo-
lation error based on the exact solution. In Table 3,
Err and T.Err are the error and truncation error de-
fined by equations (29) and (28) respectively. The
results in Table 2 show that the anisotropy indicator
follows ( not surprisingly) the trend of the interpola-
tion error, but that the pointwise discretization error
behaves very differently, especially for small values of
ǫ. The low values of the anisotropy indicator Qaniso

indicate potential problems. The geometry indicator
does a good job of picking up the very large error for
small ǫ but also erroneously identifies a problem with
ǫ close to one, when the error is small.

The interesting result is that both mesh quality
indicators do not really identify the relationship be-
tween the mesh and the error in the numerical solu-
tion. Part of the reason for this is that the volume
used by the discretisation method to define the resid-
ual at a node is the sum of parts of the volumes of

Table 2: Qaniso and Standard Mesh Quality Qw

Tet. ABCE Tet. ACED
ǫ Qaniso Qw Interp Qaniso Qnw Interp

0.001 0.35 621 3.4e-6 0.15 2.2 1.0e-3
0.01 0.35 62 3.4e-5 0.15 2.2 1.0e-3
0.5 0.38 1.5 1.6e-3 0.17 3.9 6.2e-4
0.99 0.21 1.1 3.6e-3 0.22 211 2.0e-5
0.999 0.20 1.1 3.6e-3 0.23 211 2.1e-6

Table 3: Solution Error Values

Numerical Error
ǫ UE Err T. Err

0.001 -2.6e-2 0.42 -107.
0.01 -1.7e-2 0.41 -11.4
0.5 5.2e-1 0.01 -0.65
0.99 1.07 3.2e-3 -0.07
0.999 1.08 2.8e-5 -0.06

the individual tetrahedra surrounding that node. It is
the differing size of the truncation error as caused by
the method coefficients that has a dramatic effect on
the error. In the case when ǫ = 0.001 the large value
of the coefficients Wea and Web, Wec arise because the
face angle between faces such as EBC and ABC is very
close to π. Hence in this case the value UD plays little
part in determining uE. In contrast when ǫ is close to
one only one coefficient is large and uE is determined
almost solely by UD its closest neighbour. The val-
ues of the coefficients Web and Wed etc, are shown in
Table 4.

6.2 Example 2

In the second case consider the simple mesh of 6
tetrahedra used by Barth to demonstrate that a lin-
ear tetrahedral finite element solution on a Delaunay
mesh may give a solution with the wrong sign. The
mesh in Figure 8 is parameterised by the position of
node H above G as denoted by Z in the diagram. The

Table 4: Values of the coefficients Wea, Web, Wec, Wed

ǫ Wea, Web, Wec Wed

0.001 8.0e+1 2.52e-1
0.01 9.0 2.72e-1
0.5 8.3e-1 2.5
0.99 7.5e-1 2.2e+2
0.999 7.5e-1 2.4e+3
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Figure 8: Barth’s Example Mesh to demonstrate non-
positivity

coordinates of the mesh points are:

A = [−1, 0, 0]T , B = [−0.5,−d, 0]T , C = [0.5,−d, 0]T

D = [1, 0, 0]T , E = [0.5, d, 0]T , F = [−0.5, d, 0]T

G = [0, 0,−1]T , and H = [0, 0, z − 1]T

where z is the parameter being varied and d =
√

3/2.
As indicated in Figure 8, Barth shows that the mesh
is Delaunay for values of 1 < z < 2 but gives
rise to positive coefficients (see equation(27)) only
if 1 < z < 1.75. In contrast the discretisation of
Putti and Cordes [53] gives rise to positive weights
for 1 < z < 2. Hence the mesh quality in this case
has a dramatic impact on the quality of the solution.
As in Example 1 Laplace’s equation is solved for the
unknown value at H given Dirichlet conditions at all
the other mesh points defined by equation (25). Table
5 shows the errors in the values of u at the point H
for different values of z. EBarth is the error using the
method described by Barth while EPutti is the error
when the method of Putti and Cordes is used. The
table shows that the Putti and Cordes method can
produce a much more accurate result for some Delau-
nay meshes, but also for some non-Delaunay meshes
that the original method of Barth[27] can give better
accuracy sometimes. The anisotropy indicator shows
that the amount of anisotropy present is not great
while the geometric mesh quality indicator does not,
as expected, reflect the error, e.g. for small values of
z.

7 Conclusions

The overall conclusion is that the only really satis-
factory approach would seem to be to use an error
estimator based on both solution and geometry infor-
mation to modify the mesh. This would appear to
be true for strongly directional fluid flows for which
highly distorted meshes appear to be very effective.

Table 5: Error Variation with z variation in Barth’s
Example.

z EBarth EPutti Qaniso Qw

0.25 0.07 0.08 0.42 4.3
0.50 0.19 0.25 0.40 2.1
1.00 0.32 0.41 0.34 1.2
1.25 0.22 0.21 0.30 1.1
1.50 0.35 0.01 0.26 1.1
1.80 0.18 0.12 0.31 1.1
2.00 0.29 0.15 0.40 1.2
2.50 0.51 0.06 0.48 1.5
3.00 0.67 3.30 0.40 1.8

At present, it is still often the case that such estimates
which have a clear dependence on both the solution
and the mesh for each solution component may not
be available or may not be reliable. It is also the case
that the availability of such error estimates will always
lag behind the problems being solved by practitioners.
Hence the mesh generation requirement must be to
allow the user to supply mesh quality measures and
to choose anisotropic remeshing options. There are,
of course, many application areas in which it is still
rather difficult to even understand what constitutes
a good mesh. One such area is turbulent combus-
tion which may involve the interaction between many
chemical species and complex fluid flows. Such prob-
lems are like to provide interesting challenges to the
meshing community for some time to come. All the
evidence suggests that the best meshes in such cases
will depend on both the solution and the shape of the
mesh elements.
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