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ABSTRACT
The past, present and future scalability of the Uintah Software frame-
work is considered with the intention of describing a successful ap-
proach to large scale parallelism and also considering how this ap-
proach may need to be extended for future architectures. Uintah al-
lows the solution of large scale fluid-structure interaction problems
through the use of fluid flow solvers coupled with particle-based
solids methods. In addition Uintah uses a combustion solver to
tackle a broad and challenging class of turbulent combustion prob-
lems. A unique feature of Uintah is that it uses an asynchronous
task-based approach with automatic load balancing to solve com-
plex problems using techniques such as adaptive mesh refinement.
At present, Uintah is able to make full use of present-day massively
parallel machines as the result of three phases of development over
the past dozen years. These development phases have led to an
adaptive scalable run-time system that is capable of independently
scheduling tasks to multiple CPUs cores and GPUs on a node. In
the case of solving incompressible low-mach number applications
it is also necessary to use linear solvers and to consider the chal-
lenges of radiation problems. The approaches adopted to achieve
present scalability are described and their extensions to possible
future architectures is considered.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming; G.1.8 [Mathematics
of Computing]: Partial Differential Equations; G.4 [Mathematics
of Computing]: Mathematical Software; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering
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Uintah, parallelism, scalability, adaptive mesh refinement, linear
equations
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1. INTRODUCTION
The present consensus is that the move to multi-petaflop and even-
tually exascale computing will require step changes in many differ-
ent computational and computer science areas in order to perform
the large-scale computational science simulations successfully on
as yet unknown computer architectures with multi-million-way par-
allelism. Computing the solution to such problems will require
novel approaches for managing, processing and visualizing data
sets at scales beyond which are manageable today. Despite uncer-
tainty, it is clear that the time delay and energy cost of data move-
ments will constitute a major bottleneck in future systems. Datasets
will not be easily transferrable from the final multi-petaflop archi-
tecture to post-processing environments, and when such transfers
will be possible an even greater data management challenge will
be created on any post-processing infrastructure. The challenge is
thus not only of running on emerging machines such as Blue Wa-
ters, Titan and Sequoia, but also in being able to run on subsequent
generations of parallel machines whose characteristics [10] may in-
clude:

1. Communications will be hierarchical in nature and poten-
tially subject to long delays, thus requiring the overlapping
of communication with computation.

2. Compute nodes will have more cores and/or accelerators than
at present.

3. Compute nodes will have less memory per core. Thus any
global data will need to be shared on a node.

4. In order to achieve good future performance it will be nec-
essary to tune the runtime system so as to detect and remove
inefficiencies in scaling.

5. The probability of associated soft and hard hardware faults
on such machines is expected to be much greater than at
present and will require resilient hardware and software.

6. The need for energy efficiency requires that computational
work be focused where it is needed by using techniques such
as adaptive mesh refinement.

7. Careful orchestration and minimization of data movements
needs to be a key design component in the software ecosys-
tem since moving data is a major contributor to the energy



cost of a simulation. The time delays introduced by tradi-
tional bulk-data movements will introduce unacceptable uti-
lization degradation of the overall computing resources allo-
cated.

8. The need to solve linear systems of equations across all or
parts of future systems presents a considerable challenge.

One of the main approaches suggested for the move to multi-petaflop
architectures and eventually exascale is to use a graph representa-
tion of the computation to schedule work, as opposed to a bulk
synchronous approach in which blocks of communication follow
blocks of computation. The importance of this approach for ex-
ascale computing is expressed by [10, 17] Exascale programming
will require prioritization of critical-path and non-critical path tasks,
adaptive directed acyclic graph scheduling of critical-path tasks,
and adaptive rebalancing of all tasks with the freedom of not putting
the rebalancing of non-critical tasks on the path itself. This is the
approach used in the Uintah framework, [24]. However achieving
performance with such an approach is not guaranteed. In this paper
the challenges of using such an approach are explored in the con-
text of the Uintah software framework. This software framework
was initially written as part of the CSAFE ASC center at Utah and
is a sophisticated fluid-structure interaction code that is capable of
scaling on large core counts. In particular we will provide a brief
description of Uintah describel how its development proceeded in
three distinct phases from the point of view of how scalable the
code was at each stage. In the third and most recent phase the de-
velopment of a new runtime system has made it possible to use
both multi-core CPUs and accelerators such as GPUs. An impor-
tant requirement for Uintah is to use implicit methods and so the
same discussion with regard to scalability will be applied in this
case too. The paper concludes with a discussion of how the soft-
ware needs to develop with regard to addressing the points made
by [10] above.

2. OVERVIEW OF UINTAH SOFTWARE
The Uintah Software framework originated from the University of
Utah Center for the Simulation of Accidental Fires and Explosions
(C-SAFE) [8, 27, 28], a Department of Energy ASC center. Uintah
was designed for the simulation of multi-scale multi-physics prob-
lems, such as those arising from combustion and fluid-structure in-
teraction applications. Uintah is open source software1 released
under the MIT open sourse model. An important feature of Uintah
is the use of a component-based design that strictly enforces separa-
tion between those components and allows them to be interchanged
and independently developed and tested. This inter-operability has
led to the development of components that have been used to solve
a wide variety of problems, see [5]. This component design has also
enabled a strict and critical separation between the applications de-
velopers and the developers of the runtime system. Uintah makes
use of four main discretization components. These are the ICE
compressible multi-fluid/material method, the particle-based Ma-
terial Point Method (MPM) for structural mechanics, the combined
fluid-structure interaction algorithm MPMICE and the ARCHES
combustion component. The first of these, ICE, was developed by
Kashiwa and others at LANL [19] for incompressible and com-
pressible flow regimes. The second method, the Material Point
Method, is a particle method based on a particle-in-cell approach
that discretizes solid materials applications involving complex ge-
ometries [14], large deformations [7] and fracture. The combina-
1see www.uintah.utah.edu

Figure 1: Nodal Patch Structure

tion of ICE and MPM is termed MPMICE and is used to solve
fluid-structure interaction problems. The general aproach used in
MPMICE and the complex coupling algorithm between MPM and
ICE is described in detail by [13, 15]. The fourth component is the
ARCHES Large Eddy Simulation (LES) code developed by Prof.
P.J. Smith and his group in Utah. This component is often used
for many industrial and industrial-strength research simulations, [5]
and uses a low-Mach number (Ma< 0.3), variable density formu-
lation to simulate heat, mass, and momentum transport in reacting
flows. The Large Eddy Simulation algorithm used in ARCHES
solves the filtered, density-weighted, time-dependent coupled con-
servation equations for mass, momentum, energy, and particle mo-
ment equations in a Cartesian coordinate system [18]. ARCHES is
a stencil-based p.d.e. code and so achieves scalability [29] through
its use of the Uintah infrastructure. The low-Mach, pressure ap-
proach of ARCHES requires a solution of a pressure projection set
of equations at every time step. Typically both the PETSc [4] and
the hypre packages [2, 11] have been used to solve these systems
in parallel in what can be the most computationally intensive part
of the simluation. At present hypre is quite heavily used in this
context.

3. UINTAH DEVELOPMENT PHASES
As mentioned above, an important feature of Uintah, is its use of
a task-based paradigm, with complete isolation of the user from
parallelism. The individual tasks that make up a component are
viewed as part of a directed acyclic graph (DAG). While this ap-
proach provides flexibility there are also considerable challenges
in ensuring that this approach works well. This challenge is re-
flected by the fact that the Uintah software has used three distinct
and very different runtime systems to implement execution of the
task graph.

3.1 Phase 1 (1998-2005)
The initial phase of the runtime system used a static task-graph
approach that scaled up to a few thousand cores for fixed-mesh cal-
culations, as is shown for example in [9]. The task graph approach
enabled communication to be overlapped with computation. Global



data structures were relatively expensive and every MPI task had a
copy of these data structures.

3.2 Phase 2 (2005-2010)
Motivated by the desire to use adaptive meshing, new load balanc-
ing methods and many improved and revised algorithms [22] were
introduced, including a novel adaptive meshing approach, [21]. There
was a move to dynamic execution of the task graph (including out-
of-order) execution [25]. The new adaptive meshing approach is
more local and together with dynamic execution of the task-graph
enabled AMR to scale from about 12K cores to almost 100K cores,
before data structure issues made it difficult to increase the under-
lying problem size further.

3.3 Phase 3 (2010-2013)
In attempting to make AMR in Uintah scale above 100K cores it
was clear that there was a need to address global memory usage.
Instead of each core on a node being an MPI process, one MPI pro-
cess per node was used [24] with a multi-threaded scheduler being
used to send tasks to cores. The underlying difference is shown
in Figure 1 in which all mesh patches internal to a node no longer
communicate using MPI but access data directly from the single
copy of the data warehouse that Uintah uses to store variables on
a node. This approach was very successful on Kraken 2 and the

Figure 2: Analysis of scalability of Uintah components

Jaguar XT5. 3 In moving to the new form of Jaguar, the XK6, 4 the
greater core count per node and the faster communications due to
the new Gemini interconnect gave rise to reduced scalability. Fig-
ure 2 shows the strong scalability of a number of Uintah compo-
nents, such as load balancing, scheduling, regridding, data migra-
tion etc for the AMR code with the ICE fluid-flow solver and the

2Kraken is an NSF supercomputer located at the University of Ten-
nessee/ Oak Ridge National Laboratory with 112,896 cores.
3Jaguar is a DOE supercomputer located at the Oak Ridge National
Laboratory with 224,256 cores that was in service until December
2011.
4Jaguar XK6 is a DOE supercomputer undergoing construction in
2012 at the Oak Ridge National Laboratory with approx 299,008
CPU cores and when a large number of attached GPUs are attached
will be called Titan.

Figure 3: ICE-AMR Scaling

MPM component on the test problem in [23]. The motivating fluid-
structure interaction problem used here arises from the simulation
of explosion of a small steel container filled with a solid explosive.
The benchmark problem used for this scalability study is the trans-
port of a small cube of steel container inside of the PBX product
gas at an initial velocity of Mach two. The simulation used an ex-
plicit formulation with the lock-step time stepping algorithm which
advances all levels simultaneously. The refinement algorithm used
tracked the interface between the solid and the fluid causing the
simulation to regrid often while maintaining a fairly constant sized
grid, which allows the scalability to be more accurately measured.
This criteria led to each problem being about four times as large as
the previous one. This problem exercises all of the main features of
ICE, MPM and AMR and amounts to solving eight partial differen-
tial equations, along with two point-wise solves, and one iterative
solve [6, 21]. There are two notable features in these results. The
first is that the routine that creates the task graph schedule, listed
as schedule is becoming problematic, but has not yet had an im-
pact on scalability. The second feature is that the MPIWait time is
growing in a way that destroys scalability. This was caused by the
overloading of the single core being used to schedule tasks. The so-
lution to this was to move to a distributed approach whereby each
core pulls work when it needs it rather than having work centrally
assigned to it. It was also necessary to take care to ensure that all
the cores can access the single data structure without contention
occurring. A shared memory approach that is lock-free is imple-
mented by making use of hardware-based atomic operations on a
read-only data structure and thus allows efficient access by all cores
to the shared data on a node. These developments are described
by [23], where it is also shown that the same calculation scales with
the revised runtime system. The improved scalability may also be
demonstrated when the ICE multi-material algorithm with explicit
time stepping is used to simulate the transport of two fluids with
a prescribed initial velocity. The fluids exchange momentum and
heat through the exchange terms in the governing equations. This
problem [21] exercises all of main features of ICE and amounts
to solving eight P.D.E’s, along with two point-wise solves, and one
iterative solve. Figure 3 shows the strong and weak scaling of the
AMR code with the ICE fluid-flow solver on the same standard test
problem. While these results and those in [23] are very promising,
it is also clear that it is important to be able to run codes such as
Uintah on the accelerators of emerging machines such as Titan and



Blue Waters. In Uintah, accelerator task execution [16] on a node
with both CPUs and GPUs is implemented through an extension
of the runtime system that enables tasks to be executed efficiently
(through pre-loading of data) on one or more accelerators per core,
as has been demonstrated on the DOE TitanDev development sys-
tem at ORNL and on the NSF Keeneland GPU system at NICS
ORNL. In the case of the implementation of a radiation ray-tracing
algorithm the GPUs on Keeneland are about 35x faster (Keeneland)
or 70x faster (TitanDev) than a CPU core. For less-friendly stencil
calculations the speedup is shown in Figure 4 for a computationally
intensive kernel of the ICE code. In this case the superiority of the
GPU emerges only for very large patch sizes. For almost all of the

Figure 4: Performance comparison of ICE kernel on GPU and
CPU

discussion above we have considered explicit calculations in which
it was not necessary to solve a system of equations.

4. SCALABILITY WITH THE HYPRE LIN-
EAR SOLVER IN UINTAH

As it is far from clear that the linear solvers available today will
perform efficiently on such large core counts, as those on the Ti-
tan and Blue Waters machines, in this section the scalability of the
Uintah software applied to incompressible flow problems when us-
ing the hypre software is addressed [3, 12]. This issue is described
in detail in the unpublished report [30], while the emphasis here
is on detailed scalability results and improved performance above
that in [30].

The hypre software library [2] is designed for the iterative solution
of linear systems of equations on large parallel machines. Hypre
allows the use of multi-grid preconditioners, including a structured
grid interface that is designed for stencil-based p.d.e. codes such as
Uintah. The structured multigrid solver used here, PFMG, makes
use of the mesh structure of Uintah and [1] and is a semi-coarsening
multigrid method for solving scalar diffusion equations on logically
rectangular grids. PFMG is used within hypre as preconditioner for
iterative methods; The conjugate gradient method with a Red-Black
Gauss-Seidel (RBGS) relaxation scheme inside PFMG is used in
the experiments described below. It should be noted that the results
in [30] use the less efficient Jacobi option than those presented here
that also use the RBGS scheme.

As the setup phase of a method such as PFMG is computationally
expensive, great care has to be taken to perform this step only when
the underlying grid changes. Schmidt et al. [30] demonstrate the
expense of setup and only perform this step once. The solution
they adopt is to preserve the appropriate data structures from hype
in the Data Warehouse that Uintah uses on each node.

The Data Warehouse manages data including the allocation, deallo-
cation, reference counting, and ghost data exchanges which greatly
simplifies data management for the simulation algorithm imple-
mentations [20]. Schmidt et al. [30] developed a new C++ tem-
plated variable type for Uintah that acted as a container object for
the raw memory pointers from within the Data Warehouse and ex-
plain how this data structure may be used to hold the hypre data.

The test problems used by [30] were a model incompressible Tay-
lor Green flow problem and an example taken from the modeling of
Helium plumes. A complete description of these problems is given
in [30]. While the Taylor-Green vortex problem provides a good
model problem in this section the scalability associated with the
more challenging Helium Plume problem is considered. In each
case the solution of the incompressible Navier-Stokes equations
given by

∂ρ

∂t
+∇ · ρu = 0 (1)

∂ρu

∂t
= F−∇p; F ≡ −∇ · ρuu + µ∇2u + ρg (2)

The velocity vector u = (ux, uy, uz) gives the speed of fluid par-
ticles in three orthogonal directions, ν is the kinematic viscosity - a
fluid property that reflects its resistance to shearing forces, ρ is the
fluid density, and p is the pressure.

The numerical solution of these equations requires evaluation of
the pressure field while enforcing the continuity constraint given by
(1). Pressure however is only implicitly defined by the above equa-
tions and so one approach is to derive an explicit pressure equation
is to take the divergence of (2) and make use of (1) to act as the
constraint. This approach provides a Poisson equation for the pres-
sure:

∇2p = ∇ · F +
∂2ρ

∂t2
≡ R (3)

where ρ is the density and F is given by [30]. Equation (3) is large
and sparse and is known as the pressure-Poisson-equation (PPE)
and is solved here by making use of hypre.

The Helium plume example used here is challenging as it both re-
quires the full solution of the incompressible Navier Stokes equa-
tions and uses sub-grid models to account for any unresolved tur-
bulence scales. The model is representative of a real fire, has exper-
imental validation data [26], and thus is an important test problem
for ARCHES and Uintah, [30].

For this simulation, the mesh was composed of multiple patches
with 323 cells per patch. One patch per core was used and the
resolution and domain sizes were increased to achieve a constant
workload as the core count increased. For the smallest core count
case of 192 cores, the approximately 6.2 million (192 × 323) un-
knowns were solved using hypre with the PFMG pre-conditioner
and the Jacobi smoother. The largest core count case of 256K cores
required the solution over 8.5 billion (256K × 323) unknowns.

A model for the weak scalability of the linear solver time as a func-



tion of the number of cores (C) can be described by a simple power
law: time = a ∗ Cm. Taking logarithms gives

log(time) = log(a) +m ∗ log(C). (4)

and performing a linear least squares fit yields the coefficients for
each problem as shown in Figure 5 of [30].

This figure shows both the raw results and the linear least squares
fit of the power law equation in two cases. The first case is a run
on Jaguar XK6 with a Jacobi smoother up to 256K cores. The
second case is the same problem on the older slower Kraken ma-
chine up to 96K cores with the RBGS smoother. In the case of the
Kraken simulation more than twice as many unknowns per patch
were used, namely 75K as opposed to 32K. The results suggest
that the scalability of the linear solver depends significantly on the
iterative method employed. In the case when an RBGS method is
used with the Helium plume the weak scalability scales roughly to
the power of 1

6
,m = 0.15. The scalability of the Helium Plume

problem with the Jacobi method used for relaxation in the precon-
ditioner is quite different scaling approximately to the power of 1

2
.

The power of roughly 1
6

was originally observed by [30]. The
power of 1

6
is also almost parallel to logarithmic behavior as given

by the reference line showing log(c)/30 in the figure. The results
shown used here may also appear to be suggestive of the scalabil-
ity of the linear solvers for future machines. In order to confirm
this hypothesis, experiments were undertaken to measure the com-
putational cost of the individual components of hypre. The times
for some of these components, PFMG, semi-restriction, point re-
laxation and overall Red Black Gauss Seidel are shown in Figure
6. The values of m for these routines lie in the range [0.13, 0.16].
As expected the actual pointwise iteration routine has a value of
m = 0.04. Similar results exist for the conjugate gradient part of
hypre. These results show that the main components of hypre ex-
hibit the same scalability as the solver as a whole. This is a helpful
result with regard to using large core counts.

5. CONCLUSIONS AND FUTURE WORK
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This paper has shown how the asynchronous task-based approach
of Uintah is successful in making complex applications involving
fluid-structure interaction adaptive mesh refinement and combus-
tion scale. In particular we have also shown how the Uintah ap-
proach addresses the eight points raised in the introduction. Uintah

has consistently overlapped computation and communication and
through dynamic execution of its task graph has been able to offset
communications delays (point 1). The new combined CPU-GPU
runtime system of Uintah makes it possible to utilize large num-
bers of cores and GPUs while minimizing energy usage (points 2
and 3). While Uintah does not self-tune itself to achieve better
scaling the detailed trace information available at every stage of the
calculation makes it possible to identify scalability problems and
to improve the runtime system (point 4). Uintah already uses mesh
refinement at large scale (point 6) but could clearly do more to in-
crease energy efficiency. While Uintah efforts are ongoing to use
data streaming approaches, there is much to be done(point 7). Fi-
nally we have a clear understanding of how to achieve scalability
with state-of-the-art linear solvers (point 8). A major challenge is
to include fault tolerance into how Uintah undertakes its calcula-
tions (point 5), although major changes are needed at the operating
system and MPI levels before this is possible. The approach ap-
pears to have promise in conjunction with efficient parallel linear
solvers and with accelerator-based architectures. It is also clear that
it is very important in this context to continue developing efficient
run-time systems.
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