
New NAG Library Software for First-Order
Partial Differential Equations

S. V. PENNINGTON and M. BERZINS

The University of Leeds

New NAG Fortran Library routines are described for the solution of systems of nonlinear,

first-order, time-dependent partial differential equations in one space dimension, with scope for

coupled ordinary differential or algebraic equations. The method-of-lines is used with spatial

discretization by either the central-difference Keller box scheme or an upwind scheme for

hyperbolic systems of conservation laws. The new routines have the same structure as existing

library routines for the solution of second-order partial differential equations, and much of the

existing library software is reused. Results are presented for several computational examples to

show that the software provides physically realistic numerical solutions to a challenging class of

problems.

Categories and Subject Descriptors: G. 1.8 [Numerical Analysis]: Partial Differential Equations

—difference methods, hyperbolic equations, method of lines; G.4 [Mathematics of Computing]:
Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: NAG Fortran Library

1. INTRODUCTION

In recent years there have been a number of general-purpose software

packages developed for the solution of systems of time-dependent partial

differential equations (PDEs). Machura and Sweet [1980] gave a survey of

such software, and since then there have been many additions. A common

feature of a number of these software packages is that they use a method-of-

lines approach in which sophisticated ordinary differential equation (ODE)

initial-value software is used for the time integration of the semi-discretized

PDEs. One example of a method-of-lines package is SPRINT, developed by

Berzins et al. [1989], which offers a set of routines aimed at solving a wide

range of one-dimensional, time-dependent PDEs. The modular structure of

Authors’ address: School of Computer Studies, The University of Leeds, Leeds LS2 9JT, United
Kingdom.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1994 ACM 0098-3500/94/0300-0063 $03.50

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994, Pages 63-99.

64 . S. V. Pennington and M. Berzins

this package has enabled the inclusion of new methods in spatial discretiza-

tion, time integration, and matrix algebra, and as such the package has

evolved over time. SPRINT is used within both industrial and academic

research. Versions of the software have been included in the NAG Fortran

Library in the form of individual routines for the solution of second-order

parabolic PDEs, with scope for coupled ordinary differential equations. Spa-

tial discretization is by either a finite difference or a CO collocation scheme,

and there are a number of options regarding time integration and matrix

algebra (see Berzins [1990]). Adaptive spatial remeshing is available for the

finite-difference scheme in the Mark 16 (1993) release.

Although the aim of many method-of-lines packages has been to solve as

wide a class of problems as possible (see, for example, Schryer [1990]), much

of the available software in this area is most suited to the solution of

second-order parabolic PDEs. However, many common physical problems are

described by first-order PDEs, such as conservation laws, or by first- and

second-order systems, such as the inviscid boundary layer equations. Systems

of mixed order can be reduced to first order by the introduction of one or more

new variables and are often more amenable in this form. Some first-order

PDEs can be solved using spatial discretization schemes and software in-

tended for higher-order problems, although care must be taken in the imposi-

tion of boundary conditions.

However, many first-order problems are hyperbolic in nature, and space-

time characteristic behavior is important. Unless artificial dissipation is

introduced via second-order terms, some type of one-sided or upwind differ-

encing is essential for hyperbolic problems with steep gradients or shocks.

The principal difficulty with upwind schemes is in determining the direction

of information flow which may change in space or time, and hence it is

generally inappropriate to specify or determine a fixed direction of upwinding

before integration commences. Also, the imposition of boundary conditions for

first-order hyperbolic PDEs must take into account the nature of the charac-

teristics. As far as the authors are aware, there are many experimental codes

but no widely available software packages which offer upwind differencing for

a wide range of hyperbolic problems.

This paper describes two spatial discretization schemes for the solution of

first-order PDEs to be included in the D03P subchapter of the NAG Fortran

Library: (i) the central-difference Keller box scheme for the solution of

general first-order problems and (ii) an upwind scheme for the solution of

hyperbolic problems in conservation law form, based on the solution of a

Riemann problem at each mesh point combined with a flux-limiter method.

Routines for scheme (i) are included in the Mark 16 (1993) release of the NAG

Library, and those for scheme (ii) are intended for the Mark 17 release. The

new routines have the same structure and flexibility as the existing routines

for the solution of second-order PDEs, reusing much of the existing SPRINT-

based software. This paper will demonstrate that it is possible to provide

software for a wide range of first-order systems within a method-of-lines

framework.

ACM TransactIons on Mathematical Software, Vol 20, No. 1, March 1994.

NAG Library Software . 65

2. PROBLEM CLASSES

The master equation form of the PDEs and coupled ODES for the existing

finite difference routines for second-order problems is

NPDE

~ PL,, ~ + Q, ‘X-m ;(q),

j=l

i=l,2 ,..., NPDE, a<x<b, t>tO, (1)

F,(t,~,~,~,~*,g:,~*>~;~E~t)=0, i=l,2 ,..., NCODE, (2)

where P, ~ and R, depend on x, t, ~, ~x, and g, and Qi depends on

x,t, g,gx, _v and linearly on ti. The parameter m is an integer whose value

depends on the coordinate sy~tem in use. The vector g(x, t) is the set of PDE

solution values

g(x, t) = [ul(x, t),uNpDE(x. t)l T,

and g, is its partial derivative with respect to x. The vector

coupled ODE solution values

~(t) = [u~(t),....uNco#)]T.

and ~ denotes its derivative with respect to time.

(3)

g(t)is the set of

(4)

In the ODE part, given by (2), $ represents a vector of coupling points at

which the ODES are coupled to th&PDEs, and K* U* R*, g:, and g~~ are the7_x7 _
functions g, gx, & g~, and gX~ evaluated at these points. Each F, may

depend only linearly on time derivatives. Note that Eq. (2) may be an

algebraic equation for some or all i, meaning that there are no time deriva-

tives present. Unless otherwise stated, any references to ODES should be

taken to include such cases.

The boundary conditions have the form

where x = a or b. The function y; may depend only linearly on ti.

For the new Keller box scheme routines the PDE master equa~on includes

the general problem class of the finite-difference scheme (Eq. (1)) minus the

second-order term on the righthand side, to leave the general first-order

system

NPDE

~ P,,,: +Q, =O, i=l,2, ..., NPDE, cz<x<b, t>tO, (6)
J=l

where P,,] depends on x, t,g, gz, and g, and Qi depends on x, t,ZL,g,,g and

linearly on ~.

The ODE master equation is similar to that for the finite-difference scheme

(Eq. (2)), but does not involve the function R which is not defined for the
Keller box scheme, or the second-order term g.,, and so is given by

I’z(t, z),i,&g*, EzL,zt:) = o) i=l,2 ,..., NCODE. (7)

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

66 . S. V. Pennington and M. Berzms

Since the box scheme leads naturally to an implicit ODE system (see Section

3.1.2), and there is no flux-type function R in the Keller box scheme master

equation, the boundary conditions have a more general form than in the

finite-difference scheme, given by

G~(I,t>u,u~,u,j)=O

at the lefthand boundary, and

G~(z, t,g, g,, g,ti) = O

at x=a, i=l,2, NLEFT. (8)

at ~=~,~=1,2,...,NRIGHT, (9)

at the righthand boundary, where NLEFT + NRIGHT = NPDE.

The functions G,L and G,R may depend only linearly on time derivatives.

Also, G,L and G,R must not depend on Qz, since boundary spatial derivatives

are not determined explicitly in the Keller box scheme. If the problem

involves derivative (Neumann) boundary conditions then it is often possible

to restate such boundary conditions in terms of permissible variables. Alter-

natively, an ODE variable equal to the required derivative at the boundary

can be introduced, and the boundary condition can be stated in terms of this

variable.

For the new upwind-scheme routines the master equation for the PDEs

again has the generality and flexibility of the finite-difference scheme prob-

lem class, but is modified slightly to be in conservation law form with a

convective flux F, and a source term S,, that is

NPDE

~ PL>, ~+~=sL, i=l,2, NPDE. (lo)
j=l

where P, ~ and F, depend on x, t,g, and g, and S, depends on x, t,g,g and

linearly on ~. Note that F, does not depend on Z_LXas the equations would

then be of second order and thus in the problem class of the existing

finite-difference routines.

The ODE part is exactly as in the Keller box scheme, given by Eq. (7). The

boundary conditions have a similar general form to those in the Keller box

scheme given by Eqs. (8) and (9), but will be described in more detail in

Sections 3.2 and 5.

3. ALGORITHM DESCRIPTION

The PDEs are solved using the method-of-lines (see Berzins et al. [1989]), in

which the PDEs are discretized in space on a mesh x,, z = 1, 2, NPTS,
using an appropriate spatial discretization method, resulting in a system of

NPTS nonlinear coupled ODES for each PDE. A number of these ODES may

be without a time derivative, in which case the system is of differential

algebraic form. Algebraic equations often arise at the boundaries of the

spatial domain where the PDEs are replaced by boundary conditions not

involving time derivatives.

The system is of the form

(11)

ACM Transactions on Mathematical Software, Vol 20, No 1, March 1994

NAG Library Software . 67

where the square matrix & may be singular, indicating a differential alge-

braic system. The solution vector y(t) is defined by

y~(t) = ZLJ(X[,t), where k = NPDE x (i – 1) +.j, (12)

fori=l ,.. ., NPTS, j=l, NPDE. and

y~(t) = Urn(t), where 1 = NPDE X NPTS + m, (13)

for m = 1,...,NCODE.

The solution vector y(t) is thus made up of all the PDE variables at mesh

point xl, all the PDE ;ariables at mesh point Xz etc., followed by any coupled

ODE variables, making a total of NPDE X NPTS + NCODE solution compo-

nents.

The ODE (or differential algebraic) system given by Eq. (11), along with an

initial condition y(0) = ~ say, forms an initial-value problem which can then

be integrated in time by standard methods (see Section 3.3).

3.1 Spatial Discretization

3.1.1 Finite-Difference Scheme. The spatial discretization methods for the

new routines have some similarities to the finite-difference scheme of Skeel

and Berzins [1990] used in the existing routines, and hence a brief summary

is given here for future reference.

Consider for notational convenience the single general PDE

6’U
~z+q=?

dx ‘
(14)

where p, q, and r are functions of x, t,u, and u,.

The spatially discretized form of the above equation is

hipt-1/2 + h~+lp,+l/zu + h,q, -1/z + h,+lq, +l/z = rz+ 1/2 — rz– 112
, (15)

h,+hi+l ‘ h, + h,+l l/2(h, + hi+l)

where L, denotes the time derivative of u,, h, = xi – xi_ ~, and the subscript

i + 1/2 on p, q, and r denotes evaluation at x = (xi + x,+l)/2, u = (u, +

u,+l)/2, and u, = (U,+ I – u,)/hZ., (and similarly for the subscript i – 1/2).
The Skeel and Berzins scheme is in fact a modified form of the Keller box

scheme which discretizes second-order PDEs in such a way as to obtain an

explicit ODE system, that is, each ODE involves just one time derivative (cf.

Eq. (17)). This is achieved by the introduction of a second-order error. Details

can be found in Skeel and Berzins [1990].

3.1.2 Keller Box Scheme. Keller [1970] introduced this finite-difference

method for the spatial and temporal discretization of PDEs of second order

(or higher) reduced to first order by the introduction of new variables.

Within the method-of-lines framework the box scheme is used to discretize
the PDEs in space only. Spatial derivati~es are replaced by central differ-

ences using mesh points x, and xl+ ~, for each i, and all variables and their

time derivatives are averaged over these two mesh points.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

68 . S. V. Penmngton and M. Berzins

For the single general PDE

du
p~+q=o, (16)

where p and q are functions of x, t,u, and u,, the spatially discretized form

is

(ziL+ Zi,+l)
PL+l/2 + q,+ 1/2 = o,

2
(17)

where, as before, u, denotes the time derivative of u,, and the subscript

i + 1/2 on p and q denotes evaluation at x = (xl + x,+l)/2, u = (u, +

Ul+l)/2, and u. = (uZ+l – u,)/hZ+I, where h, = x, – x,_l.
Note that since Eq. (17) involves two time derivatives, the ODE system for

this scheme is implicit (cf. the explicit form of Eq. (15)).

As an example consider the simple first-order system

13u du
= a— (18)

dt
~x 7

(19)

resulting from the reduction of the heat equation d u/ d t = ad 2u\ dx 2 to first

order. The semidiscrete form of the system (18) and (19) is

tit + riz+l ‘2+1 — ‘L

2
=a!

h’
(20)

1+1

UL+Z), +l UL+l—UL

2 = h,+l “
(21)

The Keller box scheme routines described in this paper are not primarily

intended for the solution of second-order problems reduced to first order. The

existing NAG routines for second-order problems are generally more efficient

as they solve second-order equations directly, thus involving fewer variables

and function evaluations. Exceptions include higher or mixed-order problems

(see problem 1.1 for example) for which the existing routines are unsuitable.

3.1,3 Upwind Scheme. The discretization scheme will be described for the

single general PDE

Ju df
px+z=s, (22)

where p, f, and s are functions of x, t, and u.

The convective flux term d f/ ?X is discretized using an upwind scheme

based on Godunov’s [1959] method involving the solution of a Riemann

problem at each midpoint of the mesh, combined with a flux-limiter method

(see LeVeque [19901, Chapter 17, and Osher [1985]). The two-dimensional
form of this discretization method on quadrilateral meshes is analyzed in

ACM Transactions on Mathematical Software, Vol 20, No. 1, March 1994

NAG Library Software . 69

depth by Spekreijse [1987] and has been used on a variety of problems by

Koren [1989] and others.

The source term s is treated as in the finite-difference method of Skeel and

Berzins [1990] (see Section 3.1.1).

The spatially discretized form of Eq. (22)

finite-difference scheme (Eq. (15)), that is,

hip,_l/z + h,+lp, +l/zu, + f,++ – ft-1/2

h,+h, +l ‘ ;(h, + h,+,)

where hz = xi — X,.l as before, and S,+1,2 is

is very similar to that for the

hisL_ l/2 + hL+lsL+ 1,2
.

h, + h,+l
, (23)

defined by

S1+ 1/2 = ‘(xL+l/2>t)*(u~ + ‘i+l)), (24)

where XJ+1,2 = (l\2)(xt + Xz+l).

Note that if u, is viewed as an approximation to the average over the cell

[x,- 1/2> x,+,l/2 1 then the discretization is conservative, meaning that the
time variation of u over the whole domain depends only on the flux at the

boundaries-flux contributions at internal cell interfaces cancel (see LeVeque

[1990], Chapter 12).

The upwinding occurs in the calculation of the flux terms in Eq. (23), given

by

f,+,/2 =?(x, +1,2, t,uL(x! +1,2, t), uR(x, +,,2, t))> (25)

where ~(x, t, u~(x, t), UR(x, t)) is the numerical fZux function (see later)

expressed in terms of the upwinded Left and Right values UL(x, t) and

UR(x, t) at (x, t).These left and right values are calculated using standard

upwinding techniques combined with a flux limiter (see for example LeVeque

[1990]) suitably modified for a nonuniform mesh, so that

(26)
h ,+, (UL – u,_,)

uL(%+ l/2> t)=u, +—
2 h,

B(r,),

h ,+~ (Zq+z – U,+l)B 1
%(~2+ 1/2) t)=u, +l–~

hi~2 (-)
? (27)

rl+l

where the function B is some limiter function,

scheme is that proposed by Van Leer [1974] given

ri + [ril
B(ri) =

1 + 17-,1‘

and

~:+ 1/2 — Ui

r~ =
u?+ 1/2 —ui’

which for this particular

by

(28)

(29)

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

70 . S. V. Pennington and M. Berzms

where the superscripts C and U denote linearly interpolated centered and

(left) upwind values respectively, given by

c
uL+ l/2 = +(UL + uL+~),

u
h ,+~ (UL – U,_l)

‘L+l/’2 =u[+—
2 h, “

Alternatively r, can be written in the form

(u 2+1— u,)\h,+l
ri =

(Ul – z~,-l)\hL ‘

(30)

(31)

(32)

which is the ratio of the derivatives of the centered and (left) upwind

interpol ants.

In the case of a system of equations the individual solution components are

“limited” using Eqs. (26) and (27) to give a vector of left and right solution

values at each midpoint, as in Spekreijse [1987] and Koren [1989].
Having obtain~d the left and right values of u at each midpoint X,, ~lz, the

numerical flux f (a vector in the case of systems) is then to be calculated by

some method. A simple way would be to average the left and right values of u

and calculate the corresponding flux, that is,

f= f(x, t,+(u~+ u~)), (33)

or to average the fluxes corresponding to the left and right values, that is,

f= Hf(~j~,uL) +f(x>t, ul?)). (34)

Note that these two averages are generally not equal.

However, such averaging is equivalent to central differencing and hence

does not take into account the nature of the space-time characteristics. The

physically correct value for ~ is obtained from the solution of the Riemann

problem given by

du/dt + r?f/c7x = o, (35)

(where x is the distance to the midpoint x,+ ~,z) with discontinuous initial

values u=u~forx<O and u=u~for.r>O.

The numerical flux is required at every midpoint of the mesh at every time

step. In theory these Riemann problems can be solved exactly (as in Godunov’s

[1959] original method), but to do so in practice would be computationally

expensive, particularly for nonlinear equations which may require an itera-
tive solution. Since u~ and u~ are approximate, and much of the information

from the Riemann solution is subsequently lost by averaging, a much less

expensive approximate solution is considered adequate (see LeVeque [1990]

for example). Indeed Roe [1989] gives examples where an approximate

Riemann solver gives better results than the exact solution.

Approximate Riemann Solvers. There are a number of methods for obtain-

ing an approximate solution to the Riemann problem, due to Harten and Lax,

Steger and Warming, Van Leer, Osher, and Roe among others. Van Leer et

ACM TransactIons on Mathematical Software, Vol. 20. No. 1, March 1994

NAG Library Software . 71

al. [1987] give references and brief descriptions of these methods and com-

pare them for the Euler and Navier-Stokes equations, recommending Osher’s

[Engquist and Osher 1981; Osher and Solomon 1982] and Roe’s [1981]

schemes for their ability to accurately represent flow phenomena such as

shocks, boundary layers, and contact discontinuities.

For Osher’s approximate Riemann solver [Engquist and Osher 1981; Osher

and Solomon [1982] the numerical flux is (omitting the dependence on x and

t for notational convenience)

f(uL,uR)= +j(f(uL) +f(uR)) - :(URIA(u)ldu, (36)
‘UL

where A(u) = df\ 6’u is the Jacobian matrix, and IAl is a matrix defined by

IAI=A+– A-, (37)

where

A+= pA+p-~ 7 A-= PA-P- I and A = PAP-I, (38)

where A is the diagonal matrix of eigenvalues of A, and A+ and A- are

diagonal matrices such that A+ has only the positive elements of A, and A-

only the negative, so that A = A++ A-. The columns of the matrix P are the

right eigenvectors of A, and the rows of P-l are the left eigenvectors of A.

The integration in Eq. (36) is carried out along a path piecewise parallel to

the eigenvectors of A(u), that is, along the wave paths in the phase space of

u (see Engquist and Osher [1981] and Osher and Solomon [1982] for details).

An example of the application of Osher’s approximate Riemann solver is

given in the Appendix.

For Roe’s [1981] approximate Riemann solver the numerical flux is

f(u~,u~)= $(f(uJ +f(uR)) – +II(ZLL,Z%)I(Z+– rJL), (39)

where A–(u~, u~) is a linearized form (generally nonunique) of the Jacobian A

satisfflng the following:

(i) l(u~, u~)(.u~ – u~) = f(~~) – ~(~~);

(ii) I(u, u) = A(u);

(iii) ~ has real eigenvalues with linearly independent eigenvectors.

I~ is defined as in Eqs. (37) and (38). Equation (39) can also be written as

where Aj and ej are the eigenvalues and (right) eigenvectors respectively of

~, and the a~ are obtained from

NPDE

u~ - u= = ~ ajej. (41)
j= 1

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

72 . S. V. Pennington and M. Berzins

As a simple example of the numerical flux obtained using these schemes,

consider Burgers’ equation in the inviscid limit:

Osher’s scheme gives

f(uL, uR)

and Roe’s scheme gives

I
12
?UL? uL, u~>o,

$U; , uL, uE<oj

o, u~<O<uR,

+(U; + u;), UL20>UR,

(42)

(43)

(44)

where u ~ = (1\2)(uL + u~), the propagation speed of the discontinuity

(uL, uE).
The calculation of the numerical flux is highly problem dependent and

hence cannot be automatically performed in a general-purpose code such as

this. The user is required to choose a Riemann solver and provide the code to

calculate the numerical flux given any u~ and u~. In many cases this is a

simple task, with the calculation of the numerical flux being straightforward

and involving only a few lines of code. More practical details are given in

Section 5.

Source Terms. It should be noted that some problems with source terms

are to be treated with caution. Recently, LeVeque and Yee [1990] studied a

model linear advection equation with a parameter-dependent source term

and found that for large source terms, stable and reasonable-looking solu-

tions can be obtained which are in fact incorrect, with the discontinuity in the

wrong location. The same problem has been solved here (see problem 2.2),

with similar results. LeVeque and Yee showed that such incorrect speeds of

propagation of discontinuities—typically one spatial mesh point per time step

—are due to lack of spatial resolution in evaluating the source terms. A

subsequent report by Grifflths et al. [1991] formalizes this work and proposes

a scheme for which convergence of the numerical propagation speed to the
true propagation speed is proven, but which can exhibit oscillations and

divergence if certain monotonicity conditions on the source term are violated.

However, their conclusions are limited in applicability, and the research is

continuing.

Another issue concerning problems with source terms is whether it is

generally appropriate to disregard the source term in the calculation of the

numerical flux using an approximate Riemann solver. There have been a

number of proposed methods for treating conservation laws with source

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

NAG Library Software . 73

terms (termed inhmnogeneous conservation laws); Van Leer [1984] suggests

that the associated Riemann problems at each midpoint of the mesh should

have piecewise stationary initial distributions, rather than piecewise uniform

as for the Riemann problems considered here. However, the method of

solution is very complicated, and it is presented as a research tool from which

more practical schemes may be derived. The methods proposed by Roe [1986]

and Glaister [1988] apply only to the Roe [1981] approximate Riemann solver

and involve additional terms in the numerical flux function. Sweby [1989]

applies TVD (Total Variation Diminishing) schemes to inhomogeneous con-

servation laws utilizing a change in dependent variable to obtain a homoge-

neous PDE (no source term), but concludes that there is a large question

remaining about the optimal treatment of the source term.

In conclusion, the above source term issues are still unresolved and are the

subject of ongoing research. With the present algorithm, care should be taken

when interpreting results for problems with source terms. In particular it is

essential to employ a fine mesh for problems with propagating discontinuities

and to check for the occurrence of nonphysical propagation speeds by compar-

ing results for different mesh sizes. When possible, it may be advisable to

avoid source terms by a change of variable (as in Sweby [1989]).

3.2 Boundary Conditions

First-order problems generally require just one boundary condition for each

PDE variable, compared with second-order parabolic problems which require

a boundary condition at both boundaries. The position of the boundary

conditions should be chosen with care in order to be consistent with the flow

of information in and out of the solution domain, represented by the direction

of the space-time characteristics at the boundaries.

Consider the simple system

where

(45)

(46)

The characteristic variables are UI and Uz associated with the characteristics

defined by dxldt = 1 and dxidt = – 1 respectively. At the boundary x = O,

the characteristic for u ~ points into the domain, and hence information

concerning u ~ is carried into the solution domain at the boundary. A bound-

ary condition is therefore required for u ~ at x = O. The characteristic for Uz

points out of the domain at x = O, and so information about Uz at this

boundary is transported from inside the domain. Hence no condition for Uz

alone should be imposed at this boundary. Note however that any combina-

tion of u, and u, can be specified at the boundary provided that the
coefficient of the u ~ term is nonzero. The same applies at x = 1, with u ~ and

u ~ interchanged.

ACM Transactions on Mathematical Software, Vol. 20, No, 1, March 1994.

74 . S V. Pennington and M. Berzlns

In the Keller box scheme the discrete form of the PDEs is evaluated at each

midpoint of the mesh. The user specifies the boundary conditions in the form

of Eqs. (8) and (9) at the appropriate boundary points. The total number of

boundary conditions must be equal to the number of PDEs in order to give

the required number of equations for the solution values at all mesh points.

Note that the general form of the boundary conditions allows the inclusion of

conditions which are not just simple specifications of boundary values for

each variable. For example, the heat equation problem given by Eqs. (18) and

(19) will generally require a boundary condition for u at both ends of the
domain (and none for u), which can be easily handled using the interface

adopted here.

In the upwind scheme the discrete equations are evaluated at each interior

mesh point. The boundary conditions are supplied by the user at the appro-

priate boundary points as in the Keller box scheme above. However, an

equation is required by the scheme for each PDE at both boundary points.

The discrete equations cannot be evaluated at boundary points since informa-

tion is required from outside the domain. This situation arises in many

discretization schemes (see Yee et al. [1982] for example), and the extra

information required by the scheme is supplied in the form of numerical

boundary conditions (as opposed to the physical boundary conditions required

by the continuous problem).

In order to be consistent with the characteristic directions, the numerical

boundary conditions must be derived from information already present. A

common method is to extrapolate the variables from the interior of the

domain. For example, when solving the problem given by Eqs. (45) and (46)

using the upwind scheme, a numerical boundary condition will be required

for Uz at x = O (and for t~~ at x = 1). Linear extrapolation gives (for a

uniform mesh of size h)

u~((), t) = 2uz(h, t) – uz(2h, t). (47)

In general, however, the characteristic variables—usually linear combina-

tions of the original variables—should be extrapolated to obtain the numeri-

cal boundary conditions (see Gottlieb et al. [1982] for example). In the simple

problem above the characteristic variables are the same as the original

variables, whereas for the same problem with

(48)

the characteristic variables are UI – Uz and UI + Uz, with UI + Uz being

associated with the outgoing characteristic at the lefthand boundary defined

by dx\dt == – 3/2. The numerical boundary conditions should be given as

E
Z1l(xl, t)+u2(x1, t) =(U1+U2) =U:+ZL; , (49)

ACM Transactions on Mathematical Software, Vol. 20, No 1, March 1994

NAG Library Software . 75

where the superscript E denotes the linearly extrapolated value as in Eq.

(47). Since Ul(xl, t) is a known physical boundary condition, Eq. (49) reduces
to a numerical boundary condition for Uz. The numerical boundary condition

at the righthand boundary is derived similarly from the characteristic vari-

able UI — Uz.

In summary, for the Keller box scheme exactly one (physical) boundary

condition is required for each PDE variable, chosen in accordance with the

space-time characteristics at the boundaries; and for the upwind scheme two

boundary conditions (generally one physical and one numerical) must be

provided for each variable. The suggested method of obtaining numerical

boundary conditions is to extrapolate the characteristic variables as described

above. The flexibility of the upwind-scheme routines allows the use of other

methods such as the solution of the characteristic equations associated with

outgoing characteristic variables (see problem 2.4 for example). This flexibil-

ity also makes it possible to solve nonstandard problems for which there are

either none or two physical boundary conditions for each variable (for exam-

ple, the equation du/dt + xdu/dx = O on the domain – 1< x s 1).

3.3 Time integration

Full details of the time integration algorithms used in the D03P subchapter

of the NAG library can be found in Berzins [1986], Berzins and Furzeland

[1992], and Berzins et al. [1987; 1989]. In summary, there are two methods

available: the Theta method (see Berzins and Furzeland [1992]) and the Gear

backward differentiation (b.d.f.) formula up to order 5 (see Berzins [1986]).

Both are implicit variable step-size methods in which the time step is chosen

automatically throughout the integration to satisfy a user-specified local

error tolerance. The b.d.f. algorithm provides a high-accuracy method in

which the order of the formula is automatically varied up to a maximum of 5.

The Theta method is only first-order accurate but may be as, or more,

efficient for large systems of ODES (resulting from many PDEs and\or very

fine meshes) and coarse tolerances in method-of-lines applications (see Berzins

and Furzeland [1992]).

Both the Theta and b.d.f. methods use either (modified) Newton iteration or

functional iteration to solve the nonlinear equations at each time step. The

type of iteration can be specified beforehand and fixed, or the algorithm can

be allowed to switch between the two methods for efficiency. When using

functional iteration, care must be taken to ensure that the ODES are in
normal form, meaning that the matrix ~ in Eq. (11) should be the identity

matrix.

Although the Theta method is implicit, the use of functional iteration

means that only the evaluation of the ODE residuals is required—no large

systems of equations need to be solved. The computational cost is thus

comparable with that of an explicit method. Hence in many cases it is the
preferred solution method.

One of the salient features of hyperbolic PDEs is that the time step of

explicit time integration methods is limited by the well-known Courant CFL

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

76 . S. V. Pennington and M. Berzins

condition in order to maintain stability, that is,

At/l
< Cn,

Ax
(50)

where A is the modulus of the maximum eigenvalue of the Jacobian matrix,

and Cn is the Courant number, equal to 1 for the explicit forward Euler

method with a three-point spatial discretization scheme (see LeVeque [1990]

for example).

Yee [1987] proves that a similar stability condition holds for the Theta

method combined with discretization methods such as those described here.

This condition is

AtA 2

Ax ‘3(1–0’
(51)

where o is the parameter used in the Theta method.

The functional iteration convergence requirement restricts the allowed

time step in much the same way as a finite-stability region does for an

explicit method (see Berzins and Furzeland [1992]). Berzins [1991] shows for

a simple advection equation that the functional iteration convergence condi-

tion (with convergence rate equal to 0.5) is a more stringent requirement on

the time step than Eq. (51). Thus if the functional iteration converges then

the time step will automatically satisfy Eq. (51), and so the method will be

stable.

The trade-off between accuracy and stability is a research issue of current

interest. The approach employed here is to control the local error in time in a

standard way but to allow the user to impose a CFL condition (if necessary)

by including an option to limit the time step employed. In the testing of the

software it was found that the limit was not often reached since controlling

the local error so that the spatial error dominates generally resulted in CFL

numbers less than 1. A future approach may be to control automatically the

global time error so that the spatial error dominates (see Berzins [1991]).

3.4 Adaptive Spatial Remeshing

In order to obtain an accurate solution using as few mesh points as possible,

it is often desirable to automatically adapt the mesh to follow the time-depen-

dent nature of the solution. This is particularly useful for the solution of

problems such as the variable-width boundary layer equations, where ideally

the mesh should be very fine in the boundary layer region where the solution

gradient is highly nonuniform, whereas a coarser mesh is adequate in the
remainder of the domain.

The NAG library contains optional routines from the SPRINT package

[Berzins et al. 1989] which employ a discrete time step method developed by

Furzeland [1985]. These routines automatically create a new mesh based on

the current solution profile at certain time steps; and the solution is then

interpolated onto the new mesh, and the integration continues. A new mesh

is calculated in order to equally distribute the integral of some function over

ACM Transactions on Mathematical Software, Vol 20, No 1, March 1994

NAG Library Software . 77

the domain, so that the mesh spacing is inversely proportional to the function

value. A typical choice for this so-called “monitor function” is the second

space derivative of the solution value at each point, resulting in refinement in

regions where the solution gradient changes most rapidly. This monitor

function is used in the boundary layer equations example in Section 6. There

are various other remeshing criteria such as adjacent mesh ratios and the

difference between consecutive meshes.

The remeshing process is quite computationally expensive, and for some

problems the saving made on the reduction of mesh points may be out-

weighed by the additional computations required for remeshing. The effi-

ciency of the remeshing process depends on the choice of the monitor function

and other remeshing criteria and on the frequency of the updates. The latter

should be chosen carefully so that the mesh keeps up with the evolving

solution while avoiding unnecessary updates.

As discussed by Furzeland [1985], discrete-time remeshing may not be

particularly suitable for hyperbolic problems with shocks, since the optimal

mesh should follow the space-time characteristic behavior. Ideally a quasi-

Lagrangian method with a continuously moving mesh is required. Furzeland

et al. [1990] discuss a number of such approaches in a method-of-lines

framework and find that these are not without their own difficulties, particu-

larly with regard to providing robust software for a broad class of problems.

The fixed-mesh approximate Riemann solver approach adopted here appears

to offer a viable alternative, though at the expense of requiring the user to

provide a solution to the Riemann problem.

An additional problem mentioned by Furzeland [1985], and discussed in

more detail by Swartz [1987], concerns the CFL stability condition for hyper-

bolic problems described in the last section. By design, adaptive remeshing

will result in very small mesh spacing in part(s) of the solution domain, and

hence very small time steps may be required to avoid instabilities. It may be

possible to avoid this by the use of implicit time integration methods or

localized time stepping, but it is not clear that this approach would be

beneficial. In testing the present software, it has proved difficult to obtain

better results for hyperbolic problems in terms of accuracy per unit of

computational time by using the adaptive-remeshing option. Nevertheless,

for problems in which accurate representation of shocks is essential, the

remeshing option can be useful provided care is taken in the choice of monitor

function and remeshing parameters. Spatial derivatives tend to infinity

around a shock, and so they are generally unsuitable for the monitor function

specification, leading to very narrow regions of extreme refinement.

An alternative monitor function based on a cosine function has proved

successful for problems with a single shock. Each time remeshing is to occur,

the shock is located by finding the maximum spatial derivative of the

solution. Having previously decided on the desired width of the region of

refinement, the monitor function is assigned using a cosine function centered

on the shock so that it has a maximum value at the shock and then decreases

smoothly down to zero at either side. Thus the subsequent refinement is

limited in degree, and large enough in extent to ensure that the shock does

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

78 . S. V. Pennington and M. Berzlns

FINITE DIFFERENCE SCHEME
I

KELLER BOX SCHEME

USER ENTRY POINTS

T 1 1 I

I
T T T

D03PCF D03PHF D03PPF D03PEF D03PKF D03PRF

I

I

INITIALISATION
I

INITIALISATION
AND LOW-LEVEL AND LOW-LEVEL

DRIVER
I

DRIVER

I
SPATIAL SPATIAL

DISCRETISATION I DISCRETISATION

I
— — — . — — —— — — — — ——

SHARED TIME INTEGRATION
AND LINEAR ALGEBRA

ROUTEXES

Fig. 1. Structure of existing finite-difference scheme and new Keller box scheme routines

not move out of the refined region between remeshing. Details and results

can be found in the NAG Library Manual (Mark 17) (see Numerical Algo-

rithms Group [1993]).

4. SOFTWARE STRUCTURE

The new routines have a direct correlation with the existing NAG Library

routines for the solution of second-order PDEs described in Berzins [1990],

and much of the existing software is reused. In Figure 1 the general structure

is shown for the existing finite-difference scheme routines along with those

for the new Keller box scheme. (The structure and names of the routines

differ slightly from those in Berzins [1990], which appeared before the

software was finalized.) For clarity the existing CO collocation scheme rou-
tines and the new upwind-scheme routines are not included, but they have

exactly the same form.
There are three new routines for the Keller box scheme:

(1) D03PEF—an easy-access routine for the solution of systems of first-order
PDEs on a fixed mesh, with b.d.f. time integration and banded matrix

algebra only (equivalent to the existing finite-difference routine D03PCF);

(2) D03PKI-a flexible routine for the solution of systems of first-order
PDEs (with optional coupled ODES) on a fixed mesh, with options regard-

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994

NAG Library Software . 79

ing time integration methods and parameters, and full, banded, or sparse

matrix algebra (equivalent to the existing finite-difference routine

D03PHF);

(3) D03PRF—the same as D03PKF but with the added option of adaptive
spatial remeshing (equivalent to the finite-difference routine D03PPF

included at Mark 16).

At the time of publication, the upwind-scheme routines are provisionally

named D03PFF, D03PLF, and D03PSF, with the same functionality as the

Keller box scheme routines above.

5. USER INTERFACE

The user interfaces for the new routines are very similar to those for the

existing NAG routines for second-order PDEs (full details can be found in the

NAG Library Manual [Numerical Algorithms Group 1993]). The user writes a

Fortran program to set the required parameters and options and to call the

appropriate NAG routine. This calling program must contain several simple

subroutines which specify the problem; the names of these subroutines are

passed as arguments to the NAG routine. For the new and existing routines,

subroutines are required to describe the PDE(s), the boundary conditions, the

ODE(s) (if applicable), and in the case of the adaptive remeshing routines, the

initial conditions and the user-specified monitor function. The only significant

change from the earlier routines is that the upwind scheme requires an

additional subroutine to evaluate the solution of the Riemann problem.

The master equations for the PDEs and coupled ODES are given for the

existing and new routines in Section 2. In the existing finite-difference

routines the user is required to evaluate specific functions in the PDE master

equation, that is, the functions P,, j, Q,, and R, in Eq. (l); whereas in the

Keller box scheme routines the user evaluates the lefthand side of Eq. (6),

given values of U, UX, gt, _,u and ~ at the midpoints of the mesh, that is, the

function G, given by

NPDE du
G,= ~ P,, i$+ Q,, i=l,2 ,..., NPDE. (52)

j=l

Similarly, for the boundary conditions the user is required to evaluate the

functions G: and G~ in Eqs. (8) and (9).

However, the precise specification of the PDEs and the boundary conditions

for the Keller box scheme depends on the value of one of the arguments on

entry to the user-supplied subroutines. The value of this integer argument

IRES determines the terms to be included in the evaluation of G,. If IRES =

– 1 on entry then only those terms which depend explicitly on time deriva-

tives should be included, whereas if IRES = 1 then all terms should be
included.

As an example, consider the system (18) and (19) in Section 3.1.2. The PDE

description subroutine required for the solution of this problem using the

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

80 . S, V. Pennington and M. Berzins

routine D03PEF is

SUBROUTINE PDEDEF(NPDE, T, X, U, UDOT, UX, RES, IRES)

C ..Scalar Arguments..

DOUBLE PRECISION T, X

INTEGER IRES, NPDE

C Array Arguments..

DOUBLE PRECISION RES(NPDE), U(NPDE), UDOT(NPDE), UX(NPDE)

C ..Scalars in Common.,

DOUBLE PRECISION ALPHA

C .,Common Blocks..

COMMON IALIALPHA
C .,Executable Statements..

IF (lREs.EQ.-I) THEN

RES(l) = UDOT(I)

RES(2) = O.ODO

ELSE

RES(I) = UDOT(l) – ALPHA* UX(2)

RES(2) = u(2) – Ux(l)

END IF

RETURN

END

For the upwind scheme, the specification of the PDEs is similar to that for

the finite-difference scheme, in that the user supplies the functions P, ~ and

S,, evaluated at midpoints of the mesh. However, the flux function F’, ~s not

evaluated in the PDE subroutine and indeed is not required explicitly by the

routines. Only the numerical flux at the midpoints of the mesh is needed (see

Section 3.1.3) and is evaluated separately in the user-supplied approximate

Riemann solver subroutine, given left and right solution values. The form of

this subroutine is given below for the Burgers equation example described in

Section 2.1.2 for the case ~ = (1/2)u~.

SUBROUTINE RMFLUX(T, X, NPDE, ULEFT, URIGHT, RFLUX)

C ..Scalar Arguments..

DOUBLE PRECISION T, X

INTEGER NPDE

C ..Array Arguments..

DOUBLE PRECISION RFLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE)
C ..Executable Statements..

RFLUX(l) = 0.5D0 * ULEFT(l) * *2

RETURN

END

A more complicated example (for the Euler equations) is given in the

Appendix.

The boundary conditions for the upwind scheme are given in the form

G~(x, t,~, u, Q)=O at x=a, i= I,2,... ,NPDE, (53)

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

NAG Library Software . 81

at the lefthand boundary, and

G~(x, t,g, u,~)=O at x= b,i=l,2,..., NPDE, (54)

at the righthand boundary.

It should be noted that spatial derivatives at the boundary are not included

in the arguments of the boundary condition subroutine, since they are not

calculated explicitly in this scheme. The user may include derivatives in the

boundary conditions by calculating and expressing them in terms of the

variables at and adj scent to the boundary (see problem 2.4 for example).

However, this may lead to instabilities if the one-sided differencing opposes

the characteristic direction at the boundary. Alternative methods of handling

derivative boundary conditions include replacing the derivative terms with

permissible variables (if possible) or introducing an ODE variable equal to

the required derivative at the boundary and expressing the boundary condi-

tion in terms of this new variable.

As an example of the user-supplied boundary condition subroutine, con-

sider the second problem in Section 3.2 given by Eqs. (45) and (48), with a

physical boundary condition for UI at each boundary and a numerical bound-

ary condition at each boundary derived from the linearly extrapolated charac-

teristic variables. The subroutine is

SUBROUTINE BNDARY(NPDE, NPTS, T, X, U, IBND, RES, IRES)
C ..Scalar Arguments..

DOUBLE PRECISION T
INTEGER IBND, IRES, NPDE, NPTS

C ..Array Arguments..
DOUBLE PRECISION RES(NPDE), U(NPDE, NPTS), X(NPTS)

C ..Local Scalars..
DOUBLE PRECISION UBCI, UBC2, UEX1 , UEX2

C ..Executable Statements..
IF (IBND.EQ.0) THEN

C ..Lefthand boundary..
C ..Extrapolate variables to boundary..

UEXI = 2.ODO* U(I,2) – U(1 ,3)
UEX2 = 2.ODO* U(2,2) – U(2,3)
UBC1 =(Left-hand physical b.c. for U(l))

RES(l) = U(l,l) – UBCI
RES(2) = U(2,1) + UBC1 – UEX1 – UEX2
ELSE

C ..Righthand boundary..

C ..Extrapolate variables to boundary..

UEXI = 2.ODO* U(1 ,NPTS-I) – U(1 ,NPTS-2)

UEX2 = 2.ODO* U(2,NPTS-I) – U(2,NPTS-2)

UBC2 =(Right-hand physical b.c. for U(l))
RES(I) = U(1 ,NPTS) – UBC2

RES(2) = U(2,NPTS) – UBC2 + UEX1 – UEX2
END IF

RETURN

END

ACM Transactions on Mathematical Software, Vol. 20, No. I, March 1994

82 . S. V. Pennington and M, Berzins

6. EXAMPLES

The examples described in this section demonstrate that the software is

capable of solving a broad class of first-order PDE systems, including both

standard and nonstandard problems. Problems with moving boundaries or

nonlocal boundary conditions are handled quite simply by the introduction of

coupled ODES. The results illustrate how the upwind scheme provides accu-

rate and oscillation-free solutions to problems with shocks and discontinu-

ities.

Unless stated otherwise, the given results required between 10 and 30

seconds of CPU time on an SGI 4D240 (single-processor) workstation.

6.1 Keller Box Scheme

Problem 1.1. The boundary layer equations describing inviscid flow over a

semi-infinite plate, in first-order form:

du (T7U
(55)

dt=–dx’

du du dw
u=. .r_+— (56)

dx dx ‘

du
w=— (57)

dx ‘

for O < x < ~ and t >0. The boundary conditions are u(O, t) = u(O, t) = O

and U(M, t) = 1 for t >0, and the initial conditions are U(X, 0) = 1, u(.K, O) =

0, and W(x, 0) = O for x >0. Note that the independent variable t in this

problem is not time but a second space variable; at any value of t,the spatial

domain O s x s m is the line perpendicular to the plate at a distance t along

the plate, with u and u being the velocities parallel and perpendicular to the

plate respectively. The solution becomes constant at around t = 5, meaning

that downstream of this point on the plate there is no further change in the

solution. Note that the semi-infinite domain must be truncated at some finite

value of x = xmax say, and with a simple coordinate transformation the

domain can be taken to be O < x < 1.

An adaptive mesh is appropriate for this problem as the solution gradient

changes rapidly at the edge of the boundary layer, and the thickness of the

boundary layer changes with time (i.e., distance downstream). Also, since

there are three PDEs, a reduction in the number of mesh points should have

a significant effect on the CPU time required. The second spatial derivative of

u is used as the monitor function. Note that remeshing is performed only

after the initial discontinuity in u has been smoothed somewhat (at about

t = 0.2); until then the initial mesh is chosen to be finer towards the plate to

provide adequate resolution at the start.

Figures 2 and 3 show the approximate solutions for u and u (the extra

variable w is not shown) at t = 5.0, that is, at a distance 5.0 along the plate,

with xmax = 100. An adaptive mesh of 61 points is used, with the b.d.f.

method of time integration, Newton iteration, and banded matrix algebra.

ACM TransactIons on Mathematical Software, Vol 20, No. 1, March 1994

NAG Library Software . 83

1.2

1

0.8

u 0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

x

Fig. 2. The approximate solution for u in Problem 1.1 at t = 5.0 using an adaptive mesh of 61

points.

0.45

0.4

0.35

0.3

0.25
v

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1

x

Fig. 3. The approximate solution for u in Problem 1.1 at t= 5.0 using an adaptive mesh of 61

points.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

84 . S. V. Pennington and M. Berzins

Problem 1.2. A population dynamics problem governed by an integro-dif-

ferential equation with a nonlocal boundary condition (from Fairweather and

L6pez-Marcos [1991]):

du
— + : = –l(t)u,
dt

(58)

for O<x<aandt>O, where

I(t) = p(x, t)cix. (59)
o

The initial condition is

exp(–x)
Zf(x, o) =

2 – exp(–a) ‘
(60)

and the nonlocal boundary condition at x = O is

()u((), t) =g ~ab(x, l(t)) u(x, t)dx, t , (61)
o

where the functions b(x, y) and g(z, t) are given by

xy exp(–x)
b(x, y) =

(y + 1)2 ‘
(62)

and,

4z(2 – 2exp(–a) + exp(–t))2
g(z, t) =

(1 – exp(–a))(l – (1 + 2a)exp(-2a))(l – exp(–a) + exp(–t)) “

(63)

The exact solution to this problem is

exp(–x)
U(x, t) =

1 – exp(–a) + exp(–t)”
(64)

The difficulty with this problem is that the PDE and the boundary condi-

tion involve solution values across the whole domain, whereas the PDE

description subroutine is called separately for each midpoint of the mesh.

This is overcome by introducing two coupled algebraic equations

Ul(t)= jau(x, t)dx, (65)
o

ug(t) = ~axexp(–x)u(x, t) dx, (66)
o

so that Eq. (58) becomes

du Ju
~ + ~ = –Vlu,

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994,

(67)

NAG Library Software . 85

1

0.8

0.6

u

0.4

0.2

0 I I I

o 1 2 3 4 5
x

Fig. 4. The solution of Problem 1.2 at t= 5.0 using a fixed uniform mesh of 101 points. The dots
represent the approximate solution, and the line shows the exact solution.

and the boundary condition is

g(l, t)u1u2
U(o, t) =

(Ul + 1)2 “
(68)

The integrals in Eqs. (65) and (66) are calculated numerically using the

trapezoidal rule, using values of the integrand at a set of points across the

domain—the coupling points of the PDE/ODE system. For a fixed mesh it is

desirable that the coupling points coincide with the mesh points, thus avoid-

ing the need to interpolate the solution at the coupling points. Interpolation is

unavoidable for a nonfixed mesh, but adaptive remeshing would not be very

useful for this problem anyway, since the gradients are moderate and slowly

varying with time. Hence a fixed uniform mesh is used, with the same mesh

of coupling points.

Figure 4 shows the approximate and exact solutions at t = 5.0 for O < x <

5.0 using a fixed uniform mesh of 101 points, with the b.d.f. method of time

integration, Newton iteration, and full matrix algebra.

6.2 Upwind Scheme

Problem 2.1. Burgers’ equation in the inviscid limit with two initial

square waves propagating in opposite directions, taken from a recent paper
by Yang and Przekwas [1992] on the comparative performances of advanced

shock-capturing schemes. The problem involves the propagation and collision

of shocks and the expansion of discontinuities.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

86 . S. V. Pennington and M. Berzins

The governing equation is

(69)

and the initial profile is given by

[

1.0, 0.2 <x <2.0,

U(x, o) =
–0.5, 2.0 <x <3.0,
–1.0, 3.0 <X s 4.8,

(70)

0.0, otherwise.

The problem includes two shocks initially at x = 2 and x = 3, moving to

the right and the left respectively. At time t = 1 the two shocks collide and

form a single shock moving to the left. Also, there are two expansion

discontinuities at x = 0.2 and x = 4.8, expanding to the right and left

respectively. The exact solution at later times is easily found from the initial

profile, using the known speeds of propagation or expansion of the discontinu-

ities.

The solution domain is O < x <5, with a physical boundary condition

u(5, t) = O, and a numerical boundary condition in terms of extrapolated

variables at x = O (see Section 3.2). In this case the numerical boundary

condition at x = O will be equivalent to zdO, t) = O since the solution is

uniform at x = O during the time of integration, chosen to be O < t < 2. The

numerical flux is given by Osher’s scheme (see section on approximate

Riemann solvers).

Figures 5 and 6 show the approximate and exact solutions at t = 0.75

before the shocks collide and at t = 2.0 when the shocks have combined into a

single one. A uniform mesh of 161 points is used, with the Theta method of

time integration and functional iteration. The results compare very favorably

with all of those presented by Yang and Przekwas [1992].

Problem 2.2. The linear advection equation with a nonlinear source term

(see LeVeque and Yee [1990]) and discontinuous initial profile:

(71)

for O s x s 1 and t >0. The discontinuity is modeled by a ramp function of

width O.01 and gradient 100, so that the exact solution at any time t > 0 is

u(x, t) = 1.0 + max(min(8,0), –l), (72)

where 8 = 100(0.1 – x + t).

The initial profile is given by Eq. (72). A physical boundary condition

u(O, t) = 1.0 is imposed at x = O, with a numerical boundary condition at

x = 1 which will be equivalent to U(1, t) = O provided that the discontinuity

does not reach x = 1 duri~g the time of integration (as in Problem 2.1). The

numerical flux is simply f = u~ at all times.

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994

NAG Library Software . 87

1

0.5

u

o

-0.5

-1

●

●

o 1 2 3 4 5
x

Fig. 5. The solution of Problem 2.1 at t = 0.75 using a uniform mesh of 161 points. The dots
represent the approximate solution, and the line shows the exact solution.

1

0.5

u o

-0.5

-1

0 1 2 3 4 5
x

Fig. 6. The solution of Problem 2.1 at t = 2.0 using a uniform mesh of 161 points. The dots

represent the approximate solution, and the line shows the exact solution.

ACM Transactions on Mathematical Software, Vol. 20, No 1, March 1994.

88 .

1

0.8

0.6

u

0.4

0.2

0

S, V, Pennington and M. Berzlns

-----%

o 0.2 0.4 0.6 0.8 1
x

Fig. 7, The solutlon of Problem 2.2 at t = 0.4 for p = 100 using a uniform mesh of 161 points.

The dots represent the approximate solution, and the line shows the exact solution.

Figure 7 shows the approximate and exact solutions at t = 0.4 for p = 100

using a uniform mesh of 161 points, with the Theta method of time integra-

tion and functional iteration.

It can be seen that for this value of p there is good agreement between the

numerical and exact solutions. However, for much larger p (of the order
1000) incorrect propagation speeds are obtained with this mesh size, as

described in the Section on Source Terms.

Problem 2.3. The standard shock-tube test problem of Sod [1978] (also

called the Riemann problem) which involves the Euler equations of gas

dynamics: The problem models the flow of air in a long tube following the

sudden breakdown of a diaphragm separating two initial gas states at

different pressures and densities. There is an exact solution to this problem

(see Sod [19781) containing simultaneously a shock wave, a contact disconti-
nuity, and an expansion fan, and hence it is a particularly useful test problem

for hyperbolic PDE algorithms.
The governing equations are

dp

%

~m ~ Imz

Jm
+— = o,

dx

\ ())m’
—+~—+(y–l)e– —
C7t 2p

= o,
P

(73)

(74)

(75)

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

NAG Library Software . 89

where p is the density; m is the momentum, such that m = p u, where u is

the velocity; e is the specific energy; and y is the (constant) ratio of specific

heats. The pressure p is given by

Mp=(y–l)e–~.
2

(76)

The solution domain is O < x < 1 for O < t <0.2, with the initial discontinu-

ity at x = 0.5, so that the initial conditions are

p(x, o) = 1, m(x, o) = o, e(x, O) = 2.5, for x <0.5,

p(x, O) = 0.125, m(x, O) = O, e(x, O) = 0.25, for x >0.5. (77)

The solution is uniform and constant at both boundaries for the spatial

domain and time of integration stated; and hence the physical and numerical

boundary conditions are indistinguishable, and both are given by the initial

conditions above.

The Osher approximate Riemann solver is used to obtain the numerical

fluxes (see Hemker and Spekreijse [1986] for example). The required subrou-

tine for this algorithm is to be made available in the NAG library (see the

Appendix).

Figures 8, 9, and 10 show the approximate and exact solutions in terms of

the density p, the velocity u, and the pressure p, at t = 0.2, for y = 1.4, using

a uniform mesh of 141 points, with the Theta method of time integration and

functional iteration.

Problem 2.4. The shallow-water equations for waves on a sloping beach

(see Watson and Peregrine [19921): Sinusoidal waves of increasing amplitude
are incident upon a sloping beach, pushing the waterline up the beach and

forming highly asymmetric waves with steep fronts. This moving-boundary

problem is solved by using a coordinate transformation to obtain a fixed

domain, thereby introducing additional source terms. The position of the

shoreline is determined by the introduction of a coupled ODE.

Following Watson and Peregrine [1992], the physical seaward-boundary

condition is specified in terms of the incoming characteristic variables, and

the numerical seaward-boundary condition is supplied in the form of the

characteristic equation associated with the outgoing characteristic variable.

This numerical boundary condition method is an alternative to the simple

extrapolation of the outgoing characteristic variable described in Section 3.2.

The results are very similar for the two methods in this particular example.

The governing equations are

dh d(uh)
~+— = o, (78)

dx

(79)

where h(x, t) is the water depth; U(x, t) is the water velocity (height aver-

aged); and b(x) describes the shape of the beach in terms of its distance

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

90 . S. V. Pennington and M. Berzins

1

0.8

P 0.6

0.4

0.2

approx .

exact —

.

●

●

.

I I I I L

o 0.2 0.4 0.6 0.8 1

x

Fig. 8. The approximate and exact solutions for the density p in Problem 2.3 at t = 0.2 using a

uniform mesh of 141 points

1

0.8

0.6

u
0.4

0.2

approx .

exact —

o 0.2 0.4 0.6 0.8 1

x

Fig. 9. The approximate and exact solutlons for the velocity u in Problem 2.3 at t = 0.2 using a

uniform mesh of 141 points.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

NAG Library Software . 91

1

0.8

0.6
P

0.4

0.2

0

I I I I

approx .

exact —

●

,

L
I I I I

o 0.2 0.4 0.6 0.8 1
x

Fig. 10. The approximate and exact solutions for the pressure p in Problem 2.3 at t = 0.2 using
a uniform mesh of 141 points.

below the initial constant water level. In this example the beach is taken to

be of constant slope, and b(x) is normalized so that b(x) = –x.

The solution domain is – 1< x < x~(t), where x.(t) is the position of the

moving shoreline, and the boundary conditions are

h(x., t) = o, (80)

dx.
U(x., t) = —

dt ‘
(81)

U(–l, t) + 24- = f(t) + 2Jm, (82)

where f(t)= 0.6[sin(2m t/O.475) – sin(2 m-t/O.525)] for this example. Eqs. (80)

and (81) simply specify that the water depth is zero at the shoreline and that

the water velocity at the shoreline is equal to the rate of change of the

shoreline position x, (this condition will be used to define the shoreline

position). The seaward-boundary condition given by Eq. (82) specifies the

incoming characteristic variable u + 2fi. Note that this boundary condition

does not assume any knowledge of U(– 1, t) or /’z(– 1, t) individually; it has

simply been chosen (using prior experience) to produce an appropriate solu-

tion at later times. The initial conditions are U(X, O) = O, h(x, O) = b(x) = –x

for all x, and x.(O) = O.

To obtain a fixed solution domain the coordinate transformation

X+l
y=

X.+1
(83)

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

92 . S. V. Penmngton and M. Berzlns

is made, and Eqs. (78) and (79) thus become (substituting b(x) = –x)

dx~ Jh
(1+X.)+–Y——+

6’(uh)
—=0,

dt dy dy

with solution domain O < y < 1, and boundary

(84)

)+h = –(1+x,), (85)

conditions

? (86)h(l, t) = O,

dx~
U(l,t) = —

dt ‘
(87)

~(o, t) + 2Jm =f(t) + 2. (88)

On rearranging the spatial derivative terms in Eqs. (84) and (85) the follow-

ing two PDEs are obtained in a suitable form for solution:

(89)(1 + u,): +;(uh – u2yh) = –uzh,

()
(1+x,);+; ~u2+h–uzyu = –(UI+ 1) –rJ2u, (90)

where u I(t) = x,(t)and u ~(t) = du ~\dt (the latter having been introduced in

order to avoid explicit time derivatives in the flux terms).

Using the “extra” boundary condition (87), the time-dependent variables u ~

and rJz are determined from the following two coupled ODES:

du ~
—=~2,
dt

u~ = U(l, t). (91)

The numerical boundary conditions are supplied in terms of extrapolated u

at the shoreline boundary y = 1 and the characteristic equation associated

with the outgoing characteristic variable u – 2v% at the seaward boundary,

that is,

where

7J3(t) = U(o, t) – 2Jm, (93)

is the outgoing characteristic variable at the seaward boundary. The spatial

derivative term in Eq. (92) must be calculated in the user-supplied boundary

condition subroutine by one-sided differences (into the domain, and therefore

consistent with the flow of information for this characteristic variable).

In summary, there are two PDE variables and three new time-dependent

variables, described completely by the PDEs (89) and (90) and the ODES (91)

and (93). The boundary conditions are given by Eqs. (86) and (88), along with

numerical boundary conditions as described above. The numerical flux is

calculated using Roe’s scheme (see section on approximate Riemann solvers).

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994

NAG Library Software . 93

0.8 I I I I I [I

0.6 -

0.4 -

0.2

0 -

-0.2 -

-0.4 I I I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
x

Fig. 11. The approximate solution in Problem 2.4 at t = 0.5 using a uniform mesh of 161 points.
The beach is shown as a straight line.

0.8 I I I I I I I

0.6 -

0.4

0.2 -

0 -

-0.2 -

-0.4 I I I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
x

Fig. 12. As in Fig. 11 at t = 1.0.

0.8 I I I I 1 I I

0.4 -

0.2 -

0 -

-0.2 -

-0.4
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x

Fig. 13. As in Fig. 11 at t = 1.5.

Figures 11 to 15 show the approximate solutions in terms of the wave

profiles at t = 0.5, 1.0, 1.5, 2.0, and 2.5, using a uniform mesh of 161 points,
with the b.d.f. method of time integration, Newton iteration, and sparse

matrix algebra. No exact solution is available for this problem, but runs with

successively refined meshes showed good convergence of the solution.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

94 . S. V. Pennington and M. Berzins

0.8 I I I I I I I I I

0.6 -

0.4 -

0.2 -

0 -

-0.2 -

-0.4
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x

Fig. 14. As in Fig. 11 at t= 2.0

0.8 { I I I I I I

0.6 -

0.4 -

0.2

0 -

-0.2

-0.4 L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x

Fig. 15 As in Fig 11 at t= 2.5

The solution to t = 2.5 took 380 seconds of CPU time on an SGI 4D240

(single-processor) workstation—the relatively high computational cost being

due to the greater value of t,compared with earlier problems, and the large

number of equations in the resulting ODE system.

7. SUMMARY

A set of new NAG Fortran Library routines has been described for the

solution of systems of nonlinear, first-order, time-dependent partial differen-

tial equations in one space dimension, with scope for coupled ordinary

differential equations. The software has a common method-of-lines frame-

work, and much of the existing NAG Library PDE software is reused. The
Keller box scheme is available for those problems for which it is suitable,

along with upwind differencing for hyperbolic problems with shocks and

discontinuities. A number of standard and nonstandard computational exam-

ples have been presented, illustrating the flexibility of the routines and the

accurate and oscillation-free results obtainable. The disadvantage with the

upwind scheme is that the user is required to provide an approximate

solution to the associated Riemann problem.

The D03P subchapter of the NAG Fortran Library now forms a comprehen-

sive set of routines for the solution of PDEs in one space dimension, with

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

NAG Library Software . 95

several options regarding spatial discretization, time integration, linear alge-

bra, error control, and adaptive spatial remeshing. It is hoped that there will

be future developments concerning space-time error control and adaptive

remeshing and the treatment of source terms for hyperbolic problems.

APPENDIX

An Approximate Riemann Solver for the Euler Equations

A subroutine is to be included in the NAG library to calculate the Osher

numerical flux for the Euler equations (as in problem 2.3). The algorithm is

taken from the paper by Hemker and Spekreijse [1986] for the Euler equa-

tions in two space dimensions. A description of the algorithm is given here,

followed by an example of the user-supplied subroutine required to use the
NAG routine.

The Euler equations (in one dimension) are

~+; (pu)=o,

-+) +-&m’+p) = o,

+ + +(u(e +p)) =0,

(94)

(95)

(96)

where p is the density; u is the velocity; e is the specific energy; and p is the

pressure given by

2

()
P=(Y–l)e– K

2’

where y is the (constant) ratio of specific heats.

Equations (94) to (96) can be written in the form

(97)

(98)

where q = (p, pu, e)~ and f(q) = (pu, PU2 + p, u(e + p))~.

The eigenvalues of the Jacobian A(q) = d f\ ~q are Al = u – c, Az = u, and

As = u + c, where c = ~~ is the speed of sound,

Given left and right states q. and ql, the numerical flux is as stated in the

Section on Approximate Riemann Solvers, that is

f(qo,q,) = i(f(q,) + f(q,)) - ~~’’lA(q)ldq, (99)

where IA I is a matrix defined by

IAI=A+-A-, (100)
where

A+= PA+P-I A-= PA- P-l , and A =PAP-l, (101)

where A is the diagonal’ matrix of eigenvalues of A; and A+ and A– are

diagonal matrices such that A+ has only the positive elements of A, and A-

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

96 . S. V. Pennmgton and M. Berzms

only the negative, so that A = A++ A-. The columns of the matrix P are the

right eigenvectors of A, and the rows of P-l are the left eigenvectors of A.

The integration path in Eq. (99) is described by q = q(s), O < s <1,

q(0) = qO, q(l)= ql. This path is divided into three subpaths Fk, k = 1,2,3,
connecting the states CI(h. 1)/3 and qh /s. On each subpath lTk the direction of

the path dq(s)\ds is tangential to the eigenvector R ~, m = m(k). There are

two feasible choices for m(k): the so-called P-variant in which m(1) = 1,

m(2) = 2, and m(3) = 3, so that 171 corresponds to the eigenvalue Al, rz to A2,

and r3 to A3; and the O-variant in which the subpaths are taken in reverse

order, that is, rl corresponds to A3, r2 to AZ, and r3 to Al, so that m(l) = 3,

m(2) = 2, and m(3) = 1.

The states ql, s and q2/3 are determined from the Riemann invariants

@ln(k)(q(s)), 1 + rn, 1 = 1,2,3, which remain constant along each subpath rk.

The q)lm(q), m = 1,2,3, are

$: = u, *; = u + 2c\(y– 1),

@~ = @ = ln(pp-’) =Z say, (102)

+: =p, I/J; = u – 2c,/(y– 1).

SO ql,~ and q2,~ are determined from q. and ql using the expression

f’@)(q(k_ 1),3)) = #l~(kKq~,.J,*1 h = 1,2,3, 1 #m(k). (103)

The state q is expressed in terms of the variables u, c, and z, and Eq. (103)

above gives z1/s = zo and z2, ~ = Z1. Putting a = exp((ZI – 2.)/(27)) and

using P 1i3 = P 2/3 give the following linear system

ul/3 * zC1/31(Y – 1) = ZLo i 2Co/(Y – 1) = W. say,

U2,3 + zC2t3/(7 – 1) = U~ T 2Cl\(y – 1) = ~1 say, (104)

c2/3 = 0!C1,3, ‘2/3 = ‘1/3,

where the upper sign in f or 7 denotes the P-variant, and the lower sign

denotes the O-variant. This convention is used in the rest of the Appendix.

The above system is easily solved to give

ul/3 = u2/3 = (W1 + cl~o),l(l + a),

C1,3 = *+(7– l)(TO – T1)/(l + a), (105)

C2,3 = a!c1,3.

The eigenvalues at the points qk,3, k = 1,2,3, are defined by

10 = Am(l)(qo)= Uo + co,

x 1/3 = &Z(l)~~l/3) = ~1/3 + cl/3)

x (1/2 = ‘m(2) ~1/3) = ‘m(2) (~2/3) = ‘1/3 = ‘2/3, (106)

x 2/3 = &K3)(~2/3) = ‘2/3 ~ ‘2/3>

1, = &3)(q1) = ~, i c,.

ACM Transactions on Mathematical Software, Vol. 20, No 1, March 1994

NAG Library Software . 97

A so-called sonic point q,l exists on 171if ~0~1,~ s O, indicating ~ch~nge in

sign of ~~[k)(q(s)). Similarly, a sonic point q,z exists on r~ if Az,~ Al s O.

Sonic points are easily computed from ~n(k)(q(s~)) = O, k = 1,2.

Having defined the subpaths and calculated the intermediate states and

relevant eigenvectors, we give the expression for the numerical fluxes (Eq.

(99)):

f(fzo,ql) = i[f(qo)(siw(io) + 1) + f(q.1)(sign(i1,3)– Sign(xo))

)+f(ql/3)(@n(Li2– sign(Xl,3))
(107)

+f(92i3)(skn(~213) ())

—
– sign AI,2

+jlq~2)(sign(Il) – sim(~2/3))+ f(ql)(l - Siam)].

The user calls the NAG routine which implements the above algorithm

from the RM FLUX subroutine, supplying the value of the parameter y and

indicating the required variant of the scheme via the parameter VAR (the

default value being “P” indicating the P-variant). Note that the left and right

solution values held in the arrays ULEFT(NPDE) and URIGHT(NPDE)

correspond to the dependent variables used in problem 2.3, that is, p, m = p u

and e (in that order). The user must ensure that the correct solution values

are passed to the NAG routine. The following code provides an example of the

user-supplied subroutine.

SUBROUTINE RMFLUX(T, X, NPDE, ULEFT, URIGHT, RFLUX)

C ..Scalar Arguments..

DOUBLE PRECISION T, X

INTEGER NPDE

C ..Array Arguments..

DOUBLE PRECISION RFLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE)

C ..Local Scalars..

DOUBLE PRECISION G

CHARACTER * I VAR

C ..External Subroutines..

EXTERNAL D03P * *

C ..Executable Statements..

G = 1.4D0

VAR = ‘P’

CALL D03P * x (ULEFT, URIGHT, G, VAR, RFLUX)
RETURN

END.

NOTE ADDED AT PROOF STAGE

Since the paper was accepted there has been a change to the problem class in

the upwind-scheme routines intended for release at Mark 17 of the NAG
Fortran Library: optional second-order terms are to be included so that the

routines can be used to solve a broader class of convection-diffusion problems.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994,

98 . S. V. Pennington and M. Berzms

The second-order terms will be discretized separately by standard central

differences.

ACKNOWLEDGMENTS

The authors wish to thank NAG Ltd. for their financial support, P. H. Gaskell

for providing the code for the exact solution to Problem 2.3, G. Watson for

providing information on Problem 2.4, and the referees for their useful

comments.

REFERENCES

BERLINS, M. 1991. Balancing space and time errors in the method-of-lines for hyperbolic

equations. In the Athens Interdzsclplmary Olympia: 1st Znternatlonal S.ymposmm on Methods
of Lines (Athens, Nov.),

BERZINS, M. 1990. Developments in the NAG library software for parabolic equations. In

Scient@ Software Systems, J. C. Mason and M G. Cox, Eds. Chapman and Hall, 59-72.

BERZINS, M, 1986. A Cl interpolant for codes based upon backward differentiation formulae.

Appl. Numer. Anal. 2, 109-118.

BERZINS, M., AND FURZELAND, R. M. 1992. An adaptive theta method for the solution of stiff

and nonstiff differential equations. Appl. Numer. Math. 9, 1–19.

BERZINS, M., BRANKIN, R., AND GLADWELL, I. 1987. The design of stiff integrators in the NAG

library Dept. of Mathematics Rep., Univ of Manchester, U.K.

BERZINS, M., DEW, P. M., AND FURZELAND, R. M. 1989, Developing software for time-dependent

problems using the method of lines and differential algebraic integrators. Appl. Nurn. Math.

5, 375-397.
ENGQUIST, B., AND OSHER, S, 1981 One-sided difference approximations for nonlinear conser-

vation laws. Math. Comput. 36, 154, 321–352.
F.AIRWEATHER, G., AND L6PEZ-MARCOS, J. C. 1991. A box method for a nonlinear equation of

population dynamics IMA J Nurn Anal. 11, 525-538.

FURZELAND, R. M. 1985. The construction of adaptive space meshes, TNER,85.022, Shell

Research Ltd., Thornton Research Centre, Chester, U.K.

FURZELAND, R. M., VERWER, J. G., AND ZEGELING, P. A. 1990. A numerical study of three

movmg-grid methods for one-dimensional partial differential equations which are based on the

method of lines. J. Comput. Phys. 89, 2, 349–388.

GLAISTER, P. 1988. Flux difference splitting for the Euler equations in one spatial co-ordinate

with area variation. Int. J. Num. Meth. Fluids 8, 97–119.
GRIFFITHS, D. F., STUART, A. M., AND YEE, H. C. 1991. Numerical wave propagation in an

advection equation with a nonlinear source term School of Mathematical Sciences Tech. Rep.,

Univ. of Bath, U.K.

GODUNOV, S. K. 1959. Finite-difference method for the numerical computation of discontinu-

ous solutions of the equations of fluid dynamics. Mat. Sborni/z 47, 27 1–306. In RussIan.
GOTTLIEB, D., GUNZBURGER, M., AND TURKRL, E. 1982. On numerical boundary treatment of

hyperbolic systems for finite difference and finite element methods. SIAM J. Numer. Anal. 19,
4, 671–682.

HEMKER, P, W., AND SPEKREIJSE, S. P. 1986. Multiple gmd and Osher’s scheme for the efficient

solution of the steady Euler equations. Appl. Num. Math. 2, 475–493.
KELLER, H. B. 1970. A new difference scheme for parabolic problems. In Numerzcaz Solutions

of Partial Dlfferentlal Equatzons, vol. 2, J. Bramble, Ed. Academic Press, New York, 327–350.

KOREN, B. 1989. Multigrid and defect correction for the steady Navier-Stokes equations, Ph.D.

thesis, Centrum voor Wiskunde en Informatica, Amsterdam.

LEVEQUE, R J. 1990. Numerical Methods for Conseruatlon Laus. Spnnger-Verlag, New York.
LEVECWE, R. J., AND YEE, H. C. 1990. A study of numerical methods for hyperbolic conserva-

tion laws with stiff source terms, J. Comput. Phys. 86, 1,187–210.

ACM Transactions on Mathematical Software, Vol. 20, No, 1, March 1994.

NAG Library Software . 99

MACHURA, M., AND SWEET, R. A. 1980. A survey of software for partial differential equations.

ACM Trans. Math. Sofiw. 6, 4, 461-488.

NUMERICAL ALGORITHMS GROUP LTD. 1993. NAG Library Manual. Wilkinson House, Jordan

Hill Road, Oxford, U.K.

OSHER, S. 1985. Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22, 5,
947-961.

OSHER, S., AND SOLOMON, F. 1982. Upwind difference schemes for hyperbolic systems of

conservation laws. Math. Comput. 38, 158, 339–374.

ROE, P. L. 1989. A survey of upwind differencing techniques. In Lecture Notes in Physics, vol.

323. Ilth International Conference on Numerical Methods in Fluid Dynamics, D. L. Dwoyer, M.

Y. Hussaini, R. G. Voigt, Eds. Springer-Verlag, New York, 69-78.

ROE, P. L. 1986. Upwind differencing schemes for hyperbolic conservation laws with source

terms. In Lecture Notes in Mathematics, vol. 1270. Nonlinear Hyperbolic Problemsj C. Carasso,
P. A. Raviart, D. Serre, Eds. Springer-Verlag, 41-51.

ROE, P. L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J.

Comput. Phys. 43, 2, 357-372.
SCHRYER, N. L. 1990. Designing software for one-dimensional partial differential equations.

ACM Trans. Math. Softzo. 16, 1,72-85.
SKEEL, R. D., AND BERZINS, M. 1990. A method for the spatial discretization of parabolic

equations in one space variable. SIAM J. Sci. Stat. Comput. 11, 1,1–32.

SoD, G. A. 1978. A survey of several finite difference methods for systems of nonlinear

hyperbolic conservation laws. J. Comput. Phys. 27, 1, 1-31.

SPERREIJSE, S. 1987. Multigrid solution of monotone second-order discretizations of hyperbolic

conservation laws. Math. Comput. 49, 179, 135–155.

SWARTZ,B. 1987. Courant-like conditions limit reasonable mesh refinement to order hz. SIAM

J. Sci. Stat. Comput. 8, 924-933.

SWEBY, P. K. 1989. “TVD” schemes for inhomogeneous conservation laws. In Notes on Numer-

ical Fluid Mechanics, vol. 24. Non -linear Hyperbolic Equations—Theory, Computation Meth-

ods, and Applications, J. Ballmann, R. Jeltsch, Eds. Springer-Verlag, New York, 599–607.

VAN LEER, B. 1984. On the relation between the upwind-differencing schemes of Godunov,

Engquist-Osher and Roe. SIAM J. Sci. Stat. Cornput. 5, 1,1-20.

VAN LEER, B. 1974. Towards the ultimate conservative difference scheme II, Monotonicity and

conservation combined in a second order scheme. J. Comput. Phys. 14, 4, 361–370.
VAN LEER, B., THOMAS, J. L. ROE, P. L., AND NEWSOME, R. W. 1987. A comparison of numerical

flux formulas for the Euler and Navier-Stokes equations. In Proceedings of the 8th AL4A

Computational Fhnd Dynamics Conference. AL4A, 36-41.
WATSON, G., AND PEREGRINE, D. H. 1992. Low frequency waves in the surf zone. In Proceed-

ings of the 23rd International Conference on Coastal Engineering (Venice, Italy). To be

published. Also, Rep. AM-92-1 1, School of Mathematics, Univ. of Bristol, U.K.

YANG, H. Q., AND PRZEKWAS, A. J. 1992. A comparative study of advanced shock-capturing

schemes applied to Burgers’ equation. J. Comput. Phys. 102, 1, 139– 159.
YEE, H. C. 1987. Construction of implicit and explicit symmetric TVD schemes and their

applications. J. Comput. Phys. 68, 1, 151–179.
YEE, H. C., BEAM, R. M., AND WARMING, R. F. 1982. Boundary approximations for implicit

schemes for one-dimensional inviscid equations for gas dynamics. AL4A J. 20, 9, 1203– 1211.

Received December 1992; revised March 1993; accepted March 1993

ACM TransactIons on Mathematmal Software, Vol. 20, No. 1, March 1994

