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TEMPORAL ERROR CONTROL FOR CONVECTION-DOMINATED
EQUATIONS IN TWO SPACE DIMENSIONS.

M. BERZINS∗

Abstract. A new time integration strategy for the solution of convection-dominated partial
differential equations in two space dimensions by the method of lines is presented. The strategy aims
to ensure that the time integration error is less than the spatial discretisation error. This is achieved
by making use of the individual contributions of the local spatial discretisation error and the local
time integration error to the global error in the numerical solution. Numerical results are used to
illustrate the performance of this strategy.
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1. Introduction. Much progress has been made recently in the spatial discreti-
sation of convection-dominated equations. The finite volume spatial discretization
methods now used provide numerical solutions that are free of spurious oscillations.
Such discretizations are considered by many authors e.g. by Spekreijse [16] and Ko-
ren [10] for the steady Euler (and also Navier-Stokes) equations using quadrilateral
meshes. Other authors use triangular meshes, for example Ware et. al. [18] and
Durlofsky et. al. [5]. Time-dependent problems may be solved by discretising in
space and using o.d.e. initial value problem software to integrate forward in time
using a method of lines type approach.

The spatial discretisation error introduced by the semi-discretization may be
controlled by the use of one of the many adaptive algorithms available, e.g. see
Strouboulis and Oden [17], Berger and Oliger [1] or Moore and Flaherty [14]. Such
algorithms will automatically refine and coarsen the spatial mesh as part of a spatial
error control procedure. When using such techniques as part of solving a time de-
pendent problem it is still necessary to integrate in time with sufficient accuracy so
that the spatial error is not degraded while maintaining efficiency. This is the subject
of this paper and is achieved by calculating the time accuracy tolerance automati-
cally using estimates of the spatial error. The starting points for this work are the
error balancing approaches of Lawson, Berzins and Dew [11] for parabolic equations
and the demonstration of a different approach for one space dimensional hyperbolic
equations by Berzins [2], who also discusses earlier related work by Berger and Oliger
[1] and Gary [6]. The aim in this paper is to show that the new approach works for
two-dimensional convection dominated problems and to provide a justification for the
approach used here and in [2].

This new approach is in contrast to most existing methods for the time integration
of p.d.e.s in which one of two approaches is taken. Either a stability control and a
specialised time integration method is employed, e.g. see [9], or an an o.d.e. solver
is used which makes use of local time error per step, [6], control. In the first case
the solution may be stable but not necessarily accurate, while in the second case the
user-supplied accuracy tolerance may be difficult to relate to the spatial discretisation
error and also to the global time error in the computed solution.

The class of problems considered in this paper is given in Section 2 together with
the spatial discretisation method used. Section 3 describes the time integration algo-
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rithm. Section 4 outlines the background theory behind the error balancing algorithm
and describes the new error control strategy. The analysis of the new strategy shows
that the time integration error remains below the spatial discretisation error and that
the strategy is a form of local error per unit time step control. Section 5 describes the
implementation of the new method and shows that there is an implicit CFL condition
in the new approach. Numerical experiments illustrating the performance of the new
method are described in Section 6 and a summary presented in Section 7. It is shown
that the error control strategy appears to offer an effective means of ensuring that
the spatial error dominates the temporal errors in the method of lines solution of
convection-dominated equations.

The eventual goal of this research is to devise reliable automatic algorithms for
convection-dominated p.d.e.s, similar to algorithm for parabolic p.d.e.s of Lawson and
Berzins [12] in which the user provides only a specification of the problem, an initial
spatial mesh and an error tolerance for the overall error. A prototype algorithm of this
type for two-dimensional hyperbolic equations is described by Berzins, Lawson and
Ware [4]. The algorithms are intended to be reliable in that they make use of spatial
and temporal error estimates to meet automatically the users accuracy requirements.

2. Problem Class and Spatial Discretisation. The solution strategy for
time-dependent p.d.e.s is to follow Koren [10] by splitting the equations into their
convective and diffusive parts. This enables upwind discretization methods developed
for the Euler equations to be used for the convective part of the system and the
centered discretization methods to be used for the diffusive part. The class of p.d.e.s
to be considered is written in cartesian co-ordinates as

∂q

∂t
+

∂

∂x
(f1(q) + f2(q)) +

∂

∂y
(g1(q) + g2(q)) = 0, t ε (0, te], (x, y) ε Ω,(1)

with appropriate boundary and initial conditions. In the case of the compress-
ible Navier Stokes equations for instance the solution vector has the form q(x, y, t)
= [e, ρ, ρu, ρv]T . Here, ρ is the fluid density; u, v are the cartesian components of
the velocity vector, e is the internal energy. The pressure p is evaluated according to
an equation of state. The fluxes f1 and g1 represent the convective fluxes while f2

and g2 are the diffusive fluxes, [10]. Although the ideas developed in this paper are
applicable to equations of this form, and indeed have been applied to such equations,
see Ware and Berzins [18], for ease of exposition a single equation of this type will be
considered:

∂u

∂t
+

∂

∂x
(f(u)) +

∂

∂y
(g(u)) = ν(

∂2u

∂x2
+

∂2u

∂y2
) , t ε (0, te], (x, y) ε Ω.(2)

In this study it will be assumed that convection is the dominant mechanism and so
that ν is small. For simplicity the boundary and initial conditions are taken to be of
the form

u(x, y, t) = g(x, y, t) , (x, y) ε δΩ , t ε (0, te].(3)

u(x, y, 0) = u0(x, y) , (x, y) ε Ω.(4)

We assume that the p.d.e. defined by the above equation is well-posed and has a
unique solution.
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The numerical solution method used to solve (2), (3) and (4) is the method of
lines in which the p.d.e. is discretised in space and the resulting o.d.e. system in time
is solved using o.d.e. software. Although discretization methods of the type used here
have been applied to general quadrilateral meshes, [10], and to unstructured triangular
meshes [18], for the sake of simplicity a regular square mesh will be considered. A
mesh on the region Ω = [0, 1]x[0, 1] is defined by the points (xi, yj) where

xi = (i− 1
2
) ∆x and yj = (j− 1

2
) ∆y i = 1, ...,N, j = 1, ...,N ,

and where ∆x = ∆y = 1/(N + 1) .
A finite volume approach is used and equation (2) is integrated over a square cell
whose centre is at the point (xj , yk) . Denote by Uj,k(t) the numerical solution at the
point (xj , yk) . Applying the divergence theorem with one point quadrature rule used
to integrate along the edges of the cell (see [10]) to obtain

∆x∆y
dUj,k(t)

dt
+ [fj+ 1

2 ,k − ν(Uj+ 1
2 ,k)x − fj− 1

2 ,k + ν (Uj− 1
2 ,k)x]∆y(5)

+ [gj,k+ 1
2
− ν(Uj,k+ 1

2
)y − gj,k− 1

2
+ ν(Uj,k− 1

2
)y ]∆x = 0.

where (Uj+ 1
2 ,k)x is the space derivative of U w.r.t. x at the point (xj+ 1

2
, yk) and

where

xj+ 1
2

=
xj + xj+1

2
, xj− 1

2
=

xj + xj−1

2
, yk+ 1

2
=

yk + yk+1

2
, yk− 1

2
=

yk + yk−1

2
,

j = 2, ..., N − 1 and x 1
2

= y 1
2

= 0 , xN+ 1
2

= yN+ 1
2

= 1.

As the solution values are only piecewise constant inside each cell the evaluation of
the convective fluxes midway along the edge involves the approximate solution of four
one-dimensional Riemann problems in the direction of the normals to the edges of
the quadrilateral. This is done by using the upwind scheme of Osher and Engquist
as described by Koren [10], who shows that this is an efficient, accurate, and robust
means of treating convection problems. The convective fluxes fj+ 1

2 ,k and fj− 1
2 ,k are

defined by

fj+ 1
2 ,k = f̂(xj+ 1

2
, yk, t , Ux

j,k(xj+ 1
2

, yk, t) , Ux
j+1,k(xj+ 1

2
, yk, t) )

fj− 1
2 ,k = f̂(xj− 1

2
, yk, t , Ux

j−1,k(xj− 1
2

, yk, t) , Ux
j,k(xj− 1

2
, yk, t) )

where Ux
j,k(x, y, t) is the x dimensional upwind interpolant from cell j, k evaluated at

the mid-point (x, y, t) of an edge. The flux function f̂ is defined by the solution of
a Riemann problem with Ux

j,k(x, y, t) and Ux
j+1,k(x, y, t) as the discontinuous values

on each side of the edge. These values are calculated by x-dimensional upwind in-
terpolants from cells j, k and j + 1, k respectively. The convective fluxes gj,k+ 1

2
and

gj,k− 1
2

are defined in the same way by

gj,k+ 1
2

= ĝ(xj , yk+ 1
2
, t , Uy

j,k(xj , yk+ 1
2
, t) , Uy

j,k+1(xj , yk+ 1
2
, t) )

gj,k− 1
2

= ĝ(xj , yk− 1
2
, t , Uy

j,k−1(xj , yk− 1
2
, t) , Uy

j,k(xj , yk− 1
2

, t) )

where Uy
j,k(x, y, t) is the y dimensional upwind interpolant from cell j, k evaluated

at the mid-point (x, y, t) of an edge. The function ĝ is defined by the solution of a
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Riemann problem with Uy
j,k(x, y, t) and Uy

j,k+1(x, y, t) as the discontinuous values on
each side of the edge.

Although the piecewise constant values on either side may be used this only
gives a first-order scheme. Koren [10], for example, shows how upwind left and right
piecewise linear interpolants can be built up on the edge by using solution values from
the quadrilaterals and their neighbours on either side. Limited combinations of these
interpolants can be used to produce more accurate estimates of solution values on the
edge. For instance

Ux
j−1,k(xj− 1

2
, yk, t) = Uj−1,k(t) +

∆x

2
(Uj−1,k(t)− Uj−2,k(t))

∆x
B(rx

j−1, 1)

and Ux
j,k(xj− 1

2
, yk, t) = Uj,k(t)−

∆x
2

(Uj+1,k(t)−Uj,k(t))
∆x

B(
1
rxj

, 1),

where the ratio rx
j is defined by

rx
j =

Uj+1,k(t)− Uj,k(t)
Uj,k(t)− Uj−1,k(t)

.(6)

Roe, [15], shows that, on uniform meshes, different limiter functions, B(., .) , give rise
to different spatial accuracies. Three useful choices of limiter are:
First Order Method:

B1(rx
j , 1) = 0(7)

Second Order Method: ( reverts to first-order if rx
j ≤ 0 )

B2(rx
j , 1) =

rx
j + |rx

j |
1 + |rx

j |
(8)

Third Order Method:

B3(rx
j , 1) = 0.25 + 0.75rx

j(9)

where in each case the ratio rx
j is defined as in equation (6) above. The first order

scheme smears shocks excessively. The second order scheme is due to Van Leer while
the third order scheme is due to Leonard and produces non-monotone solutions, see
Roe [15]. For these reasons the first and third-order schemes will be used mainly as
part of the spatial error estimation process. The third-order scheme may be modified
to produce monotone solutions, as was done by Gaskell and Lau [7] (in somewhat
different notation) to get

B4(rx
j , 1) = max(0,min(2rxj ,min(0.25 + 0.75rxj , 4))).

The boundary conditions are, for the sake of simplicity, assumed to define the
solution on the boundary as in equation (3). These exact boundary solution values
are used in the appropriate flux and derivative calculations. For purely hyperbolic
equations the method of characteristics is used to determine the boundary conditions.
The initial condition is defined by evaluating the function u0(x, y) at the spatial mesh
points

Ui,j(0) = u0(xi, yj) , i = 1, ..., N , j = 1, ..., N.
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The system of differential equations in time (5), after dividing by ∆x∆y , may be
written in vector form as:

U̇ = FM ( t, U(t) ),(10)

where the M dimensional vector , M = N × N , is defined by

[U(t)]k = Ui,j(t) k = (i− 1) × N + j, i = 1, ..., N , j = 1, ..., N.(11)

In the cases considered here the system of differential equations (10) is non-stiff as
the p.d.e. (1) has convective terms dominating small diffusive terms.

3. Time Integration of Conservation Laws. The error in the numerical
solution depends on both the spatial discretisation error and on the time integration
error. The approach adopted here is to decouple these two errors and to try and
control them individually. The initial value problem to be solved is given by equation
(10) with the true solution [U(tn)]pn=0 approximated by [V (tn)]pn=0 at a set of discrete
times 0 = t0 < t1 < ... < tp = te by a time integration method. The vector of the
values of the overall error at the spatial mesh points, at any time t, is defined by E(t)
where

E(t) = u(t)− V (t)(12)

and where u(t) is the restriction of the exact p.d.e. solution to the mesh i.e.

[ u(t) ]k = u(xi, yj , t) , k = (i− 1)×N + j, i = 1, ..., N , j = 1, ..., N.

The vector E(t) may also be written as a combination of the restriction of the p.d.e.
spatial discretisation error e(t) , which represents the spatial discretisation error at
the mesh points and is defined by

e(t) = u(t) − U(t),(13)

and the o.d.e. global error g(t) ; that is,

E(t) = u(t)− V (t) = (u(t)− U(t)) + (U(t)− V (t))(14)
= e(t) + g(t).

In order that the time integrator is used efficiently, the temporal error g(t) should not
dominate the spatial discretisation error e(t) but nor should the o.d.e.s be integrated
with a much higher degree of accuracy than that already attained in space. It follows
that the spatial and temporal errors should be roughly the same order of magnitude,
although in practice the spatial discretisation error must dominate. This dominating
error (and hence the overall error) can then be controlled by spatial remeshing. As
the spatial error varies during the integration it is difficult to select a single o.d.e.
tolerance that will ensure that the spatial error dominates. Thus the time accuracy
tolerance must be proportional to the spatial discretisation error.

Most of the codes available for solving time-dependent o.d.e.s, attempt to control
the local time integration error in the computed solution with regard to a user-supplied
accuracy tolerance, tol. The local error is defined in terms of the local solution on
[tn, tn+1], y

n+1
(t), which is the solution of the o.d.e.

ẏ
n+1

(t) = FM (t, y
n+1

(t)), y
n+1

(tn) = V (tn).(15)

The local error per step (LEPS) at tn+1 is then given by

len+1(t) = V (tn+1)− y
n+1

(tn+1) .(16)

The local error per unit step (LEPUS) is given by len+1(t)/kn where kn = tn+1− tn .
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3.1. The Adaptive Theta Method of Berzins and Furzeland. The Theta
( θ ) method algorithm of Berzins and Furzeland, [3], can handle both stiff (diffusion or
source term dominated) and non-stiff (convection-dominated) problems by automati-
cally selecting the best value of theta and the most efficient iteration method (Newton
or functional iteration ) with respect to step size and cost per step. The criteria for
selecting theta and for switching are established by optimising the permissible step
size.

Berzins [2] shows that the method has similarities with the iterated Leap Frog
method of Hyman [9] in that Hyman’s method may be viewed as the θ method
with local extrapolation and a value of θ which depends on the present and previous
stepsizes.

The Theta method is defined as follows. Given the approximation V (tn) to U(tn)
, and the approximation V̇ (tn) to U̇(tn) , then the numerical solution at tn+1 , where
tn+1 = tn + k and k is the time step size, is denoted by V (tn+1) and is defined by

V (tn+1) = V (tn) + (1− θ)kV̇ (tn) + θkFM (tn+1, V (tn+1)), 0 < θ < 1.(17)

As this formula is implicit in V (tn+1) , an iterative method and an initial predictor for
V (0)(tn+1) , see [3], are needed. The simplest iterative method generates successive
correctors from the functional iteration formula:

V (m+1)(tn+1) = V (tn) + (1− θ)k V̇ (tn) + kθ FM (tn+1, V
(m)(tn+1)),(18)

where m = 0, 1, .. .
The condition for the convergence of functional iteration with a rate of convergence
rc is

k L θ < rc where rc < 1 ,(19)

L = Sup || J || , J is the Jacobian matrix
[

∂F M

∂V n+1)

]
evaluated at t and an

unknown point, V (tn+1) , and where L is a suitable Lipschitz constant for some
matrix norm. The Theta code used here estimates L as in [3] by using the computed
rate of convergence of functional iteration. A value of rc = 0.3 is used and the
iteration is terminated when convergence is sufficiently fast and the final correction
to the solution is sufficiently small.

An alternative approach is to use the iteration (18) for a fixed number of times
without insisting that (19) be used. This is similar to the approach used in some
Adams method codes and means that only the local error test described in the next
section is being used to control the timestep.

3.2. Local Error Estimation. The aim of most integrators for o.d.e.s of the
form of (10) is to control the local error per step so that it is less than a user-supplied
tolerance, TOL i.e.

|| len+1(t) || = λ TOL ,(20)

where λ is a positive acceptance factor that is less than one . In the case of the Theta
Method the local error is given by

len+1(tn+1) = −y
n+1

(tn+1) + V (tn) + (1− θ)kV̇ (tn) + θkFM (tn+1, V (tn+1)).
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Expanding V (tn) , ( = y
n+1

(tn) ) about tn+1 using the local solution, as defined by
(3.4), and its time derivatives gives:

len+1(tn+1) = θk (FM (tn+1, V (tn+1)) − FM (tn+1, yn+1
(tn+1)) )

−(1− θ)k(ẏ
n+1

(tn+1)− V̇ (tn)) +
1
2
k2y(2)

n+1
(tn+1)−

k3

6
y(3)

n+1
)(tn+1) + O(k4).

Applying the mean-value theorem to the terms involving FM , using the definitions
(15) and expanding the derivatives of y

n+1
(tn+1) about tn gives

(I − kθJ)len+1(tn+1) ≈ (θ − 1
2
)k2y(2)

n+1
(tn) + (θ − 1

3
)
k3

2
y(3)

n+1
(tn) + O(k4).

In the case when the o.d.e. system is stiff, the LU decomposition of the matrix
( I −k θ J ) is available and may be used as in estimating the local error , see [3]. In
the non-stiff case the term kθJ is assumed to be small, see (19), and so is discarded
giving the local error estimate:

len+1(tn+1) = (θ − 1
2
)k2y(2)

n+1
(tn) + (θ − 1

3
)
k3

2
y(3)

n+1
(tn) + O(k4).(21)

The implementation of this local error estimate used here is given by:

len+1(tn+1) = (θ − 1
2
) k ∆n+1 + (

s

1 + s
)
1
6

( k ∆n+1 − s k ∆n )(22)

where

s =
tn+1 − tn
tn − tn−1

, ∆n = (V̇ (tn)− V̇ (tn−1)) ,

∆n+1 is similarly defined and both vectors are stored by the code. A Taylor’s series
analysis gives

∆n+1 = k V (2)(tn) +
k2

2
V (3) (tn) + O(k3).

and a similar expression for ∆n . Substituting ∆n+1 and ∆n into (22) gives an
expression of the form of (21) but with the derivatives of the local solution replaced
by those of the computed solution. An alternative error estimate, derived originally
for stiff o.d.e.s, is used by Berzins and Furzeland [3].

The choice of error norm should reflect the accuracy being sought in the numerical
solution as a whole. In the case of hyperbolic conservation laws this means that we
must use an appropriate norm in which the method converges - such as an L1 or an
L2 norm, Leveque [13]. In this paper the discrete L1 norm in space will be used unless
otherwise stated.

3.3. Stability for Advection Equation. This section will consider the issue
of stability for the advection equation defined by

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0 ,
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with known initial and boundary values. A zero limiter (7) gives the standard first-
order in space upwind discretization

U̇j,k(t) = − a

∆x
[ Uj,k(t)− Uj−1,k(t) ] − b

∆y
[Uj,k(t)− Uj,k−1(t)]

which may be written in vector notation as the o.d.e. system:

U̇(t) = − a

∆x
[ Ax

N ] U(t) − b

∆y
[ Ay

N ] U(t) .(23)

The spatial discretisation method of Section 2 on a uniform mesh gives rise to the
o.d.e. system:

U̇j,k(t) =
−a

∆x
[1 +

1
2
(Bi(rx

j , 1)− 1
rx
j−1

Bi(rx
j−1, 1))][Uj,k(t)− Uj−1,k(t)](24)

−b

∆y
[1 +

1
2
(Bi(r

y
j , 1)− 1

ry
j−1

B(ry
j−1, 1))][Uj,k(t)− Uj,k−1(t)],

where i = 1, 2 or 3 denotes the limiter in use. Using vector notation this may be
written as:

U̇(t) = − a

∆x
[I + Bx

i (t, U(t)) ] Ax
N U(t)− b

∆y
[I + By

i (t, U(t)) ] Ay
N U(t)(25)

where the matrix Ax
N corresponds to the standard first order upwind approximation

in the x dimension and Bx
i corresponds to the terms involving the limiter function

Bi(., .) in the x dimension. For the sake of brevity the dependence of the matrices
Bx

i and By
i on the solution will be assumed but no longer stated. Define the matrix

Cx
N to be the product of these matrices:

Cx
N = [ I + Bx

i ] Ax
N ,

and define the matrix Cy
N analogously so that equation (25) may be written as.

U̇ = − a

∆x
Cx

N U(t) − b

∆y
Cy

N U(t)(26)

Assuming that the dependence of the matrices Cx
N and Cy

N on the solution through the
limiter terms may be neglected, the stability limit for functional iteration to converge
for this problem with the time integration and spatial discretisation methods used is,
see equation (19),

k θ || a

∆x
Cx

N +
b

∆y
Cy

N || < rc .(27)

Define the ratio δ by δ = |a|∆y
|b|∆x . The addition of equation (27) to itself multiplied by

δ then gives

k

[
|a|
∆x

+
|b|
∆y

]
|| Cx

N + δ Cy
N || <

rc(1 + |δ|
θ

.(28)

The requirement that functional iteration converges thus imposes a CFL type stability
condition. While this CFL condition provides a stable timestep there is no guarantee
of accuracy. It will be shown that the new accuracy control introduced here also gives
rise to a similar condition.
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3.4. Integration using Stability Criteria Only. A standard approach in the
time integration of hyperbolic equations is to use the CFL stability condition alone
to choose the timestep. This approach may also be used with the Theta Method
described above. In this case (assuming ∆x = ∆y ) the time step is chosen solely so
that it satisfies the equation

k

∆x
< CFL .(29)

with the number CFL specified by the user. In the experiments reported in Section 6
two functional iterations are performed on each time step. Great care has to be taken
when chosing the value of CFL as the numerical solution may become unstable for
values that are too large.

4. Temporal Error Control and Balancing Space and Time Errors. The
main difficulty with the temporal local error per step (LEPS) control is that the time
global error is not proportional to the local error tolerance, tol . In order to balance
the spatial and temporal errors, it is desirable that the error control strategy should
yield a solution with a time global error that is proportional to the requested accuracy.
This is said to be the case, Higham [8], if the global error at time t for an accuracy
requirement TOL is g(t)TOL , then, for r > 0 ,

g(t)TOL×r = r × g(t)TOL .

Higham [8] describes the work of Stetter who shows that this tolerance propor-
tionality is satisfied for all tn if and only if the local errors len+1(t) obtained for an
accuracy tolerance tol satisfy

len+1(tn+1) = γ̄ (tn+1, tn) kn tol + o( kntol ), n = 0, ..., p− 1(30)

where γ̄(τ, t) behaves like an integral mean over [τ, t] of a function that is independent
of tol and bounded on [0, te] and kn = tn+1 − tn . Here, o(kntol) denotes a term that
is numerically negligible compared with terms of order kntol in the same equation.
From this it follows that in order that the time global error be a fraction of the spatial
discretisation error, i.e. proportional to it, we must control the LEPUS rather than
the LEPS, with respect to a tolerance based on the spatial discretisation error. This
may be achieved by considering the relative contributions of the temporal local error
and the spatial discretisation error to the overall error in the numerical solution. The
equation for the evolution of the spatial discretisation error is, [11], after neglecting
second-order terms in the error,

ė(t) = J e(t) + TE(t, u(t) ), e(0) = 0,(31)

where the space truncation error is defined by

TE(t, u(t) ) = u̇− FM (t, u(t))(32)

and where the Jacobian matrix, J , is defined by J =
[

∂F M

∂V )

]
. Integrating equation

(31) over the time step [tn, tn+1] gives the growth of the spatial discretisation error

e(tn+1)− e(tn) =
∫ tn+1

tn

J e(t) + TE(t) dt .
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The growth of the global time error over the same interval is governed by a similar
equation (see [11])

g(tn+1)− g(tn) = len+1(tn+1) +
∫ tn+1

tn

JW (t) dt,

where W (tn) = g(tn). Thus, the growth of the overall error in the method of lines is
governed by

E(tn+1)− E(tn) = len+1(tn+1) +
∫ tn+1

tn

J(v(t) + W (t)) + TE(t) dt(33)

where E(tn) = v(tn) + W (tn) is the global error at time tn. This is the key equation
for balancing the spatial and temporal errors, as it shows how the time local error
and the spatial truncation error both contribute to the growth of the overall error.
Lawson et al [11] show that the time error will not be dominant if an error control of
the form:

|| len+1(tn+1) || ≤ ε ||
∫ tn+1

tn

J(v(t) + W (t)) + TE(t) dt ||(34)

is used. Furthermore the presence of the integral on the right-hand side of this equa-
tion gives a natural LEPUS approach. Lawson et al [11] implement this strategy
by estimating the overall error using a global error estimator which depends for its
efficiency on the main integration using a modified Newton method. Their approach
is thus not so attractive for convection-dominated problems for which explicit time
integration methods or implicit methods using functional iteration are more likely to
be used.

4.1. Balancing the Local Space and Time Contributions. The simplest
alternative approach is to balance the local space and time contributions to the error.
This approach probably originates with the work of Gary [6], who used it to determine
the optimal time step for fixed time step methods. Neglecting two out of the three
terms in the integral on the right side of equation (34) gives rise to the following error
control in the o.d.e. time integration:

|| l̂en+1(tn+1, tol) || < ε kn || TE(tn+1) ||(35)

where the vector norm used is that of Section 3 and the integral of the space trunca-
tion error is approximated by a one-point quadrature rule (and the LEPUS accuracy
tolerance tol is given by ε || TE(tn+1) ||, in this case).

4.2. An Error Control Strategy based on Moore and Flaherty. Moore
and Flaherty [14] use an error control algorithm for parabolic equations with the
advantages of both the above methods in that the estimate is local to the timestep
but also provides a measure of the error in the computed solution. The algorithm
is local in that it assumes that at the start of any timestep the error is zero. The
disadvantage of this approach is that there is no overall estimate of the combined
spatial and temporal error, such as that of Strouboulis and Oden [15]. Equation (33)
provides a way of comparing this approach with that of Lawson et. al. [11]. The
quantity that is estimated, ê(t), may be referred to as the local in time space error
and may be written as:

ê(tn+1) =
∫ tn+1

tn

J ê(t) + TE(t) dt(36)
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where ê(tn) = 0 . The Moore and Flaherty error control is then of the form given by

|| len+1(tol) || < ε || ê(tn+1) ||.(37)

By using equation (36) equation (33) may be written as

E(tn+1)− E(tn)− len+1(tn+1) = ê(tn+1) +
∫ tn+1

tn

J W (t) dt

where W (tn) = E(tn) . From this we see that the Moore and Flaherty error control
has similarities with that of Lawson et. al. [11]. The main difference between the
two is that the Moore and Flaherty approach neglects part of the integral term in
equation (33). This term corresponds to the propagation forward over the time step
to tn+1 of the existing error at time tn . Providing that the integration is stable this
term can reasonably be expected to decrease in size.

The implementation of this estimate used here differs from that of [14] in that
the different choices of limiters defined by equations (7) to (9) allow three different
options regarding computing the solution and estimating the error.
Method A: In this case the computed solution is the second-order solution (8) and
the first-order solution (7) is computed for use in error estimation.
Method B: The computed solution is again the second-order solution (8) and a third-
order solution (9) is calculated for error estimation.
Method C: The computed solution is the first-order solution (7) and a second-order
solution (8) is calculated for error estimation.

All three methods involve the calculation of a main solution and an auxiliary
calculation to generate a solution of different order for use in spatial error estimation.
In the case of Method A the difference between the two solutions is only an estimate
of the error in the low-order solution and so local extrapolation in space is effectively
being used when we move forward in time with the high-order solution. The alterna-
tive (Method C) is to compute a first-order solution and then to estimate the error by
computing a second-order solution. It will be seen that this reduces the accuracy by
a factor of two, see Section 6, compared to Method A as it is the first-order error that
is carried forward rather than the second-order error. It is perhaps worth stressing
here that for problems consisting only of shock-wave type solutions, both the first
and second order methods give solutions which are first-order accurate.

An alternative possibility is to use an h-extrapolation approach to estimate the
error e.g. Berger and Oliger [1] and Lawson et al [11].

Regardless of which method is used, the auxiliary solution used in spatial error
estimation is assumed to be computed by a modified o.d.e. system which will be
denoted by

v̇n+1(t) = F̂M (t, vn+1(t)), vn+1(tn) = V (tn), v̇n+1(tn) = F̂M (tn, V (tn)).(38)

The local-in-time space error is then estimated from

ê(tn+1) = V (tn+1) − vn+1(tn+1).(39)

The truncation error of the auxiliary solution is defined by

TEl(t, u(t) ) = u̇(t) − F̂M (t, u(t))(40)
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and the spatial error of the auxiliary solution, denoted by el(t) , satisfies an equation
similar to equation (31), after again neglecting second order terms:

ėl(t) = Jl el(t) + TEl(t, u(t) ) , el(0) = 0,(41)

where the Jacobian matrix Jl is defined by

Jl =
∂F̂M

∂V
.

4.3. Tolerance Proportionality. The aim of this section is to give a brief and
heuristic argument to indicate that the spatial error dominates the temporal error.
The main idea is that if the spatial error is proportional to some mesh parameter, say
∆x , then the temporal error will, when using the error control (37), be proportional
to a tolerance ε ∆x . Hence for a suitably chosen ε the spatial error will dominate. In
order to demonstrate this tolerance proportionality the first step is to analyze the error
control assuming that there is no temporal error. The imposition of the condition

el(tn) = e(tn)

allows the local in time space error defined by (39), assuming that there is no temporal
error, to be written as

ê(tn+1) = el(tn+1) − e(tn+1)(42)

Combining equations (31), (41) and (42) gives an equation for the the growth of this
error over the time step [tn, tn+1] :

ê(tn+1) =
∫ tn+1

tn

Jlê(s)− [J − Jl]e(s)− TE(s, u(s) ) + TEl(s, u(s) )ds,(43)

where ê(tn) = 0 . From the theory of Coppel, as used by Lawson et al [11], this may
be rewritten as

ê(tn+1) = Y ∗(tn+1)
∫ tn+1

tn

[Y ∗]−1(s) [[Jl − J ]e(s)− TE(s, u(s) )) + TEl(s, u(s) )] ds,

(44)
where Y ∗(t) is the fundamental matrix, [11], for the equation v̇ = Jl v. The spatial
error in the primary solution, e(s) , appearing in this equation may similarly be
written as

e(t) = Y (t)Y −1(tn)e(tn) + Y (t)
∫ t

tn

Y −1(s)TE(s, u(s) )ds(45)

where Y (t) is the fundamental matrix for the equation v̇ = Jv , [11]. Equations (44)
and (45) show that the error ê(tn+1) can be written in terms of the two spatial trunca-
tion errors and the spatial error at tn. The assumption in a tolerance proportionality
argument for spatial error domination is that it is possible to extract a constant fac-
tor from both truncation errors. For instance in the case of a first order method the
truncation error may be assumed to have the form

TE(t) = ∆x TE]
1(t) + ∆y TE]

2(t) .
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By combining the two right-hand terms and extracting a common factor of ∆x ,
assuming that the ratio ∆x/∆y is a constant it is possible to rewrite the above
equation in the form:

TE(t) = ∆x TE](t) .(46)

The same approach may be adopted for the auxiliary truncation error

TEl(t) = ∆x TE]
l (t) .

This assumption will be shown to hold for model problems in Section 5 below. From
equation (45) it also follows that this common factor may also be extracted from the
spatial error

e(t) = ∆x e](t) .

Given this assumption the temporal error control may be written as

||len+1(tn+1)|| ≤ ε ∆x ×

||Y ∗(tn+1)
∫ tn+1

tn

[Y ∗]−1(s)
[
[J − Jl]e](s) + TE](s, u(s) ))− TE]

l (s, u(s) )
]
ds||.

Thus, the error control strategy is of the required LEPUS form, [8], given by equation
(30):

|| len+1(tn+1) || ≤ TOL × k × 1
tn+1 − tn

∫ tn+1

tn

γ(t) dt

where γ(t) does not depend on TOL , which here is ε ∆x , and k = tn+1− tn . This
may be used as in Lawson et al [11] as part of a proof by induction to show, using
equation (46) and Stetter’s results, that the global error due to time integration will
be proportional to ε ∆x while from (46) the spatial error will be proportional to ∆x.
Thus for ε sufficiently small the spatial error dominates.

5. Implementation and Analysis of Error Balancing. This section de-
scribes how error balancing is implemented in a code and provides an analysis of
this implementation.

5.1. Computing the Time Tolerance. The local in time space error is com-
puted by applying the θ method of Section 3 to equation (38) to get

vn+1(tn+1) = V (tn) + θkF̂M (tn+1, vn+1(tn+1)) + (1− θ)kF̂M (tn, V (tn)).

In practice, as only the order of magnitude of the norm of the spatial error is needed,
it appears sufficient to use only one step of functional iteration to compute vn+1(tn+1)
with V (tn+1) being used as the predicted value. Combining this with equations (17)
and (39) gives

ê(tn+1) = θ k [ FM (tn+1, V (tn+1)) − F̂M (tn+1, V (tn+1)) ](47)
+(1− θ) k [ FM (tn, V (tn)) − F̂M (tn, V (tn)) ]
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where k = tn+1 − tn . Assuming that the main solution is calculated by functional
iteration to convergence then

V̇ (tn) = FM (tn, V (tn)) .(48)

In the case when the primary solution and its time derivative are substituted into
equation (38), denote the residual of the secondary integration by

r (tn, V (tn)) = V̇ (tn) − F̂M (tn, V (tn)) .(49)

Combining equations (48) and (49) enables equation (47) to be rewritten as

ê(tn+1) = θk r(tn+1, V (tn+1)) + (1− θ)k r(tn, V (tn)) .(50)

From this equation the LEPUS tolerance used in the code on the step to tn+1is then
given by

TOL = ε || θ r(tn+1, V (tn+1)) + (1− θ) r(tn, V (tn)) || .

An LEPS tolerance may also be defined from (50) by

TOL = ε || ê(tn+1) ||(51)

and may be used equally well in a LEPS code.

5.2. The Effect of Errors on TOL. It is necessary to consider the effect of
the errors in the solution on the integrity of the error estimator defined by ( 47 ).
From equation (14) it follows that

V (tn+1) = u(tn+1)− E(tn+1) .

This expression is substituted into equation (47) . The mean value theorem is applied
and the truncation errors of the primary and secondary discretisations as defined by
equations (40) and (32) respectively, are used to rewrite equation (47) as

ê(tn+1) = − θk[ TE(tn+1, u(tn+1))− TEl(tn+1, u(tn+1)) + G(tn+1) ](52)
− (1− θ)k[ TE(tn, u(tn))− TEl(tn, u(tn)) + G(tn) ]

where

G(t) = [J − Jl] E(t).(53)

This equation may be seen to be related to the integral on the right side of (44)
and also shows that the effect of any time global error in the determination of TOL is
multiplied by θ ε . From the previous section it is also to be expected that the norm of
the time global error is a fraction ε of the norm of the spatial error. For ε sufficiently
small it follows that the value of TOL should not be corrupted by temporal error.
This result is similar to that proved by Lawson et al [11] for their error estimator.
Equations (37) and (52) show that the new error control, when implemented using
(47), reduces to one very similar to that of Gary [6] in the fixed step case.

The error estimator for ê(t) is very similar in the case when the low-order solution
is the accepted solution and the high-order solution is only computed locally for use
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in the error estimate. A straightforward analysis along the lines of that above leads
to

ê(tn+1) = − θk[ TE(tn+1, u(tn+1))− TEl(t, u(tn+1)) + Ĝ(tn+1) ](54)
− (1− θ)k[ TE(tn, u(tn))− TEl(tn, u(tn)) + Ĝ(tn) ]

where

Ĝ(t) = [J − Jl] El(t) .(55)

and where El(tn+1) is now the global error in the low order solution. A comparison
of equations (52) and (53) with equations (54) and (55) shows that the propagated
error on the right side of (54) is the high-order error while in (52) it is the low order
error. The numerical results in Section 6 will show that this difference can make a
large change to the dynamic behaviour of the error.

5.3. Order of Truncation Error. This section will examine the form of the
error estimator for the advection equation of Section 3.3. From equations (23) (24)
and (47) the local-in-time spatial error for methods B and C as defined in Section 4.2
has the form

ê(tn+1) = k θ(
−a

∆x
[Bx

i −Bx
i+1]A

x
NV (tn+1)−

b

∆y
[By

i −By
i+1]A

y
NV (tn+1))(56)

+ k (1− θ)(
−a

∆x
[Bx

i −Bx
i+1]A

x
NV (tn)− b

∆y
[By

i −By
i+1]A

y
NV (tn)) .

It should be noted that the right side of this equation is multiplied by (-1) if Method
A of Section 4.2 is used. All the four terms on the right side of this expression are of
the same type. Consider for example the term

a

∆x
[ Bx

i − Bx
i+1 ] Ax

N V (tn+1) .(57)

Denote the components of the vector V n+1) as in equation (11). Define

Φj = Vj+1,k(t)−Vj,k(t) , Φj−1 = Vj,k(t)−Vj−1,k(t) , Φj−2 = Vj−1,k(t)−Vj−2,k(t) ,

rx
j = Φj/Φj−1 and rxj−1 = Φj−1/Φj−2 .(58)

From standard Taylor’s series analysis it follows that

Φj − Φj−1 = O(∆x2) and Φj−1 − Φj−2 = O(∆x2) .

Using this notation each component of equation (57) has the form

a

2∆x
[Bi(rx

j , 1)−Bi+1(rx
j , 1)−

Bi(rx
j−1, 1)

rx
j−1

+
Bi+1(rx

j−1, 1)
rx
j−1

][Vj,k(t)− Vj−1,k(t)].

5.3.1. Method A Error Estimator. In the case of Method A, as defined in
Section 4.2 , i = 1 in equation (57) . Substituting in from (7), and (8) enables the
term in (57) to be written as

− a

2∆x
[
Φj |Φj−1|+ Φj−1|Φj |

|Φj |+ |Φj−1|
− Φj−1|Φj−2|+ Φj−2|Φj−1|

|Φj−1|+ |Φj−2|
] .
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This may be rewritten as

− a

2∆x
[

|Φj−1|
|Φj |+ |Φj−1|

(Φj − Φj−1) +
|Φj−1|

|Φj−1|+ |Φj−2|
(Φj−1 − Φj−2)] .(59)

Define the terms 0 < αj < 1 and 0 < βj < 1 by

αj =
|Φj−1|

|Φj |+ |Φj−1|
, βj =

|Φj−1|
|Φj−2|+ |Φj−1|

.

Then equation (59) may be written as

− a

2∆x
[αj (Φj − Φj−1) + βj (Φj−1 − Φj−2)] .

From definitions (58) this term is O(∆x) and so by applying the same approach as
above to all the terms in equation (56) the error estimator ê(tn+1) , as defined by
equation (50), may be rewritten as

ê(tn+1) = k [ E1(tn, tn+1) ∆x + E2(tn, tn+1) ∆y ](60)

where the vectors E1(tn, tn+1) and E2(tn, tn+1) collect together the terms at time tn
and tn+1 .

5.3.2. Method B Error Estimator. In the case of Method B as defined in
Section 4.2 i = 2 in (57) and substituting in from (8), and (9) into equation (57) gives

a

2∆x
[

Φj |Φj−1|+ Φj−1|Φj |
|Φj |+ |Φj−1|

− (3Φj + Φj−1)
4

−

Φj−1|Φj−2|+ Φj−2|Φj−1|
|Φj−1|+ |Φj−2|

+
(3 Φj−1 + Φj−2)

4
] .

This may be rewritten as

a

2∆x
[ (

|Φj−1|
|Φj |+ |Φj−1|

− 3
4

) (Φj −Φj−1) + (
|Φj−1|

|Φj−1|+ |Φj−2|
− 1

4
)(Φj−1−Φj−2) ]

and again as

a

4∆x
[
|Φj−1| − |Φj |
|Φj |+ |Φj−1|

(Φj−Φj−1)+
|Φj−1| − |Φj−2|
|Φj−1|+ |Φj−2|

(Φj−1−Φj−2)−
1
2
(Φj−2Φj−1+Φj−2)].

There are two cases to consider. In the case when Φj and Φj−1 and Φj−2 have the
same sign (say negative- purely for illustration ) then the van Leer method is second
order and the term may be rewritten as

a

4∆x

[
(Φj − Φj−1)2

|Φj |+ |Φj−1|
− (Φj−1 − Φj−2)2

|Φj−1|+ |Φj−2|
− 1

2
(Φj − 2 Φj−1 + Φj−2)

]
.

Straightforward Taylor’s series analysis shows that all the terms within [...] are O(∆x3)
and hence that the error estimate will have the form

ês(tn+1) = k [ E3(tn, tn+1) ∆x2 + E4(tn, tn+1) ∆y2 ] .
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where the vectors E3(tn, tn+1) and E4(tn, tn+1) collect together the terms at time tn
and tn+1 . In the case when (say) the signs of Φj and Φj−1 differ then there is a
cancellation resulting from the equality

(Φj − Φj−1)
|Φj |+ |Φj−1|

= + 1 or − 1 ,

and hence the error estimate will have the same form as (60). Numerical testing
on the test problems in Section 6 shows that there is less difference than might be
expected between using Method A and Method B. In both cases the van Leer limiter
reverts to first-order for two thirds of the cases when non-zero solution gradients are
present. The overall rate of convergence in the L1 norm is only first order in both
cases.

5.4. Stability and Accuracy Requirements. As the error control (37) takes
into account the local growth in both the spatial and temporal errors it is of interest to
understand the relationship between this error control and the stability requirement
(19). Substituting equation (22) for the time local error and equation (47) for the local
in time space error into the error balancing equation (37) gives, assuming constant
timestep, the following equation:

|| (θ − 1
2
) k (V̇ (tn+1)− V̇ (tn)) +

k

12
(V̇ (tn+1)− 2 V̇ (tn) + V̇ (tn−1)) ||

= λ ε k ||θ r(tn+1, V (tn+1)) + (1− θ) r(tn, V (tn) )||(61)

where 0 < λ < 1 is the value in the local error acceptance test.
Assuming that the o.d.e. system may be treated as linear with a constant Jaco-

bian, J , over the last two timesteps, then from the definition of ∆n in equation (22)
it follows that

∆n = J (V (tn)− V (tn−1)) .

From equation (17), this in turn may be written as

∆n = k J V ∗
n where V∗

n = (1− θ) V̇(tn−1) + θ V̇(tn).

The left side of equation (61) may be rewritten as

|| (θ − 1
2
) k (V̇ (tn+1)− V̇ (tn)) +

1
12

( k (V̇ (tn+1)− 2 V̇ (tn) + V̇ (tn−1)) ||

= || k2 J ((θ − 1
2
) V ∗

n+1 +
1
12

(V ∗
n+1 − V ∗

n) ) ||.

From a property of matrix norms:

≤ || J || k2 || (θ − 1
2
) V ∗

n+1 +
1
12

(V ∗
n+1 − V ∗

n) ) || .(62)

From equation (19) the convergence requirement on functional iteration means that

k || J || ≤ rc / θ .
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From equations (61) and (62) it follows that

k λ ε || θ r(tn+1, V (tn+1)) + (1− θ) r(tn, V (tn)) ||

≤ rc
k

θ
||(θ − 1

2
) V ∗

n+1 +
1
12

(V ∗
n+1 − V ∗

n))||

and so the product λ ε must satisfy

λ ε ≤
rc || (θ − 1

2 ) V ∗
n+1 + 1

12 (V ∗
n+1 − V ∗

n) ) ||
θ || θ r(tn+1, V (tn+1)) + (1− θ) r(tn, V (tn)) ||

.(63)

This result shows that if ε is large (or the righthand side is small) then λ must be
small enough to satisfy (63), the step size will be such that the error test is readily
passed and stability will be controlling the time step size. This situation is readily
detected in time integration when the code consistently computes small ( < 0.1 )
values of λ as defined by (20) but is unable to increase the stepsize because of the
restriction imposed by (19) . In this case decreasing ε will allow λ to grow.

It is natural to ask if the new error control imposes a Courant-type condition on
the timestep. Equation (61) may be written as

k
|| (θ − 1

2 ) J V ∗
n+1 + 1

12 J (V ∗
n+1 − V ∗

n) ) ||
||θ r(tn+1, V u(tn+1)) + (1− θ) r(tn, V (tn)) ||

= λ ε

Using the form of the error estimator calculated in the previous sub-section this may
be written as

k

||E1(tn, tn+1)∆x + E2(tn, tn+1)∆y||
=

λ ε

||(θ − 1
2 )JV ∗

n+1 + 1
12J(V ∗

n+1 − V ∗
n))||

where E1 and E2 are known vectors whose precise form depends on whether method
A or B is used. This equation shows that the new error control has a form of CFL
stability condition built in and that the allowed timestep is proportional to ε .

6. Numerical Experiments. A number of experiments with problems in one
space dimension using the error control strategy given by equation (37) above are
given by Berzins [2] who also explains how the Theta Method time integrator was
modified to incorporate the new control. The test problems include the standard
Euler Equations Shock-Tube test problem of Sod, often used in the comparison of
algorithms for hyperbolic equations. The intention here is to use four test problems
to compare new approaches defined by Methods A, B and C in Section 4 with a
standard local error control and with stability alone controlled integration for two
dimensional problems. The four test problems used are:
1. Burgers’ Problem I. A convection diffusion problem, known as Burgers’ Equation,
which is defined by

∂u

∂t
+ w(x, t)

∂u

∂x
+ w(y, t)

∂u

∂y
− ν (

∂2u

∂x2
+

∂2u

∂y2
) = 0 , ν = 0.0001 ,

where (x, y, t) ε (0, 1) × (0, 1) × (0, 1] .
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The analytic solution is given by u(x, y, t) = w(x, t) w(y, t) , where w(x, t) is defined
by

w(x, t) =
0.1A + 0.5B + C

A + B + C
and

where A = e−0.05(x−0.5+4.95t)/ν ,B = e−0.25(x−0.5+0.75t)/ν) and C = e−0.5(x−0.375)/ν .

2. Anisotropic Test Problem. This problem has the interesting feature that the wave
moves at right angles to the characteristics. The problem is a slightly modified form
of the one used by Zegeling [19] in his work on the Moving Finite Element Method.
The p.d.e. is defined by

∂u

∂t
+ 3 u

∂u

∂x
+ 3 (1.5− u)

∂u

∂y
− 3 ν (

∂2u

∂x2
+

∂2u

∂y2
) = 0 , ν = 0.0001 .

The exact solution is

u(x, y, t) =
3
4
− 1

4 + 4 eB
, where B = 0.125(−x + y − 0.75t)/ν .

3. Burgers’ Test Problem II.
The problem is a nonlinear version of Burgers’ problem I .

∂u

∂t
+ u

∂u

∂x
+ u

∂u

∂y
− ν (

∂2u

∂x2
+

∂2u

∂y2
) = 0, ν = 0.0001 ,

where (x, y, t) ε (0, 1) × (0, 1) × (0.25, 1.25] .

The exact solution is given by

u(x, y, t) =
1

1 + eB
, where B = (x + y − t)/ν.

4. Two Dimensional Advection.
This problem consists of the advection of a steep ramp function of width 0.01 and

gradient 100 which effectively models a discontinuity.

∂u

∂t
+

∂u

∂x
+

∂u

∂y
= 0 , (x, y, t) ε (0, 1) × (0, 1) × (0, 1] .

The analytic solution is given by

u(x, y, t) = 1.1 + max ( min (δ, 0) , − 1)

where δ = 100 (0.1− 1
2 (x + y) + t) .

6.1. Testing Procedure. Problems 1-4 were solved using fixed evenly spaced
space meshes of 9x9 , 27x27 and 81x81 points. The meshes were constructed so that
the mesh points were the centres of square cells and so that the meshes were nested.
The Theta method described in Section 3 was used with the functional iteration
option switched on. Four different error control strategies were used within the time
integration routines:
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(i) The standard absolute LEPS strategy used in method of lines codes, that is,
controlling the local error, len+1(tn+1), with respect to a fixed tolerance, TOL, i.e.

|| len+1(tn+1) || ≤ tol.(64)

In this case the stability requirement on functional iteration (19) is not enforced.
(ii) The new strategy presented in Section 4, that is, controlling the local error,
len+1(tn+1), so that

|| len+1(tn+1) || ≤ ε || V (tn+1) − v(tn+1) ||.

Although this is a LEPUS strategy it has been implemented in a LEPS form simply
by defining tol in (64) by

tol = ε || V (tn+1) − v(tn+1) ||.

In this case again the stability requirement on functional iteration (19) is not enforced.
(iii) The stability timestep control described in Section 3.4 is used with the CFL
parameter set to 0.1 or 0.3 except for Problem 2 for which instability occurs with 0.3
and so the values 0.1 and 0.05 are used. The largest CFL value, defined according to
(29), that could be used on Problems 1 to 4 was 0.5 , 0.1 , 0.3 and 0.5 respectively as
defined by equation (29). In this case again the stability requirement on functional
iteration (19) is not enforced.
(iv) Strategy (ii) above is used but with the stability requirement on functional iter-
ation (19) enforced.

In the case of Methods (i) and (ii) above it is important to understand the effect
of the error control without an explicit stability condition being present. It is for
this reason that the functional iteration stability control is switched off and accuracy
alone used to control the timestep. In the case of method (iii) the functional iteration
stability requirement has again to be disregarded as it will otherwise interfere with
the CFL condition that is specified. In all cases when the functional iteration stability
condition is not used two functional iterations are performed per timestep.

6.2. Choice of ε . Before comparing the performance of the local error control
strategies, we must consider the choice of the parameter ε , used in the control
strategies (ii) and (iv) above. Lawson et. al. [11] suggest that ε should be sufficiently
small such that the spatial discretisation error dominates the time integration error
but sufficiently large so that the computational work will not be excessive. Numerical
testing indicates that ε should be in the range 0.1 to 0.5 since for ε > 0.5 the
maximum global errors increase sharply. This result is similar to that of Lawson et.
al. [11] who suggest using ε = 0.3 for parabolic problems. This value is found to
be optimal for method (iv) but in the case of method (ii), when Method A is used in
error estimation and when no stability restriction on functional iteration is enforced,
a value of 0.1 is more appropriate. This, in turn, matches results obtained by Berzins
[2] for one dimensional hyperbolic p.d.e.s. In the case of method B the error estimates
are smaller in size so ε = 0.2 fulfills the same role. Strategies (ii) and (iv) do not
require input from the user, but the user must supply the tolerance to be used in the
LEPS control (64) or the CFL number in equation (29). The only way for the user
to do this is to be very conservative or to adopt a trial and error approach to find the
largest tolerance or CFL number for which the spatial error dominates.
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Table 1
Results for Problem 1 - Burgers I

Max. L1 error x 1000 at Time
NPTS TOL T=0.11 T= 0.44 T= 0.77 T= 1.00 NSTEPS NFCN CPU

0.1D-1 34 61 60 55 24 61 0.31
0.1D-3 25 15 39 43 160 373 1.78

CFL 0.3 30 15 28 54 36 79 0.42
9x9 CFL 0.1 27 14 29 50 90 187 0.97

A 0.1 25 17 26 40 212 487 2.47
B 0.3 25 15 35 46 168 393 2.02
AS 0.3 25 16 37 50 98 257 1.30
0.5D-2 19 27 21 20 51 121 4.5
0.5D-4 11 8.4 20 31 376 865 32.7

CFL 0.3 11 8.6 23 27 108 223 8.8
27x27 CFL 0.1 10 8.6 20 27 270 547 21.9

A 0.1 10 8.3 24 30 392 899 34.2
B 0.2 10 8.6 15 32 336 765 31.0
AS 0.3 11 8.6 24 31 204 538 20.1
0.3D-2 12 19 15 15 139 319 109
0.3D-4 4.5 7.9 5.7 8.2 827 1897 647

CFL 0.3 4.9 8.3 4.8 7.0 324 655 234
81x81 CFL 0.1 4.6 8.1 4.7 6.9 810 1627 589

A 0.1 4.6 7.2 5.5 8.9 872 2019 687
B 0.2 4.6 8.1 4.6 7.0 813 1903 698
AS 0.3 5.1 6.9 8.5 6.6 432 1117 376

6.3. Comparison of Approaches. Tables 1 to 4 show the results obtained
when using the fixed LEPS strategy (6.1) with a range of accuracy tolerances. The
CPU time quoted, however, does not reflect the experimentation needed to actually
find the best tolerance. From these results it can be seen that by using smaller
tolerances the same accuracy is achieved but at a greater cost, while using larger
tolerances may increase the efficiency, but larger global errors are obtained, proving
that the spatial error is no longer dominating.
Key to Tables 1 to 5.
NPTS is the number of points used in the spatial mesh.
ε and TOL are the parameters used in the o.d.e. integration routine.
MAX L1 ERR is the maximum grid error found at the specified output times.
CPU is the amount of CPU time used, measured in seconds.
NSTEPS is the number of time steps used in the integration of the o.d.e.’s.
A 0.1 refers to the use of method A with ε = 0.1 and B 0.2 refers to the use of
method B with ε = 0.2
CFL 0.3 refers to the method of Section 3.4 with CFL = 0.3 .
AS 0.3 refers to the use of method A with ε = 0.3 and the stability requirement (19)
enforced.
CS 0.3 refers to the use of method C with ε = 0.3 and the stability requirement (19)
enforced.

A comparison is now possible with Method C in which the low-order solution
is propagated forward in time. Table 4 shows that in all cases the accuracy of the
solution is less than if method A or B is used. Note that the functional iteration
restriction (19) is used in this case.

6.4. Discussion of the Numerical Results. From Tables 1 to 4 it can be seen
that the new local error control strategies yield solutions of comparable accuracy when
solving all the problems. Summarising the results, the LEPUS strategy defined by
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Table 2
Error Results for Anisotropy Problem

Max. L1 error x 1000 at Time
NPTS TOL T=0.11 T= 0.44 T= 0.77 T= 1.00 NSTEPS NFCN CPU

0.1D-2 16 8.5 8.7 4.9 70 167 0.58
0.1D-3 18 6.9 8.3 4.9 99 239 0.76

CFL 0.1 17 6.6 8.3 4.7 90 187 0.64
9x9 CFL .05 17 6.6 8.3 4.7 180 367 1.18

A 0.1 18 7.1 9.5 4.8 89 217 0.74
B 0.2 19 6.9 8.5 5.2 74 173 0.59
AS 0.3 18 6.8 8.3 4.7 130 301 1.0
0.5D-3 8.0 3.4 4.1 2.3 216 509 13.0
0.5D-4 6.8 2.6 3.1 1.9 241 573 14.7

CFL 0.1 6.8 2.4 3.1 1.8 270 547 14.0
27x27 CFL .05 6.8 2.4 3.1 1.8 540 1087 27.7

A 0.1 6.8 2.5 3.1 1.8 265 617 15.6
B 0.2 7.0 2.5 3.1 1.8 235 509 13.8
AS 0.3 7.0 2.4 3.1 1.7 332 758 18.1
0.3D-3 3.3 2.7 3.2 1.2 677 1605 365
0.3D-4 2.4 0.9 1.1 0.6 711 1683 377

CFL 0.1 2.4 0.9 1.1 0.6 810 1627 380
81x81 CFL .05 2.4 0.9 1.1 0.6 1620 3247 758

A 0.1 2.4 0.9 1.1 0.6 689 1547 351
B 0.2 2.4 1.0 1.1 0.6 680 1485 366
AS 0.3 2.4 0.9 1.1 0.6 798 1626 369

Table 3
Results for Problem 3. Burgers’ II

Max. L1 error x 1000 at Time
NPTS TOL T=0.26 T= 0.69 T= 1.0 T= 1.3 NSTEPS NFCN CPU

0.1D-1 22 29 37 27 27 67 0.21
0.1D-2 4.1 25 42 26 46 105 0.32

CFL 0.3 7.1 24 38 30 36 79 0.27
9x9 CFL 0.1 2.6 23 35 28 90 187 0.58

A 0.1 2.0 28 47 35 67 190 0.56
B 0.2 2.0 29 37 27 52 125 0.45
AS 0.3 5.1 23 39 51 60 138 0.4
0.5D-2 6.7 10 21 17 82 197 4.7
0.5D-3 6.9 9 13 9 120 273 6.6

CFL 0.3 4.7 8.7 13 9.3 108 223 5.5
27x27 CFL 0.1 6.5 9.1 13 9.9 270 547 13.5

A 0.1 7.0 9.0 12 9.3 146 335 8.2
B 0.2 7.0 8.1 14 9.5 124 305 7.7
AS 0.3 4.1 12 13 10 121 327 7.0
0.3D-2 1.0 26 11 10 243 555 134
0.3D-3 1.1 3.3 4.3 3.9 311 699 169

CFL 0.3 0.9 3.1 4.5 3.4 324 655 166
81x81 CFL 0.1 0.9 2.9 4.2 3.2 810 1627 427

A 0.1 1.1 3.4 4.4 4.1 383 877 211
B 0.2 1.3 2.5 4.3 4.0 376 873 226
AS 0.3 1.2 2.8 4.1 3.2 483 997 229

equations (37) and (50) yields, automatically , solutions at least as accurate as those
obtained when controlling the LEPS with tolerances chosen in order that the spatial
discretisation error dominates (as it does for the LEPUS strategies) or when using
a CFL stability control alone. The user no longer has to experiment with different
accuracy tolerances to find the solution for which the spatial error is dominant.
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Table 4
First Order Results for Problem 3 - Burgers II

Max. L1 error x 1000 at Time
NPTS TOL T=0.26 T= 0.69 T= 1.00 T= 1.30 NSTEPS NFCN CPU

0.1D-1 19 48 68 57 32 77 0.2
0.1D-2 9.5 46 74 58 36 98 0.3

9x9 0.1D-3 2.8 45 67 57 106 237 0.7
CS 0.3 2.2 47 68 55 60 141 0.4
0.5D-2 5 19 26 22 84 215 4.5
0.5D-3 5 18 26 20 104 276 5.8

27x27 0.5D-4 6 18 25 20 210 446 10.2
CS 0.3 7 18 31 20 86 250 5.1
0.3D-2 2.0 6.2 8.7 6.7 241 498 114
0.3D-3 1.6 6.3 8.9 6.8 252 631 131

81x81 0.3D-4 1.5 6.0 8.3 6.4 565 1277 280
CS 0.3 1.6 6.1 8.3 6.6 300 616 145

Table 5
Results for Advection Example - Problem 4

Max. L1 error x 1000 at Time
NPTS TOL T=0.11 T= 0.55 T= 0.77 T= 1.00 NSTEPS NFCN CPU

0.01 25 110 59 13 33 77 0.24
0.1D-3 27 82 40 2.0 145 323 1.02

CFL 0.3 28 86 44 4.7 36 79 0.27
9x9 CFL 0.1 27 82 40 3.8 90 187 0.60

A 0.1 26 82 37 6.2 131 291 0.94
B 0.2 30 81 38 5.7 94 207 0.7
AS 0.3 32 86 42 3.6 68 169 0.52
0.005 23 65 29 9.5 99 219 5.6
0.5D-4 14 39 17 0.9 243 513 12.9

CFL 0.3 14 61 32 1.2 108 223 5.5
27x27 CFL 0.1 13 39 17 0.1 270 547 13.4

A 0.1 13 39 17 0.8 226 467 11.7
B 0.2 13 39 16 1.5 262 549 14.6
AS 0.3 13 39 17 0.1 175 413 9.9
0.3D-2 10 48 19 4.4 293 697 160
0.3D-4 4.1 16 6.6 2.3D-2 582 1213 281

CFL 0.3 5.5 41 18 6.0D-3 324 655 149
81x81 CFL 0.1 4.2 15 6.3 8.3D-5 810 1627 363

A 0.1 4.2 14 6.1 2.2D-4 962 1921 453
B 0.2 4.6 15 6.5 1.2D-4 553 1135 280
AS 0.3 4.5 16 6.9 9.8D-5 383 980 208

In particular the results for method A with ε = 0.3 and with a stability condition
for functional iteration in place (tabulated as Method AS) appears to be a good
automatic time step control combining both accuracy and stability.

The results for Problem 3 illustrate the case when the stability requirement dom-
inates the accuracy requirement. In this case it is difficult to obtain a stable solution
which is dominated by temporal error. Nevertheless the implicit stability condition
in Methods A, B and AS makes these methods competetive with CFL control on this
problem.

One surprising feature is that when the second-order method is used as the pri-
mary solution the observed accuracy is only first-order in the L1 norm. This happens
when a large proportion of the mesh cells (between fifty and ninety percent) use a
first-order method rather than the second order method. This has also been observed
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in experiments with the adaptive mesh code of Berzins, Lawson and Ware [4]. Part
of the reason for this is that many of the problems solved here have solutions with
large flat areas and sudden shocks. Although the method A error estimator is only
activated in the second order cells the method appears to provide a good means of
controlling the temporal error so that the spatial error dominates. A more rigorous
approach is to use method B, but it is less clear how to implement the third-order
part of this on non-uniform triangular meshes such as those used by Ware and Berzins
[18].

7. Conclusions and Further Developments. The aim is to develop a fully
automatic general purpose algorithm for the numerical solution of hyperbolic equa-
tions using the method of lines. From practical experience, the local error control
strategy introduced in Section 4, equation (37), when combined with the stability re-
quirement on functional iteration appears to provide a promising starting point for the
development of such an algorithm. This control strategy aims to balance the spatial
and temporal errors, although the spatial discretisation error is allowed to dominate
so that it can be controlled by remeshing. By computing the accuracy tolerance at
each time step the error in the time integration varies in relation to the spatial dis-
cretisation error. This reflects the fundamental difference in the method of lines from
standard o.d.e. systems principally because there is a spatial discretisation error ever-
present. The error control approach taken here reflects this, in contrast to standard
local error control or a control based on a CFL number in which experimentation is
needed to ensure the spatial error is not corrupted by temporal errors or becomes
unstable.

Finally, an important area for further development is in the combination of the
error control strategy (51) with the use of adaptive mesh algorithms. The aim to
balance the spatial and temporal errors in the method of lines relates directly to the
mesh modification techniques which seek to control the spatial discretisation error. A
combination of these two algorithms will lead to a method of lines technique which
automatically adapts the space mesh in order that the spatial error is controlled and
then, accordingly, adjusts the local error tolerance used in the o.d.e. integrator so
that the two errors are related in some way. Work is at present underway to achieve
this for realistic Euler flows in two space dimensions, see Ware et. al. [18].
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