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Abstract

Essentially Non-Oscillatory (ENO) methods and Weighted Essentially Non-
Oscillatory (WENO) methods are of fundamental importance in the numer-
ical solution of hyperbolic equations. A key property of such equations is
that the solution must remain positive or lie between bounds. A modifica-
tion of the polynomials used in ENO methods to ensure that the modified
polynomials are either bounded by adjacent values (data-bounded) or lie
within a specified range (range-bounded) is considered. It is shown that
this approach helps both in the range boundedness in the preservation of
extrema in the ENO polynomial solution.
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1. Introduction

An important class of methods for the numerical solution of hyperbolic
equations are based upon Essentially Non-Oscillatory (ENO) methods and
Weighted Essentially Non-Oscillatory (WENO) methods. There is an in-
fluential and substantial body of work on these methods see [7, 12]. The
potential for high accuracy solutions makes the use of high order polynomi-
als attractive, despite some challenges in the analysis of such methods. This
is particularly true with regard to stability issues and the preservation of
positivity in the solution.

The preservation of physical properties in the solution of hyperbolic
equations such as positivity and consequently the avoidance of unphysi-
cal overshoots and undershoots in solution values is often seen as important
when deriving algorithms for such equations. The standard definition used
here for a positivity preserving scheme for the advection equation requires
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(see [5]) that the numerical solution at time ¢,+; be written in terms of the
numerical solution at time ¢,, in the form

Ui(tny1) = ZajUj(tn) where Zaj =C, anda; >0. (1)
J J

The constant C should ideally be one, [5]. With regard to ENO and WENO
methods there have been a number of approaches proposed to address such
issues. For example a modification to the ENO approach to enable the
method to be Total Variation Diminishing (TVD) is provided in the preprint
of Shu [11]. A slightly different approach so as to keep the ENO stencil closer
to a linearly stable stencil is also described by Shu [13]. Balsara and Shu [1]
construct specific high-order schemes. Shu points out in a recent survey of
WENO methods it is difficult to generalize analysis of some of the methods
beyond third order, [12]. Recently Zhang and Shu [15] have extended TVD
WENO schemes to sixth order [15], by using a novel approach involving the
exact integration of the solution in time. Perhaps most importantly a recent
paper of Zhang and Shu [16] includes a novel limiter that when applied to
the solution ensures that the solution lies between particular values:

m < Ul(z) < M. (2)

We refer to this as a Range-Bounded approach.

One of the challenges in constructing methods that enforce such condi-
tions is to be able to bound solutions consisting of high-order polynomials. In
this paper the intention is to start from recent work on data-bounded poly-
nomial interpolating functions s, [3, 4] and to consider if those approaches
may be extended to bound the solution as in equation (2).

Sections 2,3 and 4 of this paper describe ENO methods and the data-
bounded polynomial approach that will be used here. These results then
make it possible to prove results about the range-bounded nature of higher
order ENO type polynomials and to show numerical results on test problems
that illustrate these results in Sections 5, 6 and 7. A summary of the results
is provided in Section 8.

2. ENO Methods

Consider the advection equation with non-negative initial data:

ou ou B



with appropriate boundary conditions on a spatial interval [A, B]. ENO
schemes integrate this equation over the interval [z;_1,x;] to get:

Ot 1/2 n a[u(xi, t) —u(wi—1,t)]

8t (l’z — .CEi_l) =0 (4)

where the cell-averaged solution value ;1 /5(t) is defined by

i) = oo [ ulete (5)

Ti = Tio1) Sy,

The ENO reconstruction function w;(z,t) is defined by:
xT
wi(x,t) = / u(z*, t)dx™, x € [x;—1, 2], (6)
Ti—1

where Z;_1 is an arbitrary lower limit. This reconstruction function is related
to the cell-averaged value by

wi(w, 1) — wi(Ti-1,t) = U1 /2() (@ — Tio1). (7)
From differentiating equation (6) it follows that
dw,- dwi
— iat - i*at = I3 - i—1,0)-
Wi t) = M 1) = 1) i, 1) 0

At the boundary x = 0 the appropriate solution value Uy(t) is substituted
for u(z;_1,t). Using this relation in equation (4) and integrating in time
using the forward Euler method gives.

_ _ adt dwz
Uir1/2(tns1) = Uggpra(tn) — (@ =z | dz

dwi

(:c,-,tn) — E(fﬁi—latn) . (9)

The derivatives of ddiii (z,t), are calculated by taking into account upwind
directions, see [13]. For a more general p.d.e. we would have to evaluate
flux function values using Riemann solvers etc. The ENO algorithm has the
following steps:

(i) On each interval create initial values of ;/9(t) by using exact or high-
order quadrature based on the values u(z,t).

(ii) Use equation (7) to create the first differences of the function w;(x,t).
(iii) Use these differences and subsequent differences to create a high or-
der polynomial approximation on each interval to w;(x,t); we denote this
polynomial by w(z,1).

(iv) Calculate the derivatives of this polynomial d%j(:ci, t) and %(mi_l, t).
(v) Advance the solution in time using equation (9) with a sufficiently small
timestep, dt, by using forward Euler or TVD Runge Kutta methods [7, 12].



3. ENO Divided difference polynomials

In calculating the required solution derivatives in equation (9) ENO
methods [7, 12] use the divided difference form of polynomial interpola-
tion, [9] in which U[z;] = U(x;) and where subsequent divided differences
are defined recursively by

UlZit1, Tiga-o, Tivk) — Ulxi, Tig1, o, Tigg—1]
(Tipr — x4)

Ulzi, Tig1, s Tik] = (10)

It will also be helpful later to define undivided differences by U{x;} = U(z;)
and where subsequent differences are defined recursively by

U{xi, TLjd1yeeey xiJrk} = U{xiﬂ, Li42---y $i+k} — U{a:i, Litly ey $i+k71}- (11)

ENO methods adaptively pick a stencil with the smallest divided differences.
Consider the standard linear polynomial

U(z) = Ul + (x — x;) Ulzs, zig1]. (12)
In the case that
Ulwi1, i, mia]] > |Ulzs, miga, zigo]|, (13)
the quadratic ENO polynomial is then given by
U(z) = Ulzi]+ (v —2;) Uly, vipa |+ (@ —2:) (2 —2i11) Ul Tie1, Tigo). (14)

Otherwise the rightmost term is replaced by (z—z;)(z—xi+1) Ulxi—1, T4, Tit1].

There are many results about the stability and accuracy properties of
ENO methods. While Harten et al. [8] show that the ENO approach may not
result in oscillations in certain situations such behavior is not guaranteed.
For example, although the standard ENO method does not always generate
unphysical values, it is straightforward to create simple examples in which
overshoots occur. For example consider a quadratic polynomial passing
through three points (z;,v;),i = 0,1,2 and suppose that (z9,y9) = (0,0).
The quadratic polynomial expansion about this point is then given by

y(@) =y [s(1 4 (s = 1)(M —1))] (15)

where s = x/(x1—x0) and the ratio M = (y2—y1)/)(y1). It is straightforward
to calculate that if M < —1 and M > 2 then there are values of y(z) that
lie outside the range [0, y1].



In using the ENO polynomial approach to represent a cell-averaged func-
tion it is important to note that if the solution to the p.d.e. is non-negative
then the cell-averaged function w;(z,t) is non-decreasing. Hence on physi-
cal grounds it is appropriate to represent this function by a data-bounded
polynomial for which:

wi(xi_l,t) < wi(:v,t) < wi(:vl-,t) Ve [xi_l,xi]. (16)

This is the approach advocated by [3]. However a combination of positive
and negative solution values may result in extrema in the cell-averaged func-
tion w;(x, t). Hence there is a need to construct a polynomial representation
for this function that allows for extrema in the reconstruction function.

4. A Data-Bounded Polynomial Approach

The data-bounded approach of Berzins [3, 4] uses the ENO divided differ-
ence interpolation scheme in recursive form by defining the ratios of divided
differences, for example, by

it Litkt1] _ Ul oo i ] 17
Tlim1,...itk] UlZiot, o Tirh] (17)

Such ratios, often of first divided differences are used as part of many very
widely used positivity methods for solving compressible flow problems, see
[14]. The main idea here is to use ratios of divided differences in constructing
polynomials that may form part of high-order discretization methods. For
example, when the next divided difference approximation to be computed
incorporates a new point from the left x;_1, it may be written in the form

(=)
13 i+ U[
Titk — Ti—1

U[xiflal'ia "'axi-f—kaxi-f—k] = Liy Tit+1, "'ax’i-f-k]' (]‘8)

An alternative divided difference computed from Ulz;, xiy1, ..., Tiyg] is

(=Y,

Titk+1 — T4

U[l“ia Lid 1y Lit-2y -eey $i+k+1] =

Ty i1y oo Titk)-

(19)
In this case the ENO scheme picks the next difference to be that in (18) if

(|1 _ T[Cﬁi—lv---7$i+k—1]|> (\r[[33i+17---a$i+k+1} _ 1|)
<

[Ty sig k] TiyeesTip ko]

20
|Tivk — @iz |Tiq k1 — 4 ’ (20)



or picks that in (19) otherwise. In the approach of [3], providing that the

values of r{ } satisfy the restriction

0<r <1, (21)
then, if equation (21) holds we pick the next stencil point to be to the ”left”
i.e. x;_1 as in equation (10) and define A1 by

_ (i1, @i 1]

12 A1 = (1 N r[wi,---,wHJ ) = 0. (22)
Alternatively if equation (19) does not hold, then the next stencil point is
picked to the "right”, as in equation (20), ;41 and define A1 by

— [Tit 1Tt
1S = (el o) <o (23)
For non-uniform meshes the values xz;, are defined in terms of a starting
point xy by adding or subtracting multiples of the mesh spacing h so that
the mesh points chosen by the ENO approach at each stage are denoted by
x as defined by

x = xo + ejh, i > 1, where h = (x; — ), (24)

for some value ¢; and where e; = 1 and if e; > 0 then ¢; > 1. At the ¢th
stage of the ENO process let the leftmost and right most parts of the stencil
in use may be defined as aci and :cﬁ, where

l

zt = min(x¢, 2t ), 336 = Xy, (25)

33‘;" = ma’$($§a xzr—l)a 1’6 = Zo- (26)
Defining a local co-ordinate, s, in the interval [z, z1] by:

T — X0

i 0 (27)
allows the limited ENO polynomial, [3], to be written as:
U'(x) = Ulzo] + [U (1) — U(ao)] Pn(s)- (28)
Py (s) is the polynomial defined by:
Pn(s) =s+s(s—1)Py(s) (29)



where

Pi(s) = 22 + (s — e2) o + (5 — e2)(s — €3) e +

N D2 D3 D4 B

A
+(8—€2)~--(8—€N—1)D7]Z7 (30)

N
D; = [[ D5, Di = (& — o) (a1 — w0), (31)
j=2
where \; = Hizg A and

1<)\ <1 (32)

It may be shown that (32) is equivalent to a restriction on undivided differ-

ences

l r
u{xy, ..., 7}

u{zg, 1}
The original ENO polynomial has the same form as that in equation (30),

but without any restriction on the values of S\j. in this case we denote the
value of this polynomial equivalent to P} (s) by

1< <1. (33)

A 5\2 5\3 5\4
% (s) D + (s ezg)D§ + (s —e2)(s eg)DZ —t
A
...+(S—62)...(8—€N—1)D7]Z7 (34)
N

where the values of S\j are not assumed to be bounded. The following two
theorems [3, 4] provide the boundedness results needed here.

Theorem 1 The interpolating function U’ (x constructed using the ENO
approach with limited ratios of divided differences as in equation (32) is
data-bounded on a nonuniform mesh in that

Min(U(x;),U(zit1)) < UNx) < Max(U(z;), U(zig)).

Theorem 2: The derivative of the interpolating function, U(z), con-
structed using the modified ENO algorithm satisfies the equation:
dU"(z) dP5(s)

= 1 -1
. Ulxo, x1] + s(s ) I

+ (2s — 1) Py (9))] - (35)

At the grid point x = x1 this gives

dUI(l‘l)

o = Ulo, 2] [+ PR (1)] (36)



and again at the grid point z = x¢ gives

dUI(CL'())

20— Ulg, )] [1 - P (0)]. (37)

5. Investigating Solution Behavior in ENO methods

While equations (36, 37) bound the ENO p.d.e. solution behavior at the
edges of each interval they do not describe solution behavior in the interior
of each element. In order to do this rewrite equation (30) as

+Z Aj1 H (38)
]+1 i=2

and note that its derivative is

AP (s N1 1 7
C]lvs() > S (s - e) [Z(S_ei)]. (39)

The right side of equation (35) may then be written as

dP(s)
dx

N vy j
+ Z gjﬁl H(S —€;) [8<3 -1 Z (s —1 €;) T 1)] | v

In order to find values for 5\j+1 that limit the derivative we use the following
approach. In investigating the boundedness of the derivative defined by
equation (35)we assume that the derivative is smaller at s = 0 than at
s = 1. The alternative case may be dealt with similarly. Subtracting 1 from
the right side of (40) gives the following equation that must be satisfied for
boundedness of the derivative of the data bounded polynomial.

(25— 1)Pj{,(s))] — 1+ (25— 1)2*

Dy i D2 iy Din = (s —e)
A9 >\j+1 (1 6z)
< — 4+ 41
2 ]; Dy g Dit1 4D



While it is not straightforward to show that this is true numerical exper-
iments show that many standard cases do yield bounded derivatives. For
example, let Case 1 consist of a stencil successively adding points to the
right. In this case for an even mesh it follows that

Case 2 The second case consists of a stencil successively adding points to
the right. In this case for an even mesh it follows that

ei=—i+1,D;=i+1. (43)

Figure 1 illustrates the behaviors of the polynomials for Cases 1 and 2 in
which the values of \; were chosen so as to give the largest possible values
positive values close to s = 0. In these cases and many others the polynomial
derivatives often do not seem to have extrema in the interval. In order to
show situations in which the solution is data-bounded but the derivatives
are not we consider the following two cases. In each case the derivative has
the form

dU* (z)

dx

The two cases to consider based on [4] namely those when e¢; = 0 and e; = 1,
correspond to the bounding polynomials for Py(s). In both cases D; = 1Vi.
These are the limiting cases representing the limit of ¢; = 1+ 6; or e; = —6;
for 9; small. In these two cases have the following derivatives when we take
0; = 0.

= U[$0,$1]7. (44)

dPN () R .
— = 1+(28—1))\2+j252/\j+133 1(3]4—8-]) (45)
and
dPN (z) I .
— = 14+ (2s— 1)\ + ]222 Njipi(s—1) " (sj+s—1)|. (46)

For the above two polynomials, with values of \; = +1 the curves are copies
of a single curve reflected about y = 0 or x = 0.5. The single curve itself is
given by the bracketed term [...] in equation (45) and is shown in Figure 2.
In the left case when A\; = 1Vi the derivatives are bounded but in the right
case when a change is made so that A2 = —1 the derivatives are not bounded
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Figure 1: Graphs of Derivatives and Scaled Derivatives



Derivatives for N=4,8,12,18 18
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Cerivatives for N=4,5,12,18

Figure 2: Derivatives for N=4,8,12,18 with A; = 1 and then with the change Ay = —1

by the values at the edge of the interval. This behavior is not surprising as
in this case

N

PN(s) = s—(52—s)—i—(SQ—s)Zsj—1 . (47)

=2

The polynomial PV (s) in this case is monotone on [0, 1] as it may be written
as:

PN(s) =5 —2(s> —s) — s(1 — s™). (48)
The differential of this polynomial is
dpN
s

which has a minimum at s = (4/(N (N + 1)))ﬁ In this case it would seem
that further restrictions are needed on \; to ensure that this polynomial is
monotone on [0, 1]. This issue is explored in Section 8. The conclusion to
be drawn from these experiments is that while it perhaps appears relatively
unlikely for extrema to be created in the derivatives of the type of data-
bounded polynomials considered here, it is not impossible.

6. Range-Bounded Polynomial Approximations.

The next step is to allow for extrema by considering range-bounded
polynomial approximations for the reconstruction function. This is done
by modifying the bounded polynomial approach [4] in a way that allows a
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bounded extremal value to be created in the same way [16] as in equation (2).
The first issue is that it is necessary to determine whether the polynomial
is close to the upper bound or lower bound. In doing so we use the result
from Berzins [4] that

sV <s4+5(s—1)Py(s) <1—(1—s5)V (50)
which after some straightforward manipulation may be written as

1—(1—s)N-t 1—sN-t

s - 1-—s (51)

From the bounds in equation (51 we get a general bound on P} (s) and
in the case of s = 0 and s = 1 L’Hopital’s rule is used to calculate the
bounds, [4].

S(N—1) < Py(0) <1 (52)

and
-1<Py(1)<N-1 (53)

Thus also showing that the derivatives of that data bounded reconstruction
function as defined by equations (36) and (37) are both positive, if the cell
average is positive, and hence so are the ENO solution values as defined by
equations (8). In order to bound a polynomial between some pre-defined
range values we start from the approach given by equations (67),(68) and
(69) of [4] but with the inclusion of the small linear term u[zg,z1]. With
this in mind, consider modifying the bounds for \; to get a parameter 5\2‘
such that

—b< A <) (54)

and then assuming that B B
Af = b\ (55)

it is possible to define a polynomial by
UM (2) = Uy + [Uy — Ugls + bs(s — 1) P (s) (56)

where the parameter b is yet to be specified, but when kni)wn is introduced
by using the bounds (54) for AY and using this in place of A; in Py (s). From
equation (50) above it now follows that

Uo + U1 — Uols — Qn(s) <UM(2) <Up + [Ur — Upls + Q1 (s)  (57)

where

Qn(s) =b(s —s™) (58)

12



and
QL (s) = b((1—5) — (1= s)Y). (59)

Figure 3 shows how the function Q3 (s) can achieve a maximum by varying

Solution values in Case 1

:
—F—b=2
b=4

30

251

Qt(s) n=24

20

Figure 3: Values of Qﬁ for varying b
the value b from b = 2 to b = 32 for a value of N = 24. The figure shows that
the bound is asymptotic and for example when b = 32, the actual bound
reached by Q7};(s) is about 27. Similar results hold for minima with Qy(s).

6.1. Approzimating Fxtremal Values

In order to enforce condition on boundedness it is important to look at
the properties of the bounding functions. The extrema of the left bounding
function in equation (57) are defined as the solutions to the equations:

U + Uy — Upls — b(s — s™) =m, (60)
(U — Ug) — b(1 — Ns™ 1) = 0. (61)
Multiplying the second equation by s and subtracting it from the first gives
U() —m
b= ————. 2
sV(N —1) (62)
Substituting this back in equation (61) for b gives
U —U]—M(l—Nstl):o (63)

13



which may also be written as

(1— NsN=1)
S S 4
r-CS -0 (64)
where R = [U; — Up]/(Up — m) represents the reciprocal of the relative

distance to the minimum value m from Uy as compared to the distance
between Uy and U;. With an appropriate sign change equation (62) may be
written as

b= pB(Uo —m) (65)

where § = ﬁ and 5 is the value of s that satisfies equation (63) the values

of @ are tabulated below from a numerical calculation. Table 1 shows how

N/R[0 [1/2]1/4[1/8]1/16 | 1/32
4 2127 [24 [23 [22 |22
6 17123 |20 (|18 |18 |17
8 1521 |18 |17 |16 |16
10 [14]20 |17 |16 |15 |15
14 [13[18 |16 |14 |14 |13
18 (1218 |15 |14 |13 |13

Table 1: Values of (3 for different values of N and R

the value of b should be set in relation to Uy and m in the case of a minimum.
A similar analysis yields similar results for a maximum.

6.2. Numerical Examples

In this numerical example we consider four approaches to polynomial
approximation:

e Original: in which a data bounded approach is used as in [4] based on
equation (21).

e Improved: in which zero values of differences are allowed, (32).

e Bounded Extrema: in which extrema are detected and the approach
of equation (56), with b = 1.2

e New Extrema Allowed: in which we simply use the original ENO poly-
nomial with no limiting when extrema are detected.

14



The test problem is Runge’s function 1/(1 + 2522), with NPTS evenly data
points spaced so as to exclude the extremal value at = 0. In Table 2,
NP is the number of points used to define the polynomial, or the order plus
one. Table 2 shows that allowing extrema within bounds gives much greater

Method NPTS | L2 Error | Loo Error | Max NP | Min NP | Avg NP
Original | 6 3.4e-3 5.0e-1 4 2 3
No New 14 5.7e-4 1.3e-1 8 3 7
Extrema | 30 8.6e-5 2.9e-2 17 3 15
Allowed 60 1.5e-5 7.1e-3 34 3 32
120 2.6e-6 1.3e-4 57 3 53
Improved | 6 3.1e-3 4.5e-1 3 2 3
No New 14 3.2e-4 7.4e-2 7 2 6
Extrema | 30 1.8e-5 6.1e-2 16 2 14
Allowed 60 9.4e-7 4.3¢e-3 33 2 31
120 4.2e-8 2.8e-5 57 3 53
6 3.0e-3 4.7e-1 4 2 3
Bounded | 14 2.5e-4 5.8e-2 7 4 6
Extrema | 30 3.1e-6 1.1e-3 16 8 14
Allowed 60 3.0e-7 1.2e-4 33 17 31
120 1.1e-8 6.4e-6 120 38 53
6 3.0e-3 4.3e-1 6 2 3
New 14 1.8e-4 4.3e-2 14 4 7
Extrema | 30 2.6e-6 5.2e-4 30 10 15
Allowed 60 3.0e-7 1.2e-4 60 17 32
120 1.1e-8 6.4e-6 120 38 53

Table 2: Approximation of Runge’s Function With and Without Extrema Creation

accuracy than truncating extrema. The table also shows the difference be-
tween ways of treating A\. The original approach stopped the series when
there was a zero value of a divided difference or that difference was too large,
while the new method requires only that A be bounded as in equation (32).

Another comparison that is particularly relevant to hyperbolic equations
is to use the solution from Burgers equation with the initial condition

u(z,0) = sin(rz),z € [0,1]. (66)

This is solution 5.2 in the solutions provided by Benton and Platzman [2].
In this case the solution is evaluated by freely available matlab code of

15



Burkhardt [6], with the viscosity parameter set to 0.005. The solution at
different time levels is shown on Figure 4. The results of applying the ENO

Burgers equation with nu= 0.005 |

05 B

T T=0.0,02 04,0810 |

-1 -0.8 -0.6 -0.4 -0.2 o o2 04 a6 05 1
Figure 4: Burgers Equation Exact Solution

approach to the solution values at T' = 0.8 are shown in Figure 5. For
clarity only the section around the steep front is shown. The numerical
results in Table 3 show that with the new approach it is possible to use
a polynomial degrees of six to twelve instead of just two at extrema. As
this is only at two extremal points the difference to the error norm is slight.
Nevertheless this shows that it is possible to approximate smooth extrema
without order reduction down two. It is also worth remarking that Even
where both methods use a polynomial of degree 2 (NPTS = 30) the new
approach uses this polynomial in fewer intervals.

7. Comparison With Zhang-Shu Approach.

With obvious changes of notation the method of [16] defines a limited
polynomial for the derivative of the reconstruction function by

Z( D (g .
dde( () = Uleo, 1] +8 Uleo, 1] [s(s - 1)%;() +(2s Py (s))|

(67)
where the value of 0 is defined by the limiter of [10] as

0 = min { M = Ulzo, z1]
M; — Ulxo, z1]

m — Ulxg, z1]

| 1} (63)

"Im; — Ulzo, 1]
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Figure 5: Burgers Equation ENO Polynomial Solution N = 150

with s s
d d
M; = Max M,mj = Min U (z)

x€[xo,21] dx z€[x0,21] dx

, (69)

and the polynomial P%(s) as defined in equation (34). has no restrictions
on the values of Xj. In practice approximations to M; and m; are used as
it is time consuming to compute these values otherwise. Even with these
approximations it is still necessary to compute derivatives such as those in
(67) at a significant number of quadrature points in the interval, [16].

From the linearity of the limiter of [16] it follows that this limiter applied
to the derivative is identical to limiting the polynomial

Up (&) = Uo + [Ur = Up]s + b[U1 — Up]s(s — 1) PX(s) (70)

with b = 0 and then differentiating, where again ]5]’(, has no restriction on
the values of A;. From this it follows that if:

0 < 1/(MJaX!5\j|)a (71)

then this approach is similar to the data-bounded polynomial of [4], as this
limiting approach is one way of ensuring that all the values of Xj are less
than one. The main difference between the approaches is that [4] truncates
the polynomial after a value of \; is too large.
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Method | NPTS | L1 Error | Max NP || Min NP | Avg NP
Original | 30 8.6e-3 16 3 16
No New | 60 2.9e-3 23 3 18
Extrema | 90 9.8e-4 26 3 24
Allowed | 120 3.6e-4 40 3 37
150 1.8e-4 47 3 43
30 8.5e-3 16 3 16
Bounded | 60 2.7e-3 23 13 18
Extrema | 90 8.3e-4 29 9 24
Allowed | 120 3.4e-4 40 8 38
150 1.5e-4 47 7 44

Table 3: Approximation of Runge’s Function With and Without Extrema Creation

8. Bounded Derivative Values

The Zhang-Shu approach makes it possible to bound the derivatives of
the ENO polynomial with respect to upper and lower solution bounds. As
this is done by a sophisticated choice of ;\j it is natural to ask if it possible
to choose values of \; so that the boundedness equation (41) holds. In order
to ascertain whether or not such a condition might hold experiments were
conducted by first modifying equation (41) by subtracting the left side from
both the center and righthand terms and then dividing by the new right
term to get, after some further simpifications, the inequality

0< Z(s) <1, (72)

N A j —C :
s+ S 25 (e B25) [ (5 + 25— 1] + T 522)
N A (1—ei :
1+§: 7+1( Z2 szl)—i_HZ 2D1i1)>

It is possible to derive a similar form when the derivative at s = 0 is larger
than that at s = 1. Motivated by the examples of Berzins [4] in which the
most problematical cases are those with points very closetos = 0or s = 1 we
investigated polynomials close to those in equations (45) and (46). In those
cases even by placing severe restrictions on Xj it was still not possible to
get data bounded derivatives that satisfy equation (72). As such meshes are
extreme and may not encountered in practical applications it is natural to

Zn(s) =
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ask if it is possible to obtain monotone derivatives if a restriction is placed
on S\j. A computational investigation of this was undertaken by random
generation of the mesh points used by the ENO polynomial, the direction
of the stencil and whether 5\]- is positive or negative. The results for 400
randomly generated ENO polynomials with the restriction

‘5\]| < FCLC, (73)

are shown in Figure 6 in which the left figure shows the values of Z,(s)
for Fac = 1.0. The numerous data points outside the range [0, 1] indicate
that the derivatives are not bounded for those cases. Experiments using
Fac = 0.1 generate seem bounded derivatives and provide insight on how
to produce bounded derivatives if the mesh used by the ENO polynomial
does not vary dramatically. From equation (40) and Theorem 1 a bounded

1.2

Monotonicity Boundary

n=12

Z,(9)

Monotonicity Boundary

Figure 6: Random Polynomial Derivatives with |\;| = 1,Vi > 2

derivative polynomial may be found providing that
J

s(s—l)z((s_lw—i-(Zs—l)

=2

A1l <1. (74)

Providing that the mesh varies sufficiently slowly that |s — e;| > 0.25, say,
then a sufficient condition for this is

(U — 1) maz { 1 }+2‘ <1, (75)

bV
| ]+1| 4 1 ‘8—€i|

or
[Ajl <

1
- (76)
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It is also necessary for the values of the points e; to be distinct. Applying
this approach to the random polynomials yields the results in the righthand
figure of Figure 6. This figure shows that this limiting restriction on the
values of \j41 yields bounded derivative values for the reconstruction func-
tion and hence data bounded solution values for the p.d.e. in the case of
the random polynomials that satisfy the restriction |s —e;| > 0.25. It is also
necessary for the values of the points e; to be distinct and so the restriction
leit+1 —e;] < 0.1 was used in the experiments. These promising results show
that this topic merits further study.

9. Summary

In this paper the data-bounded approach of [4] has been extended to the
idea of range-bounded polynomials. This range-bounded approach has been
shown to improve the accuracy of polynomial approximations to extrema in
a controlled way. The relationship between this approach and the limiter of
[16] has been established. A new boundedness limiter for derivatives of the
ENO polynomial has been discovered. These results should help to make it
possible to construct new limiters in the future.
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