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Abstract

The application of software based on the method of lines (m.o.l.) to convection and
convection-reaction problems is considered. The components of a prototype software
package, SPRINT2D, are unstructured mesh finite volume algorithms, coupled spa-
tial and temporal error control algorithms and modified time integration techniques
for the large systems of o.d.e.s. The software is applied to a realistic combustion
problem and the lessons learned used to discuss the validity of the m.o.l. approach.

1 Introduction.

The method of lines for solving time dependent p.d.e.s may be described as
’discretize in space and then integrate in time’, usually using o.d.e. initial
value software. The two main components of a method of lines package are the
spatial discretization method and the time integration code. In this paper we
shall consider the application of one such algorithm to a number of problems
including a realistic combustion problem.

Many of the practical engineering problems being solved are defined on irregu-
lar solution domains. One popular approach for dealing with such problems is
to use discretization methods based on unstructured triangular or tetrahedral
meshes. One such method, that of Berzins and Ware [5], will be described
briefly in Section 2 of this paper. Once spatial discretization has been per-
formed it is necessary to integrate the resulting o.d.e. system forward in time.
This raises two important issues. The first issue is that when implicit meth-
ods are being used to solve problems with stiff chemistry source terms it is

⋆ Expanded version of a talk presented at the mol workshop Lexington, Kentucky
1 supported by Shell Research Ltd and EPSRC

Preprint submitted to Elsevier Science 15 April 2003



necessary to solve very large systems of linear equations at each time step.
This issue will be addressed in Section 3 by introducing an operator split-
ting approach in the nonlinear equations solver. The second important issue is
how the temporal error should be controlled given that there is a spatial error
present. This is particularly important when the spatial discretization error is
controlled by the use of one of the many adaptive algorithms available, e.g.
see Strouboulis and Oden [19] or Moore and Flaherty [11]. Such algorithms
will automatically refine and coarsen the spatial mesh as part of a spatial er-
ror control procedure. When using such techniques as part of solving a time
dependent problem it is still necessary to integrate in time with sufficient ac-
curacy so that the spatial error is not degraded while maintaining efficiency.
This is dealt with in Section 4 by using the approach of Berzins [2], to balance
the spatial and temporal errors. This balancing approach requires an estimate
of how the spatial error grows in time. The effectivity of such an estimate is
shown in Section 5 using numerical examples. The final section of this paper
describes how all these components are brought together in solving a realistic
combustion problem. A brief comparison is given between the m.o.l. approach
and a more traditional c.f.d. approach . The m.o.l. approach with temporal
error control is found to be more reliable but more computationally expensive.

2 Finite Volume Spatial Discretization Methods.

Finite volume methods are commonly used for the semi-discretization of fluid
flow equations. These methods are the basis for many different schemes suit-
able for convection dominated problems. Examples of the types of methods of-
ten applied to regular meshes are given by [15,2] and in the references therein.
For problems with very general spatial geometries one important approach
is to consider methods which are based on unstructured triangular or tetra-
hedral meshes. Although finite element and finite volume schemes based on
unstructured triangular meshes have been used for many years, only recently,
see [5], have a number of high-order cell-centered finite volume schemes been
developed for convection dominated problems.

The discretization method used in this work, [5], has been developed for sys-
tems of equations, but for ease of exposition will be described by considering
the class of scalar p.d.e.s:

∂u

∂t
+

∂

∂x
f(x, y, u,

∂u

∂x
,
∂u

∂y
) +

∂

∂y
g(x, y, u,

∂u

∂x
,
∂u

∂y
) = h(x, y, u) (1)

where f and g are the flux functions in x and y respectively, the source term
is h and appropriate boundary and initial conditions are supplied. The cell-
centered finite volume scheme described here uses triangular elements as the
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control volumes over which the divergence theorem is applied. The solution
values are deemed to be associated with the centroids of the triangles. In Fig-
ure 1, for example, the solution at the centroid of triangle i is Ui, the solutions
at the centroids of the triangles surrounding triangle i are Ul, Uj and Uk and
the next level of centroid values used by the discretization method on the ith
triangle are: Um, Un, Up, Uq, Ur and Us. The mesh point at which a solution
value, say Us, is defined is denoted by (xs, ys) . Integration of equation (1) on
the ith triangle, which has area Ai, and use of the divergence theorem gives:

Ai
∂Ui

∂t
= Ai h(xi, yi, Ui) −

∮

Ci

(f.nx + g.ny) dS

where Ci is the circumference of triangle i. The line integral along each edge
is approximated by using the midpoint quadrature rule using a numerical flux
evaluation at the midpoint of the edge:

∂Ui

∂t
= h(xi, yi, Ui) −

1

Ai

[fik∆y0,1 − gik∆x0,1 + fij∆y1,2

−gij∆x1,2 + fil∆y2,0 − gil∆x2,0] (2)

where ∆xi,j = xj − xi , ∆yi,j = yj − yi. The fluxes fij and gij in the x and
y directions respectively are evaluated at the midpoint of the triangle edge
separating the triangles associated with Ui and Uj. The convective parts of
these fluxes are evaluated by using approximate Riemann solvers fRm and
gRm respectively with the left solution value being defined as that internal
to triangle i and the right solution value being defined as that external to
triangle i:

∂Ui

∂t
= h(xi, yi, Ui) −

1

Ai
[fRm(U l

ik, U
r
ik, (Uik)x, (Uik)y)∆y0,1 −

gRm(U l
ik, U

r
ik, (Uik)x, (Uik)y)∆x0,1 + fRm(U l

ij , U
r
ij, (Uij)x, (Uij)y)∆y1,2 −

gRm(U l
ij, U

r
ij , (Uij)x, (Uij)y)∆x1,2 + fRm(U l

il, U
r
il, (Uil)x, (Uil)y)∆y2,0 −

gRm(U l
il, U

r
il, (Uil)x, (Uil)y)∆x2,0)],(3)

where U l
ij is the internal solution, with respect to triangle i, at the midpoint

of the edge between Ui and Uj and U r
ij is the external solution, with respect to

triangle i, on edge j. Note that U r
i,j = U l

j,i as a consequence of this notation.
Standard approximate Riemann solvers such as those of Osher [14] and Roe
[16] are used to define the convective fluxes. The left and right values for the
Riemann solver U l

ij and U r
ij in equation (3) are the limited linearly interpolated

values defined by

U l
ij = Ui + Φ(rl

ij)
(

UL
ij − Ui

)

and Ur
ij = Uj + Φ(rr

ij)
(

UR
ij − Uj

)

, (4)
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where UL
ij is the internal linear upwind value, UR

ij is the external linear upwind
value, rl

ij is the internal upwind bias ratio of gradients and rr
ij is the exter-

nal upwind bias ratio of gradients. The internal and external ratio of linear
gradients are defined by

rl
ij =

UC
ij − Ui

UL
ij − Ui

and rr
ij =

UC
ij − Uj

UR
ij − Uj

. (5)

UC
ij is the linear centered value at the cell interface. The limiter function Φ(.) is

described below, but when set to zero gives a first-order method. Equations (4)
and (5) depend on the as yet undefined, interpolated and extrapolated val-
ues: UL

ij , UR
ij and UC

ij .

The value UL
ij is constructed by using linear extrapolation based on the solu-

tion value Ui and an intermediate solution value (again calculated by linear
interpolation) Ulk which lies on the line joining the centroids at which Ul and
Uk are defined (see Figure 1 and [5]). The value UR

ij is defined in a similar way
using linear extrapolation based on the solution value Uj and an intermedi-
ate solution value (itself calculated by linear interpolation) Urs which lies on
the line joining the centroids at which Ur and Us are defined, see Figure 1.
In the case when the three centroid points are collinear it is not possible to
define a linear interpolant and so the immediate upwind centroid value will
be used: internally Ui or externally Uj .

The centered value, UC
ij , is constructed from the six values: Ui, Uj , Uk, Ul,

Us and Ur by a series of one-dimensional linear interpolations. Three linear
interpolations onto the edge being considered are performed using opposing

pairs of centroid values, see Figure 1. Ulr, Uij and Uks are found using the pairs
Ul and Ur, Ui and Uj and Uk and Us respectively. If the midpoint of the edge lies
between Uks and Uij then the centered value is found by linear interpolation
using these two values. Otherwise the values Ulr and Uij are used to compute
the centered value at the midpoint by using linear interpolation. An extension
of this approach is also used to compute the diffusive flux contributions at
mid-points of edges, see [4].

Two important properties of this scheme are those of linearity preservation

and positivity, as proposed by Struijs et. al., [19], see [5]. The definition of
positivity requires that every value at a particular time can be written as a
convex combination of values at the previous time step. Berzins and Ware [5]
showed that the sufficient conditions for positivity are that the limiter Φ(.)
must be positive, Φ(S)/S ≤ 1 and some minor restrictions must be placed on
the spatial mesh. The limiter condition is satisfied, for example, by a modified
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Fig. 1. Construction of Interpolants

van Leer limiter defined by

Φ(S) =
S + |S|

1 + Max(1, |S|)
. (6)

A linearity-preserving method is one which preserves the exact steady state
solution whenever this is a linear function of the space coordinates x and y, for
any arbitrary triangulation of the domain. This is equivalent to second order
accuracy on regular meshes,[19].

3 Time Integration.

The above spatial discretization scheme results in a system of differential equa-
tions, which can be written as the initial value problem:

U̇ = F N ( t, U(t) ) , U(0) given , (7)
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where the vector, U(t), is defined by U(t) = [U(x1, y1, t), ..., U(xN , yN , t) ]T .
The point xi, yi is the centre of the i th cell and Ui(t) is a numerical approxima-
tion to the exact solution to the p.d.e. evaluated at the centroid i.e. u(xi, yi, t)
. A method of lines approach is used to numerically integrate equation (7)
thus generating an approximation, V (t), to the vector of exact p.d.e. solution
values at the mesh points, u(t) . At present two time integration methods are
used: Theta method with functional and/or Newton iteration or the backward
differentiation formula method using Newton Krylov methods [17]. Both codes
allow automatic control of the local error. The Theta method code, see [2,3],
which has been used for the experiments described here, defines the numerical
solution at tn+1 = tn +k, where k is the time step size, as denoted by V (tn+1),
by

V (tn+1) = V (tn) + (1 − θ)k V̇ (tn) + θ k F N(tn+1, V (tn+1)), (8)

in which V (tn) and V̇ (tn) are the numerical solution and its time derivative at
the previous time tn and θ = 0.55 . This system of equations is solved by either
using functional iteration or a Newton Krylov method or by automatically
switching between the two methods, [3]. Berzins and Ware [5] show that the
method will preserve positivity if a CFL-like condition is satisfied and that
this in turn is the case if functional iteration converges quickly.

In the case when a Newton-Krylov method is used the equations to be solved
for the correction to the solution ∆V for the p+1 th iteration of the modified
Newton iteration used with the Theta method are:

[I − kθJ ] ∆V = r (tpn+1) (9)

where

r (tpn+1) = − V (tpn+1) + V (tn) + (1 − θ)kV̇ (tn) − θkF N(tn+1, V (tpn+1)),

J =
∂ F N

∂U
, and ∆V =

[

V(tp+1
n+1) − V(tp

n+1)
]

. (10)

The solution of this system of equations constitutes the major computational
task of a method of lines calculation. In cases where large o.d.e. systems that
result from the discretization of the flow problems with complex chemistry
(50,000 equations typically), the c.p.u. times seem to be excessive, even when
using Newton-Krylov methods to solve the nonlinear equations.
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3.1 Operator Splitting.

One approach which overcomes this is to use a form of operator splitting
based on a decomposition of the p.d.e. s into a set of flow terms and a source
reactive term. A number of such splitting methods are described by Chung
[7]. Consider the o.d.e. function F N (t, U(t) ) defined by equation (9) and
decompose it into two parts:

FN (t, U(t) ) = F f
N (t, U(t) ) + F s

N (t, U(t) ) (11)

where F f
N (t, U(t) ) represents the discretization of the convective flux terms

f and g in equation (1) and F s
N (t, U(t) ) represents the discretization of the

of the source term h in the same equation. A standard splitting approach, [7],
is to employ the following approximation to the Jacobian matrix used by the
Theta method within a Newton iteration:

I − kθJ ≈ [I − kθ Jf ] [I − kθ Js ] ) + O(k2). (12)

where

Jf =
∂ F f

N

∂U
, Js =

∂F s
N

∂U
.

The disadvantage of this is that it introduces a second-order splitting error.
Fortunately this error only alters the rate of convergence of the iteration as
the residual being reduced is still that of the full o.d.e. system. The matrix
I − kθJs is the Jacobian of the discretization of the time derivatives and
the source terms in the vector h. This matrix is thus block-diagonal with as
many block as there are triangles and with each block having as many rows
and columns as there are p.d.e.s. The fact that the block relate only to the
chemistry within each cell means that each block may be inverted (or the
equations may be solved) independently using LU decomposition. Although
for more complex chemical reaction terms it is necessary to adopt the latter
approach for the combustion problem considered in Section 6 it is easy to
analytically invert the matrix. Consider the five o.d.e.s that represent the
discretization of a these source terms on a single triangle. For this triangle
the relevant part of the matrix I − kθJs has the particularly simple form of
the identity matrix with only one row of off-diagonal non-zero elements. This
row consists of the partial derivatives of the p.d.e. source term with respect to
the solution variables corresponding to that triangle. The remaining part of
the Jacobian I − kθJf has only flow equation terms from the Euler equations.
As the spatial discretization method connects each triangle to as many as
ten others it follows that the matrix [I − kθ Jf ] may have ten times as many
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entries as the matrix [I − kθ Js ] . Approximating the matrix [I − kθ Jf ] by
the identity matrix as is done by [3] thus eliminates many of the full Jacobian
entries.

The new operator-splitting iteration may thus be written as

∆V ∗ = [I − kθJs]
−1 r (tpn+1) (13)

where ∆V ∗ is the operator splitting approximation to ∆V . The advantage of
this is that functional iteration may be used to solve the nonlinear equations
provided that the residuals on each triangle are multiplied by the inverse
of the matrix I − kθJs. This modified form of functional iteration has been
implemented as a new linear algebra module inside SPRINT2D software and
has been found to give increases in speed-up by a factor of between five and
ten over using a Newton-Krylov method for the combustion problem described
below.

3.2 Operator Splitting Error.

The disadvantage of introducing operator splitting is that it is difficult to
evaluate the error resulting from this. As the splitting is only used to speed
up the solution of the nonlinear equations and providing that the iteration
is continued until the residual r (tpn+1) is sufficiently small this error does not
have the same impact as introducing splitting at the p.d.e. level. It is however
possible to obtain a rough idea of the splitting error on each iteration. Define
the splitting error on the pth iteration by

∆E = ∆V − ∆V ∗ . (14)

From equations (12) and (13) this error then satisfies the equation

∆E = [I − kθJs]
−1 h θJf ∆V . (15)

In order for the operator-splitting iteration defined by equation (13) to con-
verge with a rate of convergence rc it is necessary, [12] p.311, that

|| [I − kθJs]
−1 h θJf || < rc

where rc < 1 . Hence, provided that the iteration is converging, a plausible
estimate of the splitting error on the nonlinear equation comes from

||∆E|| ≤ rc ||∆V || . (16)
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However as ∆V is not known we have to use ∆V ∗ in its place.

4 Space-Time Error Control.

A standard method for choosing the timestep in the numerical solution of
p.d.e.s is to use a CFL stability condition. Although such a condition may
ensure stability it may be imprecise as an accuracy control, particularly when
complex chemistry source terms are present in the p.d.e. problem. In contrast,
suppose that the local error is denoted by ln+1(tn+1) and that a standard local
error control i.e. || ln+1(tn+1) || < TOL is used. In this case it is difficult to
establish a relationship between the accuracy tolerance, TOL , and the global
space and time errors. It is thus important to use an error control which reflects
the spatial and temporal contributions to the error incurred when using the
method of lines.

The global error in the numerical solution can be expressed as the sum of
the spatial discretization error, e(t) = u(t) − U(t), and the global time error,
g(t) = U(t) − V (t). That is,

E(t) = u(t) − V (t) = (u(t) − U(t)) + (U(t) − V (t))

= e(t) + g(t). (17)

Efficient time integration requires that the spatial and temporal are roughly
the same order of magnitude. The need for spatial error estimates to be un-
polluted by temporal error requires the spatial error to be the larger of the
two errors. One approach for achieving this is described by Berzins [1,2] who
balances the spatial and temporal errors by controlling the local time error
to be a fraction of the local growth in the spatial discretization error. The
local-in-time spatial error, ê(tn+1), for the timestep from tn to tn+1 is defined
as the spatial error at time tn+1 given the assumption that the spatial error,
e(tn) , is zero. A local error balancing approach is then:

|| ln+1(tn+1) || < ǫ || ê(tn+1) ||, 0 < ǫ < 1. (18)

The error ê(tn+1) is estimated by the difference between the computed solution
and the first-order solution which satisfies a modified o.d.e. system:

v̇n+1 (t) = GN(t, vn+1(t)), (19)

where vn+1(tn) = V (tn) , v̇n+1(tn) = GN(t, V (tn)) and where GN (., .) is ob-
tained simply by setting the limiter function Φ(.) in the spatial discretization
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method, see equation (8), to zero and by using the first order space derivative
approximations. The local-in-time space error is then estimated by

ê(tn+1) = V (tn+1) − vn+1(tn+1) (20)

and is computed by applying the Theta method, with one functional iteration
(or one Newton-Krylov or operator-splitting iteration), to equation (19). In
the case of functional iteration, equations (8) and (20) combined with the
conditions on vn+1(tn) then give, [2],

ê(tn+1) = θ k [F N(tn+1, V (tn+1)) − GN(tn+1, V (tn+1))] +

(1 − θ) k [F N(tn, V (tn)) − GN (tn, V (tn))]. (21)

This estimate thus requires only one evaluation of GN(., .) per timestep. In
the other cases when Newton-Krylov or operator splitting methods are used
the method is very similar to the error balancing approach of Lawson, Berzins
and Dew [10] for parabolic equations.

One effect of using this simple error estimate is that the effect of the source
term is not taken into account as the same solution value is applied to both
the o.d.e. systems defined by equations (9) and (13). Hence the source term
calculation is the same in both cases. One remedy for this is to use a fixed
error tolerance as the lower bound tolerance for the p.d.e. with the strong
source term and to apply error balancing normally for the remaining p.d.e.s.

5 Evaluation of Error Estimate.

5.1 A Computational Example.

A number of experiments with problems in one and two space dimensions
using the error control strategy given by equation (21) above are given by
Berzins [1,2]. A good illustration of the performance of the error estimator is
given by the standard Euler Equations Shock-Tube test problem of Sod, which
is often used in the comparison of algorithms for hyperbolic equations. The
problem is described fully by [6,15]. In the experiments here we consider the
density ρ at time 0.2. The code of Pennington and Berzins [15] was used with
the same regular mesh of 141 points as in that paper. A number of runs were
performed with standard local error control with a fixed absolute tolerance of
0.5×10−5 and relative tolerances, Rtol, of 10−2, 10−3 and 10−4. Table 1 shows
the integration statistics for the three runs. Error is the true error, Espace is
the local-in-time space error estimate defined by equation (21) while LocTErr
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Table 1
Sod Problem L1 Error Norms

Rtol. Error Espace Loc T Err NSTEPS

10−2 0.55e-2 0.24e-3 0.27e-3 125

10−3 0.55e-2 0.24e-3 0.18e-3 128

10−4 0.53e-2 0.28e-4 0.32e-5 1028

1e-20

1e-10

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

or
s

x

Fig. 2. Density Error Estimates for Rtol = 10−4 .

is the local time error estimate for the theta method, see [4]. The table shows
that a large time error pollutes the spatial error estimate - by a factor of 10 in
this case. This situation is illustrated by Figure 2 which shows the true error
by a solid line and the local-in-time space error and the local time error by
the two clearly separated dashed lines when Rtol in Table 1 is 10−4.

Figure 3 shows what happens when Rtol in Table 1 is 10−2. In this case
both errors are larger due to an increased time error. A comparison between
the exact and estimated errors shows that the error estimates do mimic the
behaviour of the true error remarkably well.
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Fig. 3. Density Error Estimates for Rtol = 10−2 .

5.2 Effectivity Index for Local-in-Time Space Error Estimate.

A more formal way of assessing the performance of the error estimator defined
by equation (15) is to compute the effectivity index defined by

ei(t) =
||ê(t)||1

||êtrue(t)||1
(22)

where êtrue(t) is the true local-in-time spatial error. The estimation of this
is complicated in that it must reflect the true growth in the spatial error
assuming that there is no error at the start of the step. In the case of p.d.e.s
with known solutions it is possible to start from exact values at any time. The
growth in the error over the first step is then the same as the local-in-time
spatial error. For simplicity assume that the forward Euler method with a
small timestep is used to compute the evolution of the error. In this case

êtrue(t + k) = k [u̇ − FN ( t, u(t) )] (23)

whereas

ê(t + k) = k [GN(t, u(t)) − FN ( t, u(t) )] (24)
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and where u̇ and u(t) are vectors of exact p.d.e. solutions and their time
derivatives evaluated at the spatial mesh points. From equations (23) and
(24) the effectivity index is then approximated by

ei(t + k) ≈
||GN(t, u(t)) − F N ( t, u(t) )||1

||u̇ − FN ( t, u(t))||1
(25)

where the vector norm used is an approximation to the L1 spatial norm. This
effectivitity index thus may also be interpreted as measuring the ratio of the
exact and the approximate spatial truncation errors.

5.3 Testing Procedure.

The testing procedure employed was that the error index was evaluated ten
times on each of 3 square even meshes with 9x9, 27x27, 81x81 and 243x243
points using the discretization method in Berzins [2]. The meshes were con-
structed so that the mesh points were the centres of square cells and so that
the meshes were nested. The time step used was one tenth of the mesh spacing.
Two test problems were used:

1. Burgers’ Equation.

∂u

∂t
+ w(x, t)

∂u

∂x
+ w(y, t)

∂u

∂y
− ν (

∂2u

∂x2
+

∂2u

∂y2
) = 0, ν = 0.0001,

where (x, y, t) ǫ (0, 1) × (0, 1) × (0, 1] .

The analytic solution is given by u(x, y, t) = w(x, t) w(y, t) , where w(x, t)
is defined by

w(x, t) =
0.1A + 0.5B + C

A + B + C
where A = e−0.05(x−0.5+4.95t)/ν ,

and B = e−0.25(x−0.5+0.75t)/ν) C = e−0.5(x−0.375)/ν .

2. Anisotropic Test Problem.

∂u

∂t
+ α

∂u

∂x
+ (3/4 + α)

∂u

∂y
= 0, (x, y, t) ∈ [0, 1] × [0, 1] × (0, 1.25]

u(x, y, t) = 0.25(3 +
1

1 + e(B)
), B = (y − x − 0.75t)/8p, p = 0.0001.
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Table 2
Effectivity Index for Problems 1 and 2.

Problem α 9x9 27x27 81x81 243x243

1 0.61 0.77 0.88 0.95

2 -0.375 1.00 1.00 1.00 1.00

2 0.750 1.00 0.99 0.98 0.88

This problem is a modified form of the one used by Zegeling [21] in his work on
the Moving Finite Element Method. This problem has the interesting feature
that for α > 0 the solution wave moves at right angles to the characteristics.
This means that the problem may prove difficult for codes based on approxi-
mate Riemann solvers.

The calculated values of the error index, averaged over the number of time
steps, for these two problems are shown in Table 2. Similarly good results have
been obtained for all the other test problems used by Berzins [2]. Despite its
relatively simple nature the error estimator appears, from these early results,
to work well.

6 Combustion Knock-Modelling Problem.

6.1 Problem Definition.

A very challenging problem for the method of lines is given by a simple com-
bustion model relating to the modelling of knock in car engines. The model
is used to investigate the effects of autoignition in end gasses in an idealised
car engine cylinder. The onset of ’knock’ is seen when large pressure pulses
interact with the edges of the cylinder. A complete description of the model
is provided by [13,9]. Mathematically the problem is specified by a system of
five p.d.e.s representing conservation of mass, momentum and energy together
with a species equation:

∂u

∂t
+

∂f

∂x
+

∂g

∂y
= h (26)
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and k(T ) = exp(β
(

1 − 1
T

)

) , T = P/ρ and β = 20.0.

The variables ρ, u, v, p are the density, the velocities in the x and y dimen-
sions and the pressure respectively. The variable z represents the scaled fuel
concentration. The energy E is defined by the equation of state

E =
p

(γ − 1)
+

ρu2 + ρv2

2
+ αρz where γ = 1.2 and α = 8.0. (27)

The geometry of the problem and the initial condition is shown in Figure 4.

The irregular solid line in Figure 4 represents the initial position of the flame
front, as taken from experimental data. The area to the left of this front
contains unburnt fuel while that to the right is one in which the fuel has
burnt. The dotted concentric circles indicate temperature hot spots which
will lead to autoignition and pressure pulses travelling across the cylinder to
cause ’knock’. Points numbered 1 to 4 are the four pressure transducers at
which experimental time histories of pressure are available.

The initial conditions are as follows. The initial velocites u and v are zero. The
pressure has the value p = 1, The fuel concentration z is zero in the burnt
region and one in the unburnt region. The scaled temperature t is 0.75 in the
unburnt region except at the hot spots where it rises to one and in the unburnt
region it has value 1 + α(γ − 1)/γ, ρ = p/T . The quantities E, γ and α are
defined by equation 27.

The boundary conditions are imposed through the approximate Riemann
solver. This requires ’exterior’ values to be defined given the interior numeri-
cal values of the variables on the boundary. These values are then used in the
Riemann solver to define the fluxes at the boundary. The reflective bound-
ary conditions are imposed by setting the exterior ’normal’ velocity to be the
opposite sign to the normal velocity at the boundary from the interior. The
values of all the other variables on the ’exterior’ being the same as the interior
values. All other ’outside’ solution values are the same as the interior values.
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6.2 Computational Experiments

The code presently used to solve this problem, LUMAD, [9,15] is based on a
square regular mesh with 100x100 mesh points. This mesh makes it difficult to
implement the circular boundary conditions in an accurate way. LUMAD uses
the CCCT method of Gaskell and Lau [8] which may be interpreted as a flux
limiter scheme, see [2]. This limiter is applied component-wise to the physical
variables and an ad-hoc Riemann solver approach applied to determine the
flux values. Timestepping is done using the forward Euler method with only
a CFL condition to control the timestep. The entries marked TIME show the
time of the peak pressure pulse at pressure transducer 1. PEAK indicates the
values of this peak. When LUMAD uses 400 and 40,000 timesteps this gives
CFL numbers of 1 and 0.01 respectively. The physical significance of the PEAK
value is that it indicates the strength of the pressure pulse that causes ’knock’
while the TIME value indicates when this occurs. Correct computation of these
values is thus important if the mathematical model is to be validated against
experimental observations. The LUMAD results show that convergence to the
correct position and value of the pressure peak only occurs for small CFL
numbers. This is the case because the CFL number only reflects the allowable
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Table 3
Transducer 1 Pressure Spike

Code Mesh MODE TSTEPS TIME PEAK

LUMAD 10000 CFL 400 45.23 8.61

LUMAD 10000 CFL 800 33.89 7.46

LUMAD 10000 CFL 4000 32.47 6.11

LUMAD 10000 CFL 40000 32.08 5.87

SPRINT2D 2500 LOCAL 7447 41.09 4.44

SPRINT2D 10000 LOCAL 9313 28.59 5.61

SPRINT2D 2500 BALANCE 14434 41.19 4.43

SPRINT2D 10000 BALANCE 20662 28.62 5.62

timestep for the flow to be stable and does not include the reaction terms.

The SPRINT2D code uses triangular meshes with 2500 and 10000 elements
respectively. Although the code can use adaptive meshing in order to provide
a fair comparison with LUMAD this option was not used. The approximate
Riemann solver used by SPRINT2D was that of Suresh and Liou [20]. The
SPRINT2D code was used in two modes: standard local error control and the
error balancing approach described above. These modes are referred to in the
results table as LOCAL and BALANCE respectively. In the BALANCE cases
ǫ in equation (18) was set to 0.2 and the tolerance for the species z equation is
10−5. In the LOCAL cases the local error control for SPRINT2D uses absolute
tolerances of 10−4 for all the p.d.e. variables except the species concentration z
for which 10−5 is used. A maximum stepsize of 5.0×10−4 was imposed during
the initial combustion phase in order to prevent unphysical situations arising
in the Riemann solver.

The initial runs with SPRINT2D switching between functional iteration and a
Krylov method were disappointing in term of c.p.u. time. This is largely due to
the overhead of solving the large systems of linear equations using the iterative
solver. As the mesh sizes increase the situation becomes worse due to the larger
systems of equations that must be solved. The situation is made worse still
because of the overhead of using an unstructured mesh code and that smaller
time steps are used at the start of the problem when combustion takes place.
As a result of these long computation times the much faster method of solving
the nonlinear equations using operator splitting described in Section 3 was
developed. The recorded results for SPRINT2D in Table 3 were obtained using
the new operator splitting method described below and in this case the code
on the fine mesh is approximately four times as slow as LUMAD with a CFL
number of 0.1 but because of the local error control uses a significantly smaller
timestep while combustion takes place and a larger timestep when combustion
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has finished.

In the case when error balancing is used yet more timesteps are used and
the code is slower yet again by a factor of about two. The difference now is
that in the runs with ordinary local error control once combustion takes place
the timestep seems to be determined by the need for functional iteration to
converge. In contrast when error balancing is used then the spatial error growth
is used to compute a tighter tolerance for the flow part of the problem. In both
cases when the SPRINT2D code is applied with a coarse mesh the time at
which the peak arrives is much later and the peak value is too small, though
the time of the peak value is not as different from that obtained by LUMAD
with a CFL number of one. The table shows that unless great care is taken
with the choice of time step and spatial mesh over-large pressure pulses at
incorrect times may be recorded. In particular LUMAD appears to need a
very small CFL number ( < 0.01 ) to produce similar results to SPRINT2D.

The important aspect of the numerical results is the size of any pressure
spikes to reach the boundary. The maximum recorded values of the pressure
on the boundary obtained by using SPRINT2D on the fine mesh ofg 10,000
elements are shown in Figure 5. Zero radians corresponds to ’east’ on Figure 4
with positive radians going anti-clockwise to ’west’ and negative radians going
clockwise to ’west’. Of great interest is the largest pressure spike caused by the
interaction of pressure waves coming from the bottom two exothermic centers
in Figure 4 and joining at the boundary.
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7 Conclusions.

In this paper we have described the components of a method of lines solver for
convection problems and have extended the solver to a complex combustion
problem. A traditional method of lines approach has been modified to include
spatial and temporal error balancing and operator splitting. Early results sug-
gest tha the method is more reliable than fixed space and time step methods
and provided that the splitting approach is used does not have as high a com-
putational cost as a traditional m.o.l. code. Future work will concentrate on
applying the adaptive space mesh methods we have employed elsewhere to the
combustion problem.
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