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SPRINT2D is a set of software tools for solving both steady and unsteady partial differential
equations in two space variables. The software consists of a set of coupled modules for mesh
generation, spatial discretization, time integation, nonlinear equations, linear algebra, spatial
adaptivity and visualization. The software uses unstructured triangular meshes and adaptive local
error control in both space and time. The class of problems solved includes systems of parabolic,
elliptic and hyperbolic equations; in the latter case by use of Riemann solver based methods. This
paper describes the software and shows how the adaptive techniques may be used to increase the
reliability of the solution procedure for a Burgers’ equations problem, an electrostatics problem
from elastohydrodynamic lubrication, and a challenging gas jet problem.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis|: Partial Differential Equa-
tions—method of lines; hyperbolic equations; elliptic equations; G.4 [Mathematics of Comput-
ing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: Adaptivity, Error control, Finite Volume methods

1. INTRODUCTION

Two important trends in the development of numerical software for partial dif-
ferential equations are to make numerical methods more applicable to problems
defined on quite general geometries through the use of unstructured meshes, and
more reliable through the use of adaptive error control e.g. [Adjerid, Flaherty et al.
1992]. The aim of this paper is to describe the SPRINT2D software (Software for
PRoblems IN Time in 2 space Dimensions), to show how it uses adaptive unstruc-
tured meshes and to illustrate the performance of the software on a number of case
studies.

The SPRINT2D package was designed primarily to solve time (in)dependent
convection-diffusion-reaction equations on unstructured triangular meshes by using
a finite volume method in space coupled to the method of lines for time integration.
The starting point for the software was the SPRINT1D code [Berzins et al. 1989]
and its extension to hyperbolic equations for the NAG Library [Pennington and
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Berzins 1994]. The need to solve a wide variety of convection dominated problems
on quite general geometries prompted an investigation into finite volume methods
on triangles [Berzins and Ware 1995]. The SPRINT2D software itself began as part
of a joint project [Ware 1993] with Shell Research Ltd., which also led to the Shell
TRIFIT [Furzeland et al. 1989] and NAESOL [Scales 1993] packages.

SPRINT2D has been applied to a broad class of convection dominated problems
including atmospheric dispersion [Tomlin et al. 1997], combustion [Berzins and
Ware 1996], gas dynamics [Fairlie et al. 1997], shallow water equations [Sleigh et al.
1997], as well as more conventional parabolic and elliptic problems. The modular
nature of the software and its general data structures allows the addition of different
spatial discretisation schemes in order to extend its applicability to an even wider
range of problems.

The software will be described as follows. Section 2 of this paper gives an overview
of SPRINT2D. Section 3 describes the SPRINT2D spatial discretization method
while Section 4 discusses the software engineering approach taken. Section 5 con-
tains a description of the user’s driving program and an outline description of the
main modules, while Section 6 contains three case studies, including an engineer-
ing example from gas jet modelling. Finally Section 7 evaluates the success of the
approach taken and points to future directions.

2. AN OVERVIEW OF THE SPRINT2D SOFTWARE

The SPRINT2D software solves time-dependent partial differential equations by
using the method of lines to discretize in space thus reducing the PDEs to a system
of ODEs (Ordinary Differential Equations) which can then be integrated using
existing software packages. This separation of space and time and the use of ODE
software makes it possible to combine different spatial and temporal discretization
as required.

The primary spatial discretization module in SPRINT2D is a cell-centred finite
volume method. In this scheme the PDEs are integrated over an element and the
divergence theorem applied to replace the area integral for the fluxes by a line
integral around the edge of the element. The flux functions in the PDEs are then
used to calculate the numerical fluxes between adjoining elements. Although the
finite volume method may use any form of spatial elements, the use of triangular
elements allows complex domains to be modelled, and when used in conjunction
with spatial adaptivity provides a powerful modelling environment, e.g. [Berzins
and Ware 1996]. This is particularly true when temporal local error control and
spatial error estimation and control are used.

The PDE system solved by this SPRINT2D module is:

X X
g0, O 00 0 e 0
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where all the functions 3, £f*, Y g*  g¥ and S are allowed to depend on U, x and ¢,
and g*, g¥ depend also on 9U/dz and U /dy. For steady problems 3 is set to zero.
f* and ¥ are the convective fluxes which may give rise to wave-like structures in the
solution U, and g* and g¥ are the diffusive fluxes. The source term S can be used
to add other processes such as reaction terms including chemical kinetics. The three
types of boundary conditions allowed by the package are Dirichlet, Neumann and
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flux conditions in which the solution, normal derivatives and fluxes are specified.
The SPRINT2D software has the structure shown in Figure 1 and is implemented

User’sdriving User’sinitial
program conditions
Spatial mesh SPRINT2D Adapt for initial
generator main driver mesh
User’s convective
X . TRIAD
& diffusive fluxes
Spatial Control for Spatial error
discretisation SPRINT adaptivity estimation
User’s boundary Interpolation
conditions routine
Linear Temporal NAESOL
algebra discretisation BLACK BOX
USER
MONITOR .
Monitor

Fig. 1. Outline of SPRINT2D software

on top of two existing numerical packages: SPRINT and NAESOL - all the codes
being written in C. After applying spatial discretization to time-dependent prob-
lems, the resulting system of ODEs is integrated in time by the SPRINT integrators.
The user specifies the time integration module (Backward Differentiation Formula
or Theta method) and the linear algebra module (sparse, iterative or operator
splitting) to be used. Spatially discretizing steady problems results in a system of
non-linear equations which are solved by the non-linear solver package NAESOL
[Scales 1993]. The TRIAD package [Ware 1993] provides the routines to perform
any spatial adaptivity using h-refinement. The modular nature of the software
allows additional solution modules to be added to the package.

An important part of the specification process for solution of two space dimen-
sional PDEs is the definition of the spatial region over which the problem is to be
solved. Once this is done, this region can then be meshed to provide a suitable
triangulation of the domain for the numerical solution process. SPRINT2D uses
unstructured triangular meshes because they can approximate arbitrary domains
more easily than quadrilateral based meshes.

The initial meshes used in SPRINT2D are created from a user-supplied geom-
etry description using the TRIFIT [Furzeland et al. 1989] or GEOMPACK [Joe
1991] mesh generators. GEOMPACK constructs the mesh by decomposing the
input geometry into simpler polygons and then meshing these polygons. As a
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semi-automatic mesh generator, GEOMPACK requires additional information to
accomplish this. By supplying this information the user is able to control various
aspects of the final mesh such as desired number of triangles, mesh smoothness,
and the way in which the geometry is decomposed into simpler polygons.

The user must write a C driving program for SPRINT2D which specifies the
PDEs and the solution techniques to be used. The first part of the driving program
must include the relevant header files for the SPRINT2D package and modules
that are to be used. Various set-up routines specify the techniques and options
required. Some of these are essential but others are optional, with default values
being used for those parameters and options not set. The driving program also needs
to contain the following information: the name of the file containing a specification
of the physical domain; relative and absolute tolerances for the adaptivity routines;
functions which specify the PDEs and the boundary conditions (depending on the
spatial discretization module used); and initial conditions. These functions have to
follow a fixed interface in returning values to SPRINT2D. The user may also provide
a monitor routine which provides a means of examining the numerical solution at
the end of every timestep.

3. SPATIAL TRIANGULAR MESH DISCRETIZATION METHOD

SPRINT2D and its underlying data structures are designed to support a wide
variety of discretization methods on triangles. For example a finite element dis-
cretization scheme has recently been implemented within the same framework, and
the data structures have the connectivity required for cell-vertex (as opposed to
cell-centred) finite volume schemes. The primary scheme used at present is a cell-
centered finite volume scheme [Berzins and Ware 1995] which uses triangular ele-
ments as the control volumes over which the divergence theorem is applied.

In order to illustrate the scheme, consider the scalar form of the PDE system
defined by equation (1) with appropriate boundary and initial conditions. The
finite volume representation of the solution is formally piecewise constant within
each control volume. To allow the construction of high order schemes however the
centroid of the triangle is defined as the nodal position and the solution value is
associated with that point. In Figure 2 for example, the solution at the centroid
of triangle 7 is U;, and the solutions at the centroids of the triangles surrounding
triangle ¢ are U;, Uy and U;. The coordinates of the mesh point at which a solution
value, say Uy, is defined are denoted by (z;,ys) .

Integration of the scalar form of equation (1) on the ith triangle gives:

ou ofT o 09" . Og B
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where A; is the area of triangle ¢ and €2 is the integration variable defined on A;.
The area integral of the first bracketed term in equation (2) is approximated by a
one point quadrature rule, the quadrature point being the centroid of triangle ::

oU oU;
/Ai (ﬁW—S)dQ:Ai <ﬁi a1 —SZ»).

By using the divergence theorem, the second bracketed term in equation (2) is
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(%.Y,)

® centroid solution values

< midpoints of edges
Fig. 2. Example triangle used in discretization description

replaced by a line integral around the triangular element:

AV
IR T AR

where Cj is the circumference of triangle i, (ng, ny) is the unit outward normal to
the circumference, and s is the integration variable along that circumference. The
line integral along each edge is approximated by using the midpoint quadrature
rule with the numerical flux being evaluated at the midpoint of the edge. Applying
the same treatment to the diffusive fluxes results in the following discrete form of
equation (2):

oU; 1
Pigy =5 = —A—Z_(fﬁA%@ — [HAzor + fAy
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where Az; j = x; — 2 , Ay j = yj — yi, and [}, flyj, g;; and gfj are the fluxes in
the z and y directions evaluated at the midpoint of the triangle edge separating the
triangles associated with U; and Uj.

The convective fluxes f7 and fﬁ are evaluated by using approximate Riemann
solvers (see later) denoted by f&, and f},, respectively. At the midpoint of the

edge between triangles ¢ and j, one-dimensional Riemann problems are solved in the
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Cartesian directions with the left solution value UZ»IJ» being defined as that internal to
triangle ¢, and the right solution value Uj; being defined as that external to triangle
i
_ 1 T { Y
= _I( me(Uzk’ Uzk)AyO (4 ik U)Azo1 +
‘ me( 277 )Ay12 - me( ij Z)Ale +
Sm (Usy, zz)Ale — Jim U, U'I)Al’f%,O -
(9" (Ui, (Uir)o)Ayor — 9% (Ui, (Uik )y )Azo1 +
9°(U5, (Uij)e)Ayr2 — ¢*(Ug. ( w)y)Al’l 2 +
gx(Uu, (Vi)e)Ayz,0 = ¢ (Ugp, (Ui)y)Aza,0 ),
where U5 is a solution at the midpoint of the edge computed using the values on
both sides (see [Berzins and Ware 1995]) and (Uj;), is the derivative with respect
to x at the midpoint.
A standard first-order scheme uses the piecewise constant solution on either side
of the edge as the upwind values, e.g.

r_ ro_

oU;
ﬁiﬁ -5 (3)
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Although this scheme results in numerical solutions with no undershoots or over-
shoots, the amount of numerical diffusion introduced is often not acceptable. For
this reason a second-order variant of this method is implemented [Berzins and Ware
1995]. This method uses limited linear interpolants to construct the left and right
values at each edge mid-point. This scheme is nonlinear even for a linear problem
and so falls into the class of schemes discussed in [Venkatakrishnan 1995].

3.1 Example Advection Diffusion Problem

Consider for example the two-dimensional advection-diffusion equation:

('3_U+ ou b@_U_032U +032U

ot 31‘ Jy Ox? oy
where a and b are positive constants for example. The discrete form (see equa-
tion (3)) is given by

68[? = —Ai( aUzkAyo 1 — bUZ»TkAl‘oyl + (4)
¢ aUl Ayio — bULAzi» +
aUZ,Ayz,o - bUjAzso  —
(c(Uin)eAyor — c(Uir)yAzo1 +
c(Uij)eAyr2 — c(Uij)yAz12 +

c(Ui)eAy20 — c(Us)yAzap )),

assuming that the triangle is aligned to the characteristic directions in the manner
shown in Figure 2, and given that the solution to the Riemann problem is the
product of the upwind value and either a or b.

3.2 Riemann Solvers

For convection dominated PDEs, correct specification of the flux and careful space
discretization are essential to avoid unphysical oscillations in the discrete solution.
A standard approach to ensure a stable solution is to place more emphasis on the
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information coming from the direction of the flow (the upwind values) in discretiz-
ing the advective parts of the PDE. For simple problems, e.g. linear advection,
the choice of upwinding direction is obvious. However, for complex systems the
direction may alternate, or a combination of both left and right values may be
needed for a system of PDEs. As stated in Section 3, in these cases an approximate
(sometimes exact) Riemann solver is used to calculate the advective flux in the
code using a combination of knowledge about the PDE and left and right solution
values, see e.g. [Pennington and Berzins 1994]. As an example consider the viscous
Burgers’ equation given by

ou 0 (w0 (uw_ (0w O%u 5
ot Tz \2) T oy \ 2 AT oy? )’ (5)

(z,y,t) €[0,1] x [0,1] x (0, 1.25].

Defining the convective flux functions by simple averaging of the left and right
values u_1, u_r respectively, results in the following code for the numerical flux
values:

u=(ul+ur)/ 2.0;
f_x = 0.5*u%*u;
f_y 0.5%ux*u;

and may lead to unphysical negative solution values. The negative values vanish
when Roe’s Riemann solver, see e.g. [Pennington and Berzins 1994], is implemented
by replacing the above evaluation of u by:

if (u>0.0) u=ul;
else u = ur;

before the assignment to £_x and £_y. The Riemann solver routine from the driving
program for this problem is given in Appendix B. In the case of the jet problem
described in Section 5.2 below, the fluxes £* and f¥ must be calculated given left
UL = (p, pvr, pvs, E)E and right Ug = (p, pv,, pvs, E)% solution values at the
midpoint of each edge. This calculation is a nontrivial task, see e.g. [Pennington
and Berzins 1994] and [Fairlie et al. 1997].

4. SOFTWARE ENGINEERING AND USER INTERFACE ISSUES

SPRINT2D successfully combines several existing packages into a cohesive environ-
ment for the user. Since the existing packages were not originally intended to form
part of a larger package, a new control layer was inserted between the user and the
underlying packages. The objective of this layer is to aid the user in initialising
the separate packages without removing the possibility of fine control that may be
required in more complex applications. An obvious approach is to explicitly enu-
merate all possible inputs and choices in the interface. However such an interface
may appear daunting and so in SPRINT2D, the user constructs an integration ob-
ject by applying a series of operations that gradually embed more information about
the problem being solved into the object. A novice user may therefore supply only
the minimum information and the package will invisibly complete the specification
with default settings, while an expert user can override some or all of the default
settings by invoking more utility functions.
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The key issue for the interface between the control layer and the packages is
extendability. Rather than contain an explicit list of all possible choices of package
routines, the control layer maintains a virtual function table containing the addresses
of routines with the individual packages to be used. The virtual function table
contains entries for generic routines such as: integrating for a single step; factorising
a Jacobian matrix; backsubstitution solve of a Jacobian matrix; single iteration of
a non-linear solver. The package specific routine names are installed in the virtual
function table by constructor routines for the integration object. It is therefore
possible to standardise the naming conventions of the SPRINT2D interface without
restricting the scope of the interface.

The software is written in strict ANSI C so as to make easier use of pointer
based data structures when writing unstructured mesh generation, discretization
and adaptivity codes. The use of C required the translation of the SPRINT time
integration software [Berzins et al. 1989] from Fortran 77. Prior to any coding
changes, a comprehensive test suite was implemented for the Fortran version of
SPRINT. Each following stage in the code modification was then regression tested
using this test suite. The first stage was to remove any undesirable features of
the Fortran code (e.g. undeclared variables, uninstantiated variables, etc). The
publicly available translation tool f2¢ was then used to perform a bulk translation
of all source files. The source code was then hand edited and f2¢ specific routines
replaced by ANSI C counterparts or new utility routines.

5. USING SPRINT2D AND ITS MODULES

In this section a description of the user’s driving program is given, along with an
overview of the modules available to the user in the areas of mesh generation, time
integration, linear and nonlinear equation solvers, adaptivity and visualization.

5.1 User Program

To use SPRINT2D the user must write a driving program in C. The suggested form
of this program can be seen pictorially in Figure 3. The first stage is to include the
relevant SPRINT2D header files:

#include "S2D.h"
#include "S2D_FVM_finite_volume_discretization.h"
#include '"S2D_BBOX_black_box_soln_strategy.h"

Here the include file S2D.h contains the definitions of the primitive types that
SPRINT2D uses. The other two include files are for the two modules the user
wishes to use. Here the user intends to use a finite volume spatial discretization
module and a simple black box solution strategy.

The spatial discretization will generally require the user to write some routines
to specify the problem. These routines typically include ones for the initial and
boundary conditions, the convective and diffusive fluxes and the source terms. Dif-
ferent spatial discretization modules will require the problem to be specified in a
different form.

The next stage is the main driving routine (usually main()). This will specify
different options about the integration before finally invoking SPRINT2D to carry
out the integration. An integration object is created to contain all the relevant
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driver.c

System include files and SPRINT2D include files.

Routine to specify theintial conditions.

The spatial discretisation

Routine to specify the boundary conditions. module usually will
require several routines

that specify different
aspects of the p.d.e.

Monitor routine to allow the user to observe the
progress of the intergration.

main()

Declare and initialise the integration object.

Integrate!

Fig. 3. Form of the SPRINT2D driving program

details and options that the user specifies. Before the integration object can be
used it must be initialised as follows:

void main( int argc, char *argv[] )
{
S2D_Intgrtn_0bj_Type my_integ ;

S2D_initialise( &my_integ ) ;

where my_integ is the integration object. The act of initialising the integration
object is to fill it with default values chosen by SPRINT2D. The user may then re-
place the defaults using utility routines. Prior to any optional values being specified
certain essential values or options must be specified. The first is specify whether
the integration is time-dependent or steady, e.g.

S2D_time_dependent( &integ_obj, npde, neqmax, t_start,
n_t_out, t_out ) ;
S2D_steady( &integ_obj, npde, negmax ) ;

where npde is number of PDEs, neqmax is the maximum number of unknowns
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allowed, t_start is the initial time, n_t_out is the number of fixed output times
and t_out is an array of output times.

Time-dependent and steady integrations have their own essential options and
values that must be set. The essential options include the choice of modules with
which to perform the integration. Time-dependent integrations must specifiy a
spatial discretization module, temporal discretization module and linear algebra
module. Steady integrations must specify a spatial discretization module and solu-
tion strategy module. These modules will then have essential and optional values
that must/can be set.

Once all the necessary information and any optional information has been at-
tached to the integration object the integration can be started with the function
call:

S2D_integrate( &my_integ ) ;

The SPRINT2D package then performs the required integration. The user can
monitor the integration by supplying a monitor function in the driving program.
This monitor function is called at several stages in the code, e.g. at the end of each
time step and at the user-supplied fixed output times.

5.2 Finite Volume Discretization Module

The finite volume discretization module is based on algorithms described in [Berzins
and Ware 1995]. The solution is represented as a set of piecewise constant triangu-
lar element with the solution values associated with the centroids of the triangles.
The user describes the PDE system using the master equation template for time-
dependent problems given by equation 1. These terms are defined in the following
way:

B(x,t,U) Optional function to specify temporal nature.
f(x,t,U) Essential function: convective fluxes.

g (x, t,U, %U) Essential function: diffusive fluxes.
S (x,t,U) Optional function: source terms.

The required functions are specified in user supplied C functions in the driving
program. The names of these user functions are passed to the discretization routine
by the calls

S2D_FVM_initialise( &my_integ ) ;
S2D_FVM_riemann_solver( &my_integ, electro_rs ) ;
S2D_FVM_diffusive_flux( &my_integ, electro_g ) ;

for example. The routine S2D FVM_initialise instructs SPRINT2D to use the fi-
nite volume spatial discretization module when integrating. The function electro_rs
contains the Riemann solver which specifies the convective fluxes as described in
Section 3.2. Examples of the user-supplied functions are given in the appendix.

5.2.1 Specification of Initial and Boundary Conditions. The user writes two func-
tions specifying the initial and boundary conditions and passes the names of these
to the discretization routine by the calls

S2D_FVM_initial_conditions( &my_integ, electro_ic ) ;
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S2D_FVM_boundary_conditions( &my_integ, electro_bc ) ;

in the driving program. Appendices A and D contain examples of these routines.
The Riemann solver is used to implement flux or derivative boundary conditions.
Reflective boundary conditions are imposed by setting the exterior ‘normal’ velocity
to be the opposite sign to the normal velocity at the boundary from the interior.
The values of all the other variables on the ‘exterior’ being the same as the interior
values. All other ‘outside’ solution values are the same as those on the interior.

5.3 Mesh Generation

The initial creation of the mesh is performed by the user by using either a visual
interface [Berzins et al. 1997] or by creation of a file which specifies a hierarchy of
points, lines and objects in which the higher dimensional objects are composed in
terms of the lower dimensional ones. In this latter case the form of the file originates
from the work of [Furzeland et al. 1989] and may be illustrated by considering the
case of a square domain with vertices at (0,0), (1,0), (1,1) and (0,1). In this case
the domain is described by

DOMAIN square
VERTICES

w N =
O = = O
O O O O
= = O O
O O O O

4
ZERO_D_SUBDOMAINS
101
102
103
104
ONE_D_SUBDOMAINS
201
202
203
204
TWO_D_SUBDOMAINS
301 201 202 203 204
END_OF _DOMAIN

B W N -

101 102
102 103
103 104
104 101

n n n n

The file, say burgers.dmn, containing this description is then passed to a setup
routine for either the TRIFIT [Furzeland et al. 1989] or GEOMPACK [Joe 1991]

mesh generators, e.g.

S2D_trifit_mesh_generator( &my_integ, "burgers.dmn", ilevel ) ;
S2D_geompack_mesh_generator( &my_integ, "burgers.dmn", ntri, ilev ) ;

In these calls there is a mesh level parameter ilev to specify the number of levels
of uniform refinement of the coarse mesh, and a pointer to the integration object
my_integ. The parameter ntri in the call to S2D_geompack_mesh_generator is
the target number of triangles in the coarse mesh.
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5.4 Time Integration

Although in many time-dependent PDE codes a CFL stability condition is used to
control the timestep, the SPRINT2D Theta [Berzins and Furzeland 1992] or Back-
ward Differentiation Formula codes with functional iteration, Newton Krylov or
operator splitting methods allow automatic control of the local error. The interface
to the integration methods is essentially a C implementation of the Fortran rou-
tines described in [Berzins et al. 1989], but with no reverse communication. Level
1 BLAS are also now utilised.
The local error control used is the same as that in SPRINT:

INe()ll < 1, (6)

where the weighted norm means that the ith component of the time local error
le;(ty) in the norm calculation is replaced by

lei (t)
atolt; + rtolt; x u;’

(7)

where atolt and rtolt are the user-supplied absolute and relative time error toler-
ances, set by the user via the call:

S2D_temporal_tol( &my_integ, S2D_Scalar_TOL, &atolt, &rtolt ) ;

in the driving program. In this case the tolerances are scalar values (as specified
by S2D_Scalar_TOL), but for PDE systems the user will usually supply vectors of
length npde in order to apply different tolerances to each PDE variable.

Efficient time integration requires that the spatial and temporal errors are roughly
the same order of magnitude. The need for spatial error estimates unpolluted by
temporal error requires that the spatial error is the larger of the two errors. The
SPRINT2D software also has an option to use the strategy of Berzins, see [Berzins
1995], which controls the local time error so that

e(tn)lle < elles(ta)ll; (8)

where es(t,) is the growth in spatial discretization error over the timestep. In the
case of convection dominated problems, implicit methods with functional iteration
are used, thus automatically imposing a hidden CFL type condition, [Berzins 1995].

5.5 Mesh Adaptivity

The general approach adopted in SPRINT2D is one of static rezoning in which the
mesh is adapted at discrete times, the solution interpolated onto the new new mesh
and integration recommenced either via full restart or a flying restart, [Berzins et al.
1989]. The times at which remeshing takes place are chosen purely on the basis of
growth in the spatial error. The discrete remeshing interface consists of a function
which is called to define the mesh refinement or mesh coarsening level in terms
of the number of mesh levels to be added (or removed) on a particular triangle.
In this way these meshes are refined and coarsened by the TRIAD [Ware 1993]
adaptivity module which uses data structures to enable efficient mesh adaptation.
For the ith PDE component on the jth triangle, a local error estimate e; ;(t) is
calculated from the difference between the solution using a first order method and
that using a second order method, see [Berzins and Ware 1996] for details. For
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time dependent PDEs this estimate shows how the spatial error grows locally over
a time step. A refinement indicator for the jth triangle is defined by an average
scaled error (serr;) measurement over all npde PDEs

npde

o €ij(t)
serry = ZZ_; atOlSZ'/A]' + rtolsi X um" (9)

where atols and rtols are the user-supplied absolute and relative spatial error tol-
erances and where e; ; () is the growth in spatial error over the timestep for the ith
PDE at the jth mesh point. The tolerances are set by the user in a similar manner
to the time integration tolerances, e.g.

S2D_spatial_tol( &my_integ, S2D_Vector_TOL, rtols, atols ) ;

The default action of SPRINT2D is to use spatial adaptivity. The user can switch
off adaptivity by calling a routine from the main driving program or from the mon-
itor routine, which is useful if for example the user wishes to switch off adaptivity
after a certain time. There are also a number of other optional parameters which
can be set via function calls in order to give further control over the adaptivity.

This formulation for the scaled error provides a flexible way to weight the refine-
ment towards the error in any of the PDEs. An integer refinement level indicator
is calculated from this scaled error to give the number of times the triangle should
be refined or derefined.

In the refinement case, all the neighbouring triangles which share an edge with a
refined triangle are refined towards that shared edge. Similarly, all triangles with a
vertex in common with the original triangle are refined towards that vertex. Finally
Bank’s green rule is applied to ensure the mesh is conforming, [Bank 1995]. This is
illustrated in Figure 4 in which a level 2 refinement is applied to the central triangle
where dashed lines represent the bisecting edges of green triangles.

AVAVAVAV
VAVAVAVA

ey
AVA

Fig. 4. Regular and green refinement

De-refinement is a reversal of the refinement process, that is, the four children
created through regular subdivision can be deleted, leaving the parent. Only one
level of de-refinement is allowed at any one remeshing time and, in addition, all
four children must be marked for deletion. De-refinement will not be allowed if
a triangle in the initial mesh, produced by the mesh generator, is specified. The
triangles created as a result of application of the green rule may be of poor quality
and so are removed before any further mesh refinement takes place [Bank 1995].
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5.6 Linear Algebra

The linear algebra options available to the user are those in the SPRINT software
i.e. full, banded and sparse matrices, with the additional option of iterative methods
(preconditioned orthomin) [Jackson and Seward 1993]. Each module has a setup
routine, a formulate matrix or preconditioner routine and a solve routine.

5.7 Steady Problems: calling NAESOL from SPRINT2D

Steady problems are solved inside SPRINT2D either by time marching to steady
state or by using the powerful NAESOL nonlinear equations solver. This solver is
written in C in an object style and provides a fully integrated range of techniques
from which it is possible to build a solution capability tailored to a specific problem
in such a way as to optimize reliability, computational effort and memory usage.
It is constructed from four classes of object. For example, the dynamic environ-
ment class consists of nonlinear algorithms, e.g., robust Newton, truncated Newton
and homotopy algorithms, while the static environment class covers initialization,
termination and error handling for the dynamic objects.

The object oriented structure is particularly powerful in the present context as it
permits transparent integration of class members into a tailored nonlinear equation
solver with sensible defaults and short parameter lists, with additional function
calls to provide extra information as needed.

Locally convergent techniques, e.g. standard Newton-type methods, are limited
by the fact that a root can not always be found from an arbitrary starting point.
Globally convergent homotopy methods can overcome this limitation in many cases.
The concept of a homotopy is concerned with the deformation of one problem into
another by the continuous variation of a single parameter. One problem being
easy to solve and being continuously deformed into the difficult target problem. In
practice, the deformation process must be discretized and a sequence of interme-
diate problems solved. However, a locally convergent method can be successfully
applied at each step provided the changes are sufficiently small. In this continu-
ation [Allgower and Georg 1990] approach, solving a series of locally convergent
problems provides a route to global convergence. The algorithms in NAESOL are
more sophisticated than simple continuation techniques, by providing implicit step
length adjustment and dealing with limit points and bifurcations. The continuation
parameter can be artificial, where only the final value corresponds to a problem of
interest, or it can occur in the problem itself. In the latter case, the continuous
change in behaviour of the system of equations with respect to this parameter may
be of interest.

5.7.1 Using NAESOL in SPRINT2D. The simplest level of NAESOL use is the
black box level, in which the user creates the required objects, defines an initial
estimate of the root, runs the solver, and finally destroys the objects. In this case
the initialisation call is simply

S2D_BBOX_initialise( &my_integ, -1.0 ) ;

where -1.0 instructs it to solve to complete accuracy.
Sometimes more control is needed over what happens at each major iteration of
the nonlinear solver, such as in SPRINT2D, where, for example, it is not necessary
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to refresh the Jacobian each time as is done in the black box approach. To achieve
this, running the solver is broken down into setting up the static environment,
initializing the dynamic environment and looping over the nonlinear iterations by
carrying out one step of the main nonlinear algorithm at a time. NAESOL also
provides an interface at an even lower level, the glass box level, not currently used

in SPRINT2D.

5.8 Visualization and Interpolation

The driving program also allows the user to extract information about the nu-
merical solution each time it changes or is updated. This is achieved by the user
providing a monitor routine which SPRINT2D calls at regular intervals with a large
amount of solution information. For example, each triangle has a solution value,
a spatial error value and, for time-dependent problems, a temporal error value.
The code can also provide a large quantity of spatial information about the un-
structured mesh such as areas of triangles, lengths of edges, unit normals to edges
etc. This information is used by the visualization package which complements the
SPRINT2D solver. This visualization package is written in IRIS GL and runs on
a local host whilst SPRINT2D generally runs on a computationally intensive plat-
form elsewhere. Solution frames are sent across the network to the visualization
package within which the user can interrogate the solution whilst the next frame
is being calculated. The visualization package displays the solution values or error
estimates for each triangle in the spatial mesh. The visualization package is not
used to steer the calculation directly, but has proved to be invaluable for users
learning how to apply adaptivity to their applications.

In displaying the numerical solution values for convection-dominated problems
great care must be taken to avoid introducing physically unreal values not already
present in the numerical solution. Numerical PDE solvers take great care to pre-
serve, say, the positivity of the solution. For example physical values of density
should always be positive. The solution to convection-dominated PDE problems
may have shocks and discontinuities present. However, standard interpolation tech-
niques may lead to numerical undershoot and overshoot at discontinuities, which
can be misleading. A triangular based interpolant is used, see [Pratt and Berzins
1996], which achieves the desired properties by bounding the values it produces to
be between the maximum and minimum values used to define it. This interpolant
provides a more reliable and natural way for the user to view the solution.

6. CASE STUDIES

This section will demonstrate the use of the tools by three case studies of increasing
complexity.

6.1 Viscous Burgers' Equation

The adaptive solution techniques used by the code may be illustrated by considering
the PDE defined by equation 5 with an exact solution of

u(e,y,t) = (1+exp((e+y—1)/p)"".

The value of p is chosen to be 0.0001 so that the partial differential equation is
convection-dominated, and the boundary and initial conditions are given by the
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exact solution. The Riemann solver used was the Roe solver for the inviscid Burgers’
equation outlined in Section 3.2, and in code form in Appendix B. The domain file is
given in Section 5.3. The code for this problem with four levels of mesh refinement
and a maximum of 10° triangles is given in Appendix A. Figure 5 shows the mesh
and the solution at ¢ = 0.65. Further solutions are shown in [Berzins and Ware

1994].

Fig. 5. Mesh and solution for the Burgers’ problem

6.2 Electrostatic Elliptic Problem

Recent work on the mathematical modelling of elastohydrodynamically (EHD) lu-
bricated line contacts e.g.[Nurgat et al. 1997] has enabled the routine computation
of precise contact shapes over a wide range of operating parameters. SPRINT2D
has been used to solve for the electrical potential field under an applied potential
difference in such a contact shape arising from elastic deformation. This has en-
abled accurate computations of the energy density field (the squared gradient of the
electrical potential), the integral of which over the entire contact gives the electrical
capacitance.

Electrical capacitance techniques have been used for many years to measure oil
film thicknesses in heavily loaded contacts. However, it has always been neces-
sary to make simplifying assumptions about the geometry of the contact and about
the relative contribution of different parts of the contact to the capacitance. The
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use of unstructured mesh techniques has made it possible to compute the capaci-
tance of any EHD line contact accurately using the correct geometry, and, equally
importantly, to evaluate the accuracy of various simplifying assumptions.

The PDE is given by Laplace’s equation with Dirichlet boundary conditions on
the domain defined by the 35 points in Appendix C. The edge specifications have
been omitted for brevity, but are simply defined as edge i connecting points 7 to
t + 1 except that edge 35 connects points 35 and 1. Edges 1 to 32 are named
2001 to 2032 respectively. Edges 33, 34 and 35 are the right-hand side, bottom
and left-hand side of the domain and are named 2997, 2998 and 2999 respectively.
The computational domain is then the interior of this region, shown in Figure 6.
The boundary condition on edge 2997 is U(x,y) = y/.49537, on edge 2998 it is
U(z,y) = 0.0 and on edge 2999 it is U(x,y) = y/1.5880. On all other edges
U = 1.0. The initial estimate is that U = 0 in the interior of the domain. The code
for this is shown in Appendix D.
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Fig. 6. Typical mesh for electrostatics problem

Figure 6 shows the GEOMPACK mesh used, given a target of 2000 triangles,
and Figure 7 shows a contour plot of the energy density (the squared gradient of
the electrical potential) on this fixed domain.

Using the SPRINT2D solutions, it has been possible to establish that the accu-
racy of a certain simplified model is such that it can be used for most capacitance
modelling of EHD contacts.

6.3 Jet Modelling Problem

The 2D time dependent Euler equations in axial symmetry are used to model the
gas flow resulting from the rupture of a high pressure gas pipeline containing gas
at a higher pressure than the surrounding ambient air medium. The resulting flow
consists of a rapid expansion of the pipeline gas into the surrounding medium in
the form of a compressible jet. The flow is multi-phase but for ease of exposition
an expanding air jet into air is considered. The jet is typically underezpanded, that
is the initial jet pressure at inflow is greater than the ambient pressure.
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Fig. 7. Contour plot of the energy density for the electrostatics problem

It can be shown [Falle 1991] that the initial time dependent structure of the jet
is approximately self-similar in time, and involves a complex structure of shocks,
contact surfaces and vortices. In order to produce high quality solutions it is there-
fore necessary to employ shock capturing upwind schemes. The steady solution is
obtained by time-stepping to a steady state. Although the time dependent Euler
equations are of hyperbolic character, the time independent are of mixed ellip-
tic/hyperbolic type depending on whether the flow is locally supersonic or subsonic
respectively. This has important consequences for the boundary conditions of the
problem, as along the jet outflow boundary a typical steady jet will have both
subsonic and supersonic regions.

The 2D Euler equations formulated in cylindrical polar coordinates have the form

[Falle 1991]:
0U | 106E) | 06 _
ot r Or 0z

where r and z represent the radial and axial coordinates respectively, and

S, (10)

p pUr pU; 0
2
| pvr | vt | pvevs _ | p/r
U= E= P e E s= T ay
E 'UT(E +P) Uz(E‘Fp) 0

The source term, S, consists only of a single pressure term, this being associated
with the non-conservation of the radial momentum. All the other quantities in U
are conserved. The energy E is defined by:

1
B = Zp(o* +0.%) + pe, (12)

where the specific internal energy: e:e(p,p):(vf;l)p.
The numerical flux is calculated using a Riemann solver based on the first order

Godunov scheme available for the Euler equations. When the solution is sufficiently
close to an initial state linear expansions are used. Note that the scheme is no
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longer conservative as the numerical flux for each element edge is being multiplied
by the ratio r;/r., where r; and r. are the radial coordinates of the edge midpoint
and the cell centroid respectively. The r. value will be different for each of the
two elements sharing an edge, so when calculating the numerical flux at an edge
midpoint, different weights are applied to the Euler flux in order to get the numerical
flux for each element. Inside SPRINT2D this is implemented through an eztended
Riemann solver interface where the user can return separate fluxes for the two
elements involved in the calculation.

6.3.1 Numerical Initial conditions. The layout of the domain can be seen in Fig-
ure 8. The region upstream of the nozzle is the high pressure reservoir. Initially
the pressure in this region is set to a given uniform high pressure. The density
is set to be equal to this pressure to give the same temperature in the reservoir
as in the ambient region. In addition the gas in the reservoir is assumed to be at
rest. Downstream of the nozzle the ambient conditions occupy most of the domain
initially. The exception is a region along the axis, of width equal to the nozzle
width. This is set to have pressure and density equal to the reservoir to speed up
the convergence to the steady state. Elsewhere in the computational domain the
flow conditions are set equal to the ambient pressure and density values, with zero
axial and radial velocity. The initial values of the system variables are given in
Section 6.4.
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Fig. 8. Typical fixed mesh and boundary types for the jet problem. OB indicates Outflow
Boundary, SW indicates Solid Wall, AB indicates Axial (reflective) Boundary and FVB indicates
Fixed Variable Boundary.

6.3.2 Numerical Boundary conditions. The choice of the numerical boundary
conditions for this problem represents the major source of difficulty in the solution
to the steady jet problem. SPRINT2D requires the user to specify in the user
routine the type of each boundary and associated data specific to that type, as
described in Section 5.2.1. The boundary types in use in the jet problem (see
Figure 8) are treated as follows :
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The solid wall boundary (SW) is equivalent to a reflective boundary (AB)
in non-viscous flow. The boundaries are set to be of Dirichlet type and a wall func-
tion is used to calculate mirror image ‘exterior’ values as described in Section 5.2.1.
These values are then used in the Riemann problem.

The fixed variable boundaries (FVB) are those where negligible flow across
the boundary is expected. The boundaries are set to be of Dirichlet type and the
returned variable values are fixed at the initial values inside the domain, adjacent
to the boundary.

The outflow boundary (OB) is the most difficult to model, as it must deal
with both subsonic and supersonic outflows at the same time. This condition is
implemented by setting the boundary to have a Flux condition. A function is then
written to supply the fluxes across the boundary. The equations solved at the
boundary are the same as the governing equations with the only difference being
in the variables used to calculate the fluxes. These variables are calculated using a
complex modified Riemann solver, described in detail in [Fairlie et al. 1997].

6.4 Description of Cases

Numerical results will be shown for two flow regimes: (1) the mildly underezpanded
jet, and (2) the highly underezpanded jet. The mildly underexpanded jet produces
a repeating shock cell structure while the highly underexpanded jet produces a
single Mach disc with a long downstream barrel and core. Table 1 shows the initial
pressure and density values in the reservoir and ambient regions for both cases.
The length (L) and radius (R) of the domain downstream of the nozzle are also
shown in terms of the nozzle diameter, D.

Case FPres Pres Pamp Pamb L R
1 3.5 3.5 1.0 1.0 14D | 5D
2 31.0 31.0 1.0 1.0 20D | 5D

Table 1. Initial values for the jet problem cases

Timestepping is controlled via absolute and relative time tolerances, both being

107>, Initially the timestep is set to be 10~7 and has a subsequent maximum value
of 2.6 x 107*.

6.5 Meshing

The structures of the jets are well-known and regions which require heavier meshing
can thus be predicted quite accurately. These regions are the edge of the jet, around
the shock structure and the centre of the jet (where one-dimensional line plots are
taken). For narrow jets this means that the majority of the jet is heavily meshed.
Although initial experiments used remeshing and identified the regions where fine
meshing was needed, for production runs a fixed irregular mesh such as that shown
in Figure 8 was used.

This fixed mesh is obtained by coarsely meshing the domain then adding extra
refinement. The initial mesh is generated using the GEOMPACK mesh generator
with additional refinement points added downstream of the nozzle in rows parallel
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to the r = 0 axis. Each row is refined to level 3 except for the two rows furthest
from the axis which are refined to level 2. This is done to ensure a smoothly varying
mesh. The number of initial cells, initial level of refinement and the details of the
additional refinement points are contained in Table 2.

Case 1 2
Initial no. of cells 180 310
Initial refinement level 1 1
Addt. points in a row 140 200
No. of rows 8 11
No. of refinement points | 1120 | 2200
Final no. of cells 3476 | 7182

Table 2. Mesh values for the jet problem

6.6 Obtaining Steady Solutions

Although time marching to a steady state is often used in CFD, convergence prob-
lems can be encountered with nonlinear schemes of this type [Venkatakrishnan
1995]. In this case such problems manifested themselves in the strong jet model in
the form of waves travelled repeatedly across the domain, preventing convergence.
After much investigation it was found that the waves occurred whenever the edge
of the jet was too finely meshed and oscillations near the edge of the jet were un-
able to dissipate. To solve the problem a small amount of viscosity was added by
including the Navier-Stokes diffusive terms in the PDE defined by equation (10).

6.7 Numerical Results

"Casel" —
"Case2" 4

density

-5 0 5 10 15 20
z (Nozzle diameters)

Fig. 9. Density along the line r = 0.005 for the jet problem
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Figure 9 shows density plots for the two cases along the r = 0.005 line. It can be
seen that increasing the strength of the jet results in a number of trends. Firstly the
distance to the first shock downstream of the nozzle increases with jet strength, and
the value of the minimum density which occurs at this point decreases. As expected,
the wavelength downstream of this shock increases with jet strength, but the rate
of decrease of their amplitudes decreases. A feature which may seem unexpected is
the amplitude of the oscillations downstream of the first shock. These are small for
Case 1 but are as small in Case 2, despite the large Mach disc jump in the second
case. This can be explained by the presence of this Mach disc. Only Case 2 is strong
enough to produce one and hence it results in a barrel shock. The oscillations are
largely contained within this with only small perturbations occurring in the core of
the jet; the shock cells which are prominent in the first case no longer lying along
the centre of the jet.

There are two further features to be noted from Figure 9. In Case 2 the first
oscillation after the Mach disc is not a symmetric wave, it contains some structure.
Secondly the effect of the downstream boundary on both the plots can be seen to
be so small as to be negligible.

Figures 10 and 11 show the steady jets in 2-D axial velocity contour plot form.
The contours do not include the whole density range as the high reservoir values
would have the effect of masking the detail downstream of the nozzle. In Figure 10
only a few shock cells exist and these quickly decrease in strength leaving the jet
to simply consist of a core which is slowly narrowing and a boundary which is
slowly expanding. Figure 11 displays the typical behaviour expected in a strong
jet. A Mach disc exists and there is a barrel type region between the core and
the jet boundary. The shock cells are now contained in this region with only small
disturbances affecting the jet core. This shows why, in Figure 9 the amplitude of
the waves along the centreline in this case are so small. In Figure 11 a small area
of recirculation can be seen just downstream of the Mach disc.

Fig. 10. Axial velocity contour plot for the jet problem, case 1

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

The main lesson from the construction of the SPRINT2D software is that it is pos-
sible to write a general package for the efficient and reliable solution of a broad class
of convection dominated physical problems using adaptive methods in space and
time. The case studies in this paper and work on shallow water equations [Sleigh
et al. 1997], atmospheric dispersion [Tomlin et al. 1997] and combustion problems
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Fig. 11. Axial velocity contour plot for the jet problem, case 2

[Berzins and Ware 1996] have provided convincing evidence of this. The modularity
of the software makes it possible to add efficient components for particularly im-
portant and/or difficult problems; one example of this being the operator splitting
iterative scheme described in [Berzins and Ware 1996].

There are a number of important areas for future developments. New spatial
discretization methods and time integration methods are being developed. With
regard to the spatial adaptivity, the interface has been seen by advanced users
as too automatic, in that they need to experiment with different forms of error
control strategies when developing new applications. Examples of such strategies
are remeshing only after a fixed number of timesteps, and completely user-defined
remeshing.

A key development is the automation of the use of SPRINT2D, and the recent
construction of a problem solving environment (PSE) [Berzins et al. 1997] has par-
tially achieved this. This PSE consists of a number of tools which ease the problem
specification phase. A Visual Domain Specification (VDS) tool aids the key task
of specifying the initial domain prior to meshing, and a Visual Problem Specifica-
tion (VPS) tool creates a suitable driving program for the numerical software via a
preprocessing step and so helps to avoid the need for explicit programming. Users
are generally enthusiastic about the VDS and VPS tools, particularly about the
easy generation of working code. The short-term benefit of this however must be
balanced against the many months of effort sometimes spent on difficult problems,
such as the jet problem, experimenting with different meshes; tolerances, Riemann
solvers and initial conditions.
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APPENDIX
A. DRIVER PROGRAM FOR BURGERS EQUATION PROBLEM

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

/* Normal include files for SPRINT2D. */

#include "S2D.h"

#include "S2D_FVM_finite_volume_discretisation.h"
#include "S2D_STHMID_theta_temporal_discretisation.h"
#include "S2D_SPWATSIT_sparse_iterative_solver.h"

/* Extra SPRINT2D include files to access the solution. */
#include "S2D_mesh_data_objects.h"

#include "S2D_FVM_mesh_data_objects.h"

/* Type to store problem data in. */

struct my_struct_st { double p ; } ;

typedef struct my_struct_st My_Struct_Type ;

void burgers_u( double x, double y, double t, void *users_data,
double *u )
{ /* Exact solution. */
My_Struct_Type #*my_struct = (My_Struct_Type *) users_data ;
double B, p ; /* Factor inside exponential. */
P = my_struct->p ;
B=(x+y-1t)/p;
if (B > 300.0) { u[0] = 0.0 ;}
else { ul0] = 1.0 / (1.0 + exp(B)) ;%

void burgers_ic( TRIAD _Triangle *tri, int npde, double x, double y,
double t, int sub_name, void *users_data, double *u )
{ /* Initial conditions. */
burgers_u( x, y, t, users_data, u ) ;

void burgers_bc( TRIAD_Line *line, int npde, double x,
double y, double time, int edge_name, int sub_name,
double norm_x, double norm_y, double *u,
void *users_data, S2D_FVM_BC_Type *type, double *ub,
double *dubdn, double *fb )
{ /# Boundary conditions. */
typel[0] = S2D_FVM_Dirichlet ;
if (norm_x + norm_y > 0.0) { ub[0] = ul0] ;
} else { burgers_u( x, y, time, users_data, ub ) ; }

void burgers_g( TRIAD_Line *line, int npde, double x, double y,
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double t, int sub_name, double norm_x, double norm_y,
double *u, double *dudx, double *dudy, void *users_data,
double *g_x, double *g_y )
{ /* Diffusion function. */

My_Struct_Type #*my_struct = (My_Struct_Type *) users_data ;

double P

P = my_struct->p ;

g_x[0] = p * dudx[0] ;

g_y[0] = p * dudy[o0] ;

void main( int argc, char *argv[] )
{ /* Driving program. */
S2D_Intgrtn_0bj_Type my_integ ;

My_Struct_Type my_struct ;
int n_t_out = 20 ;
double t_out[] = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35,

0.40, 0.45, 0.50, 0.55, 0.60, 0.85, 0.70,
0.75, 0.80, 0.85, 0.90, 0.95, 1.00 } ;

int ilevel, ntrimax ;

double atol, rtol, p ;

double temp_atol = 1.0e-5, temp_rtol = 0.0 ;
ilevel = 4; /* level of initial mesh refinement */
ntrimax = 10000; /* max number of triangles */

atol = 2.5e-2; /* absolute and relative space tolerances */
rtol = 0.0 ;

P = 1.0e-4; /* diffusion parameter passed as users data */

my_struct.p = p ;

S2D_initialise( &my_integ ) ;

S2D_time_dependent( &my_integ, 1, ntrimax, 0.0, n_t_out, t_out ) ;

S2D_temporal_tol( &my_integ, S2D_Scalar_TOL, &temp_atol,

&temp_rtol ) ;

S2D_spatial_tol( &my_integ, S2D_Scalar_TOL, &atol, &rtol ) ;

/* Use finite vol scheme -— pass across names of routines. */

S2D_FVM_initialise( &my_integ ) ;

S2D_FVM_initial_conditions( &my_integ, burgers_ic ) ;

S2D_FVM_boundary_conditions( &my_integ, burgers_bc ) ;

S2D_FVM_riemann_solver( &my_integ, burgers_rs ) ;

S2D_FVM_diffusive_flux( &my_integ, burgers_g ) ;

/* Use the trifit mesh generator */

S2D_trifit_mesh_generator( &my_integ, "burgers.dmn'", ilevel ) ;

S2D_diagnostics_on( &my_integ ) ;

/* Use the theta method integrator. */

S2D_STHMID_initialise( &my_integ, S2D_STHMID_Theta, 4,
S2D_STHMID_FI, S2D_STHMID_NoSwitch, 0.55 ) ;

/* Use the watsit linear algebra. */
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S2D_SPWATSIT_initialise( &my_integ, 10.0, 10.0 ) ;
/* Monitor routine. */
S2D_monitor( &my_integ, monitor ) ;
/* Have my data passed back by SPRINT2D. */
S2D_users_data( &my_integ, (void *) &my_struct ) ;
S2D_FVM_derivative_estimate( &my_integ, S2D_FVM_First_Deriv ) ;
/* Integrate! */
S2D_integrate( &my_integ ) ;
} /* main */

B. RIEMANN SOLVER CODE FOR BURGERS EQUATION PROBLEM

The routine from the driving program for the simple averaging Riemann solver is
given below; its use results in negative solution values close to the wave front.

void problem_rs(TRIAD Line *1line, int npde, double x,
double y, double t, int sub_name,
double norm_x, double norm_y, double u_1[],
double u_r[], void *users_data, double nf[])
{ /* Burgers eqn: simple averaging Riemann solver */

double u, f_x, f_y;

u=(ull0o] +url0] )/ 2.0;

f_x = 0.5%u*u;

f_y = 0.5%u*u;

/* form the normal component of the flux */

nf[0] = f_x * norm_x + f_y * norm_y;

}

The negative values vanish when Roe’s Riemann solver, see e.g. [Pennington and
Berzins 1994] is implemented by replacing the assignment to u with :

/* Burgers eqn: Roe Riemann solver */

if u > 0.0 u = u_1[0];

else u = u_r[o];
C. PARTIAL DOMAIN FILE FOR ELECTROSTATIC PROBLEM
DOMAIN concave_ehd

VERTICES
1 -2.0000e+00 1.5880e+00
2 -1.9000e+00 1.4237e+00
3 -1.8000e+00 1.2713e+00
4 -1.7000e+00 1.1310e+00
5 -1.6000e+00 1.0032e+00
6 -1.5000e+00 8.8809e-01
7 -1.4000e+00 7.8600e-01
8 -1.3000e+00 6.9726e-01
9 -1.2000e+00 6.2214e-01
10 -1.1000e+00 5.6080e-01
11 -1.0000e+00 5.1312e-01



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
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-9.0000e-01 4.7842e-01
-8.0000e-01 4.5518e-01
-7.0000e-01 4.4089e-01
-6.0000e-01 4.3256e-01
-5.0000e-01 4.2765e-01
-4.0000e-01 4.2459e-01
-3.0000e-01 4.2259e-01
-2.0000e-01 4.2127e-01
-1.0000e-01 4.2043e-01
0.0000e+00 4.1997e-01
1.0000e-01 4.1984e-01
2.0000e-01 4.1998e-01
3.0000e-01 4.2036e-01
4.0000e-01 4.2091e-01
5.0000e-01 4.2129e-01
6.0000e-01 4.1613e-01
7.0000e-01 3.8382e-01
8.0000e-01 3.5758e-01
9.0000e-01 3.5920e-01
1.0000e+00 3.8476e-01
1.1000e+00 4.3100e-01
1.2000e+00 4.9537e-01
1.2000e+00 0.0000e+00
-2.0000e+00 0.0000e+00
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Following this list of points comes a list of edges and then a list of how the edges
form 2D domains.

D. DRIVI

#include
#include
#include
#include
#include
#include
#include

/* Monit

void electro_ic( TRIAD_Triangle *tri, int npde, double x, double y,

{ /* Ini
ul0
}

void electro_bc( TRIAD_Line *line, int npde, double x, double y,
double time, int edge_name, int sub_name, double norm_x,

NG PROGRAM FOR ELECTROSTATIC PROBLEM

<stdlib.h>

<stdio.h>

<math.h>

"S2D.h"
"S2D_FVM_finite_volume_discretisation.h"
"S2D_BBOX_black_box_soln_strategy.h"
"newgrad.h"

or routine - not included for the sake of brevity . */
double t, int sub_name, void *users_data, double *u )

tial conditions. */
] =0.0;



28 . M .Berzins et al.

double norm_y, double *u, void *users_data,
S2D_FVM_BC_Type *type, double *ub, double *dubdn,
double *£fb )
{ /* Boundary conditions. */
dubdn[0] = 0.0 ;
type[0] = S2D_FVM_Dirichlet ;
if (edge_name == 2998) {

ub[0] = 0.0 ; /* Bottom edge. */
} else if (edge_name == 2999) {

ub[0] =y / 1.7307e+0 ; /* Left hand edge. */
} else if (edge_name == 2997) {

ub[0] =y / 1.6129e-1 ; /* Right hand edge. */
} else {

ub[0] = 1.0 ; /* Top edge. */

}

void electro_g( TRIAD_Line *line, int npde, double x, double y,
double t, int sub_name, double norm_x, double norm_y,
double *u, double *dudx, double *dudy, void *users_data,
double *g_x, double *g_y )

{ /* Diffusion function. */

g_x[0] = dudx[0] ;
g_y[0]l = dudy[0] ;

void electro_rs( TRIAD_Line *line, int npde, double x, double y,
double t, int sub_name, double norm_x, double norm_y,
double *u_l, double *u_r, void *users_data, double *nf )

{ /* Riemann solver —- zero convective flux in this problem. */

nf[0] = 0.0 ;

void main( int argc, char *argv[] )

{ /* Driving program. */
S2D_Intgrtn_0bj_Type my_integ ;
int itri = 2000, ntrimax = 10000 ;
double atol, rtol ;
atol = 1.0e-4 ; rtol = 0.0 ;
S2D_initialise( &my_integ ) ;
S2D_steady( &my_integ, 1, ntrimax ) ;
S2D_spatial_tol( &my_integ, S2D_Scalar_TOL, &atol, &rtol ) ;
/* Use finite vol scheme - pass across names of routines. */
S2D_FVM_initialise( &my_integ ) ;
S2D_FVM_initial_conditions( &my_integ, electro_ic ) ;
S2D_FVM_boundary_conditions( &my_integ, electro_bc ) ;
S2D_FVM_riemann_solver( &my_integ, electro_rs ) ;
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S2D_FVM_diffusive_flux( &my_integ, electro_g ) ;
/* Use GEOMPACK mesh generator. */
S2D_geompack_mesh_generator( &my_integ, "el.dmn", itri, 0 ) ;
/* Use the black box solution strategy. */
S2D_BBOX_initialise( &my_integ, -1.0 ) ;
/* Monitor routine. */
S2D_monitor( &my_integ, monitor ) ;
/* Integrate! */
S2D_integrate( &my_integ ) ;

} /* main */
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