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Abstract. A new mesh quality measure for triangular and tetrahedral meshes is presented.
This mesh quality measure is based on both geometrical and solution information and is derived
by considering the error when linear triangular and tetrahedral elements are used to approximate a
quadratic function. The new measure is shown to be related to existing measures of mesh quality
but with the advantage that local solution information in the form of scaled derivatives along edges
is taken into account.
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1. Introduction. The increasing use of PDE solvers based on triangular and
tetrahedral meshes (e.g., [3], [12]) raises the issue of whether the mesh is appropriate
to represent the solution. One approach to resolving this issue is have computable
error estimates for each solution component. It is often the case that such estimates
may not be available or may not be reliable. The usual approach is to view mesh
quality as being independent of the solution [4, 6]. An alternative point of view
is that it is both the shape of the elements and the local solution behavior that is
important, particularly for highly directional flow problems [9, 10, 11]. The starting
point for this work was the analysis of Babuška and Aziz [2], who showed that the
requirement for triangles was that there should be no large angles. This work was
extended to tetrahedral elements by Krizek [5] in a similar spirit.

The intention here is not to deal with the issue of how to construct an optimal
mesh but instead to consider the related issue of how an existing mesh should be
assessed given a solution. This reflects an important practical issue, particularly in
three space dimensions, when a mesh generator produces a mesh of unknown quality
for a complex solution. The requirement is then to assess how appropriate the mesh
is for the computed solution. This paper is a step in this direction and will derive a
simple mesh quality indicator, based on interpolation error estimates. The fundamen-
tal assumption being made is that the solution is being represented by a piecewise
linear basis and that the function being approximated is quadratic. This assumption
allows the error to be approximated by a quadratic function and the results of Nadler
[7, 8] to be used for the triangular case. The resulting indicator will be shown to be
related to those of Bank [3] and Weatherill, Marchant, and Hassan [12].

The second part of the paper will extend the work of Nadler to the case of a linear
element tetrahedral mesh and so derive a new mesh quality indicator. This indicator
will again be shown to behave in a similar way to that of Weatherill, Marchant, and
Hassan [12] and its use will be illustrated by using parameterized examples from the
work of Liu and Joe [6]. A parameterized tetrahedron combined with a simple model
of a solution with highly directional gradients will be used to illustrate how the new
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Fig. 1. Example triangle.

indicator indentifies the effect of directionality on the linear element approximation
error.

2. Nadler’s error estimate for triangles. The starting point for the deriva-
tion of a new mesh quality indicator is the work of Nadler [7] who derives a particularly
appropriate expression for the interpolation error when a quadratic function is approx-
imated by a piecewise linear function on a triangle. Consider the triangle T defined
by the vertices v1, v2, and v3, as shown in Figure 1. Let hi be the length of the edge
connecting vi and vi+1 where v4 = v1. With reference to Figure 1, h2 = α h1 λ1,
h3 = αh1λ2, λ1 = sec(φ1), λ2 = sec(φ2), µ1 = tan(φ1), and µ2 = tan(φ2).

Nadler [7] considers the case in which a quadratic function

u(x, y) = xT H x, where x =

[
x
y

]
,(1)

is approximated by a linear function ulin(x, y), as defined by linear interpolation based
on the values of u at the vertices. Denote the error by

elin(x, y) = ulin(x, y) − u(x, y).(2)

Nadler [7], as quoted in Rippa [11], shows that∫
T

(elin(x, y))2dx dy =
A

180

[
(d1 + d2 + d3)2 + d1

2 + d2
2 + d2

3

]
,(3)

where A is the area of the triangle and di = 1
2 (vi+1−vi)T H (vi+1−vi) is the derivative

along the edge connecting vi and vi+1.
Example 1. In the case when the matrix H is positive definite with diagonal

entries p2 and q2 and symmetric off-diagonal entries pq, then

di = (p ∆xi + q ∆yi)
2, where vi+1 − vi = [∆xi,∆yi]

T .

In the case of the triangle in Figure 1, assuming that x and y are in the horizontal and
vertical directions, respectively, the values of di are d1 = p2h2

1 , d2 = α2h2
1(p µ1 + q)2,

and d3 = α2h2
1(p µ2 + q)2 .

Example 2. In contrast, when the matrix H has diagonal entries p and p and
symmetric off-diagonal entries q, then the matrix H has eigenvalues p + q and p − q
and so is positive definite if p > q. In the case of the triangle in Figure 1, assuming
that x and y are in the horizontal and vertical directions, respectively, the values of
di for this matrix are

d1 = ph2
1 , d2 = α2h2

1(p(1 + µ2
1)− 2µ1q)

and d3 = α2h2
1(p(1 + µ2

2)− 2µ2q) .
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In this case d2 and d3 can be negative if both p and q are positive and q � p. It is
also possible to pick α and µ1 so that d1 + d2 + d3 = 0 in this case and hence to zero
part of equation (3).

3. A mesh quality indicator for linear triangular elements. In this sec-
tion a new mesh quality indicator based on the work of Nadler [7] will be derived.
This indicator takes into account both the geometry and the solution behavior. The
starting point for this indicator is equation (4): in the case when the values of di
are all equal then each edge makes an equal contribution to the error. However, in
order to take into account in a consistent way the fact that the values of di may be
of different signs it is necessary to consider their absolute values. It should also be
noticed that if di = hi then the form of equation (3) has some similarities with the
indicators of Bank [3] and Weatherill, Marchant, and Hassan [12]. This relationship
will be made precise below. With these two points in mind, the scaled forms of the
derivatives di are defined by

d̃i =
|di|
dmax

, where dmax = max [|d1|, |d2|, |d3|] .(4)

For notational convenience define

q̃(d̃) = (d̃1 + d̃2 + d̃3)2 + d̃2
1 + d̃2

2 + d̃2
3,(5)

where d̃ = [d̃1, d̃2, d̃3]T . A measure of the anisotropy in the derivative contributions
to the error is then provided by

qaniso =
q̃(d̃)

12
.(6)

The definitions of the coefficients d̃i in equation (4) results in the bounds

0 ≤ qaniso ≤ 1.(7)

Consider a triangle with only one edge contributing to the error. In this case qaniso =
1/6, whereas if two edges contribute equally and the third makes no contribution,
qaniso = 1/2.

In order to derive a consistent and related but geometry-only-based indicator it
should be observed that the quantity defined by

qm(h) =
q̃(h)

16
√

3 A
,

where h = [h1, h2, h3]T , has value 1 for an equilateral triangle and tends to the value
infinity as the area of a triangle tends to zero but at least one of its sides is constant.

It is now possible to explain the relationship between this indicator and those of
Bank [3] and Weatherill, Marchant, and Hassan [12] as denoted by qb and qw and
defined by

1

qb
=

1

4
√

3 A

[
(h2

1 + h2
2 + h2

3)
]
, qw =

1

3 A

[
(h1 + h2 + h3)2

]
,(8)

respectively. Hence

qm(h) =
1

4 qb
+ qw

√
3

16
.(9)
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The relationship between qaniso and the linear interpolation error is that when the
matrix H is positive definite, i.e., di > 0, then

qaniso =
15

A d2
max

∫
T

(elin(x, y))2dx dy,(10)

thus showing that the indicator is a scaled form of the interpolation error in this
special case.

3.1. Edge indices. In the case when qaniso is small, it is possible to define an
edge index which indicates how much each edge contributes to the error. Suppose
that in equation (5) all the values of the terms d̃i are identical, say, d̃avg; then

q̃(d̃) = 12(d̃avg)
2.(11)

Hence

d̃avg =
√
qaniso.(12)

The edge index for each edge is then denoted by eind(i) and defined by

eind(i) =
d̃i

d̃avg
, i = 1, 2, 3.(13)

It is now possible to compare the approach adopted here with the recent mesh
movement method of Ait-Ali-Yahia et al. [1], in which the H matrix is modified
to be positive definite, and edge indicators, defined in the notation used here by
di/
√

∆x2
i + ∆y2

i , are used to move the mesh. This approach thus scales the edge
error component by the edge length. Ait-Ali-Yahia et al. [1] interpret di as the edge
length in the H norm. The scaling defined by equation (13), in contrast, scales |di|
by an averaging factor taken over all the edges in the triangle. In the case when H
is not positive definite, as in Example 2 of section 2, if the original values of d2 and
d3 are negative (i.e., q � p) then the effect of the approach of [1] is transpose q and
p in the H matrix and hence in the definitions of d1, d2, and d3, thus giving different
values from those in section 2:

d1 = qh2
1 , d2 = α2h2

1(q(1 + µ2
1)− 2µ1p),

and d3 = α2h2
1(q(1 + µ2

2)− 2µ2p) .

3.2. Boundary layer flow example. The performance of this indicator may
be illustrated by considering anisotropic flow, such as that in a viscous boundary layer,
in which the two triangles defined as Case (a), Case (b), and Case (c) in Figure 2
are used to model a flow with a weak horizontal component uxx = 1, an intermediate
cross derivative uxy = 100, and a strong vertical component uyy = 10000. Case (a)
is representative of a triangle thought to be especially suitable for such flows, while
Case (b) is closer to the type of triangles produced by unstructured mesh generators.
Table 1 shows the values of qaniso for the three triangles as the height of the triangles
α is varied. Also shown is the ratio of the L2 errors for Case (a) and Case (b) divided
by the error in Case (c). The table shows that in the case when α < 0.04 triangles
such as that in Case (c) are best. These results are explained by the indicator values
and the values of dmax, which are (1 + 100α)2, (0.5 + 100α)2, and (1 + 50α)2 for cases
(a), (b), and (c), respectively. For very small values of α, anisotropy is not a key
factor, as the effective dominant flow direction is the horizontal one.
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Fig. 2. Boundary layer flow example triangles.

Table 1
Mesh quality indicator values.

α Case (a) Case (b) Case (c) Error ratio a/c Error ratio b/c
1.0 0.49 0.49 0.29 1.8 1.70
0.1 0.42 0.42 0.35 1.8 1.40

0.038 0.35 0.34 0.53 1.7 1.00
0.02 0.30 0.29 1.00 1.5 0.71
0.01 0.28 0.30 0.68 1.3 0.44
0.001 0.42 0.29 0.50 1.0 0.47
0.0001 0.49 0.28 0.50 1.0 0.55

4. Linear tetrahedral approximation of a quadratic function. The ex-
tension of Nadler’s [7] approach to tetrahedra is achieved by considering the case in
which a quadratic function

u(x, y, z) =
1

2
xT H x where x =

 x
y
z

(14)

is approximated by a linear function ulin(x, y, z) defined by linear interpolation based
on the values of u at the vertices of a tetrahedron T defined by the vertices v1, v2, v3,
and v4 as shown in Figure 3.

Let hi be the length of the edge connecting vi and vi+1 where v5 = v1. With
reference to Figure 3 define the vectors x̂, ŷ, ẑ, û, v̂, and ŵ by

v2 = v1 + x̂, v3 = v2 + ŷ, v1 = v3 + ẑ,

v4 = v1 − v̂, v4 = v2 + ŵ, v4 = v3 + û,(15)

and consequently

x̂+ ŷ + ẑ = x̂+ ŵ + v̂ = û+ v̂ − ẑ = 0.(16)

Define a reference tetrahedron Tref (see Figure 3) by the four nodal points:

v1 = (0, 0, 0)T , v2 = (1, 0, 0)T , v3 = (0, 1, 0)T , v4 = (0, 0, 1)T .(17)

Then the mapping from the tetrahedron Tref to the tetrahedron T is given by

x = v1 + B x̃,(18)

where B = [x̂,−ẑ,−v̂] and x̃ is in the reference tetrahedron. Tref and x is the
equivalent point in the original tetrahedron T .
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The function u may then be expressed as

u(x, y, z) =
1

2
vT1 H v1 +

1

2
x̃T BT H v1 +

1

2
vT1 H B x̃ +

1

2
x̃T BT H B x̃,

where x̃ =

 x
y
z


(19)

is defined on Tref . Ignoring the constant and linear terms (which are approximated
exactly by a linear interpolant) and expanding the remaining quadratic term using
equation (18) gives

u(x, y, z) =
1

2
[(x̂THx̂)x2 + (−x̂THẑ)2xy + (ẑTHẑ)y2

(−x̂THv̂)2xz + (ẑTHv̂)2zy + (v̂THv̂)z2].

Interpolating this by a linear function defined on Tref by the nodal solution values
gives

ulin(x, y, z) =
1

2

[
(x̂THx̂)x+ (ẑTHẑ)y + (v̂THv̂)z

]
,(20)

and hence the linear interpolation error may be defined as:

elin(x, y, z) = ulin(x, y, z) − u(x, y, z)(21)

and written as

elin(x, y, z) =
1

2
[(x̂THx̂)(x− x2) − (−x̂THẑ)2xy + (ẑTHẑ)(y − y2)

− (−x̂THv̂)2xz − (ẑTHv̂)2zy + (v̂THv̂)(z − z2)].

This in turn may be written as

elin(x, y, z) =
1

2
WT d̂,(22)

where

WT =
[
x− x2, − 2xy, y − y2, − 2xz, − 2zy, z − z2

]
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and

d̂
T

=
[
x̂THx̂,−x̂THẑ, ẑTHẑ,−x̂THv̂, ẑTHv̂, v̂THv̂

]
.

Hence, from equation (22),∫
T

(elin(x, y, z))2dx dy dz =
6V

4

∫
Tref

d̂
T
W WT d̂ dx dy dz,(23)

where V is the volume of the tetrahedron. This may then be written as∫
T

(elin(x, y, z))2dx dy dz =
6V

4
d̂
T
M d̂,(24)

where the components [M ]ij of the matrix M are defined in terms of the integrals of
the ith and jth components of the vector W on the reference tetrahedral by

[M ]ij =

∫
Tref

[W ]i [W ]j dx dy dz, i, j = 1, . . . , 6.

A straightforward but lengthy calculation gives

M =
2

7!


12 −8 9 −8 −5 9
−8 8 −8 4 4 −5

9 −8 12 −5 −8 9
−8 4 −5 8 4 −8
−5 4 −8 4 8 −8

9 −5 9 −8 −8 12

 .

It is now necessary to express the vector d̃ in terms of the vector of second directional
derivatives along edges defined by

dT =
1

2

[
x̂THx̂, ŷTHŷ, ẑTHẑ, ûTHû, v̂THv̂, ŵTHŵ

]
.

This is achieved by use of the vector identities defined by equation (16). For instance,

ŷTHŷ = (x̂+ ẑ)T H (x̂+ ẑ),

and on expanding the right-hand side of this we get

−x̂T H ẑ =
1

2
x̂T H x̂+

1

2
ẑ H ẑ − ŷT H ŷ.

A similar approach leads to the identities

−x̂T H v̂ =
1

2
(−ŵT H ŵ + x̂ H x̂+ v̂T H v̂)

and

ẑTHv̂ =
1

2
(v̂THv̂ − ûHû + ẑTHẑ).
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From these identities and the definitions of the vectors d̃ and d it follows that

d̂ = N d, where N =


2 0 0 0 0 0
1 −1 1 0 0 0
0 0 2 0 0 0
1 0 0 0 1 −1
0 0 1 −1 1 0
0 0 0 0 2 0

 .

Using this to substitute for d̂ in equation (24) gives∫
T

(elin(x, y))2dx dy dz =
3

2
V dT NT M N d .(25)

Define the matrix P by

P = NT M N =
4

7!


4 2 2 1 2 2
2 4 2 2 1 2
2 2 4 2 2 1
1 2 2 4 2 2
2 1 2 2 4 2
2 2 1 2 2 4


and expand out equation (25) in terms of the components of d which are the six
directional derivatives along the edges to get∫

T

(elin(x, y, z))2dx dy dz =
6

4
V

8

7!

[
(Σdi)

2 − d1d4 − d2d5 − d3d6 + Σd2
i

]
.(26)

5. Tetrahedral mesh quality indicator. The results in the previous section
make it possible to define the mesh quality indicator in the same way as in section 2, in
that the error is scaled by the maximum directional derivative dmax and the integral
is scaled by the volume before taking the square root. As in section 3, define

Q̃(d̃) =
[
(Σd̃i)

2 − d̃1d̃4 − d̃2d̃5 − d̃3d̃6 + Σd̃i
2
]
,(27)

where now d̃ = [d̃1, d̃2, d̃3, d̃4, d̃5, d̃6]T . As in section 3, a measure of the anisotropy in
the derivative contributions to the error is then provided by

Qaniso =
Q̃(d̃)

39
.(28)

Again, as in section 3 and defining the normalized derivatives as in equation (3), a
geometry-based indicator can be written as

Qm(h) =
C

V

[
Q̃(h̃)

] 3
2

,(29)

where C is a scaling factor to ensure that the indicator has value one when hi = h
and thus C = 1/(8.48528 391.5) and the power of 3

2 reflects the different dimensions
of the error and the volume in powers of h.

The edge quality estimator used by Weatherill, Marchant, and Hassan [12] is of
the form

Qw =
1

8.48528V

[(
Σ
hi
6

)3
]
.(30)
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Table 2
Mesh quality indicator values.

Tet. no. 4 5 6 7 8 9 10 11
Iavg 1.10 0.76 0.72 4.73 1.93 5.61 5.61 5.00
Imax 2.43 1.46 1.94 11.9 7.05 15.8 25.9 25.9

5.1. Edge indices. As in two dimensions it is possible to define an edge index
which indicates how much each edge contributes to the error. Suppose that in equation
(27) all the values of d̃i are identical, say, d̃avg; then

Q̃(d̃) = 39(d̃avg)
2.(31)

Hence

d̃avg =
√
Qaniso.(32)

The edge index for each edge is then denoted by eind(i) and defined by

eind(i) =
d̃i

d̃avg
, i = 1, 2, 3.(33)

5.2. Numerical experiments. Before considering the performance of the indi-
cator with nonuniform spatial gradients it is important to assess its performance on
tetrahedra with uniform gradients. This may be done by using the eight parameter-
ized tetrahedra of Liu and Joe [6] as defined by Figures 4–11 of that paper and defined
here as Tetrahedra 4–11 for consistency. Liu and Joe’s parameterization involves a
constant u in the range [0, 1], the value 1 representing a uniform tetrahedron, and
the value zero a degenerate tetrahedron. For values of un = 0.01n, n = 1, 100 the
indicator I(un) was calculated, where

I (un) =
Q−1
w (un)−Q−1

m (un)

Q−1
w (un)

100 , n = 1, . . . , 100.(34)

Note that the inverses of the indicators are used in the above expression so as to make
their values consistent with indicators used by Joe and Liu [6] in that the values of
the indicators go to zero as the tetrahedron degenerates:

Iavg = 0.01ΣI(un) , Imax = max I(un), n = 1, . . . , 100.(35)

Table 2 shows that the values of the two indicators differ by less than 10 percent but
on occasion this difference may rise to 25 percent.

5.3. Anisotropic tetrahedra. In order to consider the case when the edge
derivatives are nonuniform, consider the model tetrahedron defined by the four points

x1 = [0, 0, 0]T , x2 = [0, u, 0]T , x3 =

[
u

2
,

√
3u

2
, 0

]T
, and x4 =

[
u

2
,
u

2
√

3
, h

]T

and h1 = h2 = h3 = u and h4 = h5 = h6 = H =

√
u2

3
+ h2.
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The volume of this tetrahedron is given by V , where V = u2h
4
√

3
.

The anisotropy of the solution is represented by the assumption that the direc-
tional derivatives along the base differ greatly from those along the other edges, i.e.,

di = dau
2, i = 1, 2, 3 and di = db H

2, i = 4, 5, 6,

and where it will be assumed that |dau2| >> |dbH2|. Given these definitions, the
anisotropy indicator has the value

Qaniso =

[
12[d̃2

au
4 + 5

4 d̃ad̃b H
2u2 + d̃2

bH
4]

39 max (dau2, dbH2)2

]
.(36)

Define the parameter r = dbH
2/dau

2 and rewrite the above as

Qaniso =
12

39

[
1 + 5/4 r + r2

]
.(37)

Hence, if r is small, then the anisotropy indicator identifies that a number of edges
make a disproportionate contribution to the error.

6. Conclusions. The mesh quality indicators developed here appear to be a
promising start in terms of identifying triangular or tetrahedral elements in which the
shape of the elements and the local solution gradients conspire to give a poor linear
approximation to a quadratic solution. The indicators have an obvious application in
the case when linear triangular or tetrahedral finite elements are used to solve PDEs
with anisotropic solutions.
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