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Abstract A class of high-order data-bounded polynomials on geneedhes are derived
and analyzed in the context of numerical solutions of hypkchequations. Such polyno-
mials make it possible to circumvent the problem of Rungeetgscillations by adaptively
varying the stencil and order used, but at the cost of onlpreirig C° solution continuity at
data points. It is shown that the use of these polynomialsgdan extending the work of [1]
to nonuniform meshes, provides a way to develop positivigsprving polynomial approx-
imations of potentially high order for hyperbolic equatsoThe central idea is to use ENO
(Essentially Non Oscillatory) type approximations but tdagce additional restrictions on
how the polynomial order is increased. The question of hayh lai polynomial order should
be used will be considered, with respect to typical numégsamples. The results show
that this approach is successful but that it is necessaryaade sufficient resolution in-
side a front if high-order methods of this type are to be usieas emphasizing the need to
consider nonuniform meshes.
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1 Introduction

This paper considers positivity preserving methods forgmigplic equations, by combining
two distinct approaches. The first approach is the subsiaarid influential body of work
on ENO and WENO methods [12]. The second approach is recerkt evodata-bounded
polynomial interpolants, [1]. The overall aim is to make dsgible to derive methods for
many physical problems such as the solution to hyperboliatgns in which the computed
solution values should, on physical grounds, remain najative e.g. the advection equation
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with non-negative initial data as given by

Ju Ju
N +a& 0 Q)

with appropriate boundary conditions on a spatial intef@aB].

In spite of the influential and substantial body of work on E&l@ WENO methods See [5,
12], there are still a few unresolved questions with regarthése methods. An early mod-
ification to the ENO approach to enable the method to be TVDasiged in the preprint
of Shu [11]. A slightly different approach so as to keep theledencil closer to a linearly
stable stencil is also described by Shu [13]. Balsara and3lwonstruct specific high-order
schemes. Shu points out in a recent survey of WENO methoddditficult to generalize
analysis of some of the methods beyond third order, [12]eRtg Zhang and Shu [15] have
extended TVD WENO schemes to sixth order [15], by using a happroach.

The approach taken here involves the use of polynomials evhiggher divided differences
may be written as bounded multiples of lower divided differes. This will be seen to be
important in deriving schemes with positivity preservirgperties. The algorithm used will
limit the signs and growth of divided difference terms tavarat bounded monotone poly-
nomial approximations of potentially arbitrarily high deg within an interval. While this
limiting process may be used with any divided differenceypomial, its use in conjunction
with ENO and WENO schemes is natural in that both approackels ® control the size
of the divided differences used in the schemes. The overalhtion is to derive conditions
under which ENO and WENO methods are positive with regardiéostandard definition
used here for a positivity preserving scheme for the adeaaiuation. This definition re-
quires (see [4]) that the numerical solution at titpe be written in terms of the numerical
solution at timej, in the form

Ui(the1) = Za, (tn) where Zajfc andaj > 0. 2

The constan€ should ideally be one, [4]. The key observation with regarghrteserving
positivity is due to Godunov see [4] who proved that any saheifmbetter than first order
which preserves positivity for the advection equation naesinonlinear. For example, the
coefficientsa; in (2) above must depend on the numerical solution to thespkebr a re-
cent discussion of this topic see [4]. In obtaining such Itedor the methods considered
here the first step is to prove that the data-bounded polyalompiproximation on uniform
meshes derived by Berzins [1] is also data-bounded on ndarommeshes. This is done in
Section 2 of this paper. These results then make it possilgeolve results about positivity-
preserving schemes of potentially high order in space irti@e8. Numerical results on
three test problems in Section 4 show that it is possible éopadynomial of a higher or-
der than is often done, but that it is important to resolveuess such as steep waves with
enough mesh points for high-order ENO methods to be effectiv

2 ENO Divided Difference Polynomial Interpolation

In common with the standard treatments of ENO and WENO maeatleogl. see [5,12], the
divided difference form of polynomial interpolation is uslere as it enables the unified
treatment of polynomial approximations based on any sepatial points. In this paper we
will use divided differences as defined by the usual notatibereU [x] = U (x;) and

U [Xi+a] — U [x]
Xir1—X

UXi,Xi1] = 3



and where subsequent differences are defined recursively by

U X1, Xi 2o Xirk] = U X3, X1, -0 Xi k1]
(Xitk — )
Suppose that a set of mesh points are giver by 1, X2, Xi+3, Xi+4... XN With associated

solution valuedJ [x], ..., U[X1n], then the standard Newton divided difference form of the
interpolating polynomial (x)is given by

: “4)

U [Xivxﬂ-lv "'7Xi+k} =

U(X) =U[x] + 18, (X) U [Xi, Xi+1] + T8 (X) U[Xi, Xi41,Xi+2]
+78 (X) U[Xi, X1, Xi+2, Xi13] + oo + TG (X) U X oo XN, (5)

where

Thi(X) = (X=X%), TBi(X) = (X—%)(X—Xi11),
1Bi(X) = (X—X)(X—%1+1) (X—Xi12), etc (6)

In this case each additional term in the series makes use ofekt mesh point and associ-
ated solution value to the right of the previous ones. Arnradtive polynomial could have
been constructed by starting at the pointj > 0 and then adding successive points to the
left or right of x;, [9]. As the divided differencd)) [Xi, %11, ..., Xi+], IS invariant under per-
mutations of the points;,Xi+1, ..., X1k, the convention adopted here is that the points will
be ordered as an increasing sequence when the differencaligt=d. The denominator in
equation (5) will also then be the width of the stencil of ieinsed to evaluate the differ-
ence. The idea behind ENO methods is to vary the differerecstto consistently pick
the best polynomial for each interval, rather than to usegns polynomial over the spatial
range. For example, suppose that 1, then one valid quadratic polynomial for interpola-
tion on the intervalx;, x11] is given by the first three terms of the sum on the right side
of equation (5) which uses the three data pohts;),U (xi+1) andU (Xi;2). An alternative
polynomial using the pointd (x;),U (x+1) andU (x_1) is given by

U (x) =U[x] + i (X) U X, Xi1] + T8 (X) U [%i-1, %, X 41] )

with the same values of the functiors; (x) ands; (x). ENO methods [5] pick the polyno-
mial with the smallest divided differences in order to pdigiy reduce oscillations. In the
above case if

U [Xi—1, %, Xi42]| < [U[X, X1, %42 (8)
then the polynomial defined by equation (7) is used rather tha polynomial defined by
the first three terms on the right side of equation (5). WENGhods use a combination of
both of these polynomials, see [12], to achieve a higheradegf accuracy.

2.1 A Recursive Formulation of ENO Interpolants

A key step in constructing a provably data-bounded intenpiols to write the divided differ-
ence interpolation scheme in recursive form. This is imgoatras it enables techniques used
in in the finite volume solution of hyperbolic equations tongeate data-bounded low-order
polynomials to be extended to high order polynomials. Ineorid do this it is helpful to
define the ratios of divided differences, for example, by

vy U X, X

i) = Uxi—1,%]’

9)



with obvious extensions to higher differences and otheic#sl Such ratios are used as part
of many very widely used positivity methods for solving caegsible flow problems, see
[14]. The main idea here is to use ratios of divided diffeesin constructing polynomials
that may form part of positivity-preserving discretizatimethods of possibly arbitrarily
high order. As an example, when the next divided differeqg@a@ximation to be computed
incorporates a new point from the left 1, it may be written in the form

[X| Ly Xipk—1]
(1_ [XI »»»»» X|+k]Jr ) U[
Xitk —Xi—1

U[Xi—lvxiv"'7xi+kvxi+k] = Xi7Xi+17"'7Xi+k]' (10)

An alternative divided difference computed frasix, X1, ..., Xi+k iS

(X2 Xkt 1]
(r[xlv Xi1k] 1) u [
Xitk+1 —Xi

U X5, X 1, Xig 2, oy Xipk 1) = Xiy Xig Ly -oy Xigk] (11)

In this case the ENO scheme picks the next difference td[ke 1, Xi, ..., Xi+k, Xi+k] if

(Xi—1ses X|+k 1 [X|+1 ----- Xl+k+1] )
(‘1 I’x ..... Xtk ) < (| [Xi s Xi k] 1‘
[Xi+k — Xi—1] Xitkr1 — X

; (12)

or picksU [Xi, Xi+1, Xi+2, ..., Xi+k+1] Otherwise. In the approach of [1], providing that the val-
ues ofr[[:::]] satisfy the restriction

<1, (13)

then, if equation (12) holds we pick the next stencil poinbéoto the "left” i.e.xi_1 as in
equation (10) and defing. 1 (a term used in the next sub-section) by

- Xi—1,ees Xi ]

1 Z )\k+1 - (l_ r[Xi..}.XiJrk]Jrk ' ) Z 0 (14)
Alternatively if equation (12) does not hold, then the netensil point is picked to the
"right”, as in equation (11)x+1 and define\,.1 by

1 her = (1) <o )
It is worth remarking that the restriction defined by equat{t3) is an extension to higher
order differences of the well-known minmod limiter for hypelic equations, see [14]. In

the case when both componentsbﬂ are zero the value is set to zero as a safety strategy.

While the restriction OI‘I[:] is a potentially severe one it does not seem easy to circumven
it for arbitrary degree polynomials. Berzins [1] proved hetcase of uniform meshes that
the polynomial defined by the approach of equations (5).isldata-bounded i.e.

Min(U (x),U (xi+1)) <U (%) < Max(U(x),U (Xi11))-

In Section 2.2, Theorem 1, a much simplified proof will be gitkat extend the approach
to non-uniform meshes. It is also worth remarking that tleeepotentially many other ap-
proaches to limiting polynomials, but this approach ishie best of the authors knowledge,
perhaps the only one that works for polynomials of arbityanigh degree.



2.2 A General Data-Bounded ENO Polynomial

In order to extend the proof of Berzins [1] to non-uniform rmes, it is helpful to define
notation to describe the left and right edges of the steligkh pointsy;, are defined around
a pointxg by adding or subtracting multiples of an the mesh spakisgthat the mesh points
chosen by the ENO approach at each stage are denotéthisydefined by

X =xXo+@ah, i > 1,where h= (x; — o), (16)

for some values and wheree; = 1. In the case whegq > 0 theng > 1. At theith stage of
the ENO process let the leftmost and right most parts of thecdtin use may be defined as
x andx, where

X! = min(x,-e,x!,l), XIO = Xo, (17)
X{ = ma)(X?, X{—l)a X{) = Xo. (18)
Further, define a local co-ordinate, denotedshiyn the interval[xo, x1] by:

X—Xo
= ) 19
S~ 19)
These definitions allow the limited ENO polynomial, [1], te fritten as:
U'(x) = U [xo] +[U (x2) —U (x0) P (S) (20)
whereRy(s) is the polynomial defined by:
_ (s-1) (s—e) (s—e3) (s—en-1)
PN(S)—S(1+ D, A2 (1+ Da Az X (1+ Ds A4X...(1+TAN)...)
(21)
and where
Di = (X —%)/(x1—o)- (22)
Equation (21) may be rewritten as
e 8D s(s—1)(s—ep) 5
Pu(s) = (s+s D, A2 + D,D; A3+
s(s—l)(s—eg)(s—eg,))—\4+ ....... +s(s—l)(s—eg)...(s—eN_l)XN) (23)

D2D3D4 D2D3...DN

wherel; = |‘||'(:2/\k, and where-1 < A; < 1. from the restrictions in equations (14) (15). It
is perhaps worth remarking that the original ENO polynonhias the same form as that in
equation (23), but without any restriction on the valueg pfThe differences between the
two polynomials and hence the error introduced by introdg¢he data bounded approach
are thus straightforward to describe, see [1].

Theorem 1 The interpolating functiot' (x constructed using the ENO approach with lim-
ited ratios of divided differences is data-bounded on a ndorm mesh in that

Min(U (x),U (x+1)) <U' (x) < Max(U (%), U (1))
Proof. In proving this result is that we need to show that for@ < 1,

0<Py(s)<1 (24)



whereR\ (s) is defined by equation (23), for every possible consisteatoehof D;, e; and
Ak. The approach taken is to construct two bounding polynarsath that

R (s) < Pu(s) <R (9). (25)

Consider the polynomial defined by

N-1 )
SN(s) = S_Z)(l—s)'. (26)
The value of this sum is given by:
SN =(1-(1-9"). @7)

Two polynomials that are upper and lower bounds on the iotating polynomial are de-
noted byP andPy respectively and are given by:

P =s"=1-S(1-9), (28)
Ry (8) = SN (9). (29)

The proof starts by considering supposing that the asseitue forN. The largest possi-
ble polynomial of degre®l + 1 must have the form

_oN-1(c_
PN++1<S>:Sv<8>+s(1—s)N‘l(—1+§>+S(l ;)VDN(E )

)\N+17 (30)

where
Dnyi>en>1, (31)

The largest possible value #f,1 and one that also makes the last term positive is given by
ANy =—1 (32)

Similarly the last term is maximized by a valueldf,. ; = 1 given in equation ( 31). For the
assertion to be true we require that

Py1(S) < Svpa(9). (33)

Comparing the differences between the polynomials defiiyeeduations (23) and (26), it
follows that this is true if

2 S—en
-1+ —)— <1l-s,
( GN) 2
and hence that )
S
-1+ ———=<1-5, 34
en € (34)

as the value of the left side decreases as the valuay dficreases above one, it follows
immediately that the largest polynomial fir+ 1 is given by

en=1 (35)



Hence if the assertion is true fbtit is also true folN + 1 The proof also applies to the base
guadratic case, thus closing the induction. Similarly fe tower bound, a similar process
leads to

Pua(s) =1-Su(1-9) — (1-9)(9", (36)

as required.

Remark 1 The bounding polynomiafy(s) corresponds to a polynomial with data points
ats= 0 and then multiple data points ai= 1. It is possible to get arbitrarily close to this
polynomial with data points defined Isy= 0, s= 1 and thers= 1+ i¢ in the polynomial as
defined by

' (L=s—(j—1)¢)
Tn(s) =s+s >0 (37)
: Al 15

Remark 2 With this method any monotone polynomial whose values initiberval lie
outside of the region bounded by-1Sy(1 —s) and Sy(s), for examplesN*2, will be ap-
proximated by a polynomial whose values are contained ® région. The error in this
approximation is given by [1]. This observation may makeadsgible to construct limiting
algorithms whose bounding curves lie closer to the edgelseolbox.

In order to illustrate these results random polynomialsegfrée 23 were created to provide
a sample of 100 polynomials in which the underlying meshegarandomly by mesh ratios
that change from one cell to the next by as much or as littled@siad 10°°. Figure 1 plots
the polynomials and shows the distribution of the mesh sabio a logarithmic scale, for
each of the 100 cases. The bounding polynomials used in tie@ pre also shown. The
polynomial T,(s) is evaluated witke = 0.001. The results show the data-bounded nature of
the polynomial, even for extreme mesh ratios.

2.3 Reintroducing Extrema.

It is well-known that a key feature of schemes for hyperbelipations is that they must
not clip local extrema, [3]. One possible problem with thegwsed approach of bounding
the polynomial by the values at either end of the intervah#t if the true solution has an
extremal value in between the data points then this valukbsitruncated. One solution
to this is to detect possible extrema in an interval and $wit limiting in that interval.
The proposed condition for detecting possible extremavisrgby requiring that the cells on
either side of the "flat” cell have opposite and significanpgls. In other words the following
two conditions must hold for extrema to be assumed to exist:

(i) UXis1,%i42] /U [Xi-1,%] <0,

(i) UXi+1, Xiz2] /U X, %i41] > LU %, Xi4] /U (X1, %] < 1.

In the case when a possible extremal value is detected timiimly is switched off in that
interval and a standard ENO polynomial used. The effecéigsmf this approach on Runge’s
function 1/(1+ 25x?), with NPTS evenly data points spaced so as to exclude theraatr
value atx = 0, is shown by the numerical results in Table 1. In Table 1, Sifhé number
of points used to define the polynomial, or the order plus die. table (not surprisingly)
shows that carefully allowing extrema gives much greateusacy than truncating extrema.
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Fig. 1 Random Polynomial coefficient results to illustrate Theote The left figure shows the values of the
polynomials. The right figure shows the mesh point spacitiggdor the 100 randomly chosen cases.

Method | NPTS | L2 Error | Lo Error || Max NP | Min NP | Avg NP
6 3.4e-3 5.0e-1 4 3 3
No New | 14 5.7e-4 1.3e-1 8 3 7
Extrema | 30 8.6e-5 2.9e-2 17 3 15
Allowed | 60 1.5e-5 7.1e-3 34 3 32
120 2.6e-6 1.3e-4 57 3 53
6 2.9e-3 4.3e-1 6 3 4
New 14 1.9e-4 4.3e-2 14 5 8
Extrema | 30 2.3e-6 4.7e-4 30 15 16
Allowed | 60 5.7e-9 2.3e-6 60 18 33
120 5.1e-8 1.1e-8 120 38 54

Table 1 Approximation of Runge’s Function With and Without Extre@eeation

2.4 Derivative Approximations in ENO Schemes

In order to use the above approximation results in the cordExiumerical schemes for
hyperbolic equations it is important to understand the wien@f the polynomial derivatives
at the the spatial mesh points. This behavior is describetiéfollowing theorem.
Theorem 2: The interpolating functionl)' (x), constructed using the modified ENO algo-
rithm satisfies the equation:




where f(x) > 0 for x=xp andx = x;.
Proof: From equation (20), the interpolating polynomial on antivé&[xo, x;] may be writ-

ten as
L W) —U(x0)]
(X1 —Xo)

whereP*(s) is defined by rearranging the terms in the polynomial expansiefined by
equation (23) as

(X—X%0)(1+ (x—x1)P*(s)) (38)

A2

(s—e) (s—e3) (s—en_1)
D2(x1 —Xo) Az x (1+ Agx A4 =

P(s) = D3 Da Dn

1+

)\N)v (39)

with sdefined as in equation (19). Differentiating equation (38¢g

P (s)
dx

dU' (9 _ Ux)~U (k) d
dx - (Xl—XO) (X_XO)(X_X].)

+ (14 (2x—x0—x1))P*(s))| . (40)

Evaluating this expression at the grid point x; gives

du'(xa) _ (U(xa)—U (%) )
X a—x)  LTCam0)P(D) (41)

and again evaluating this expression at the grid poiatxg gives

dU'(x0) _ (U(xa) U (%)) )
dx (X1 —xo) [1— (X1 —X%0)P*(0)]. (42)

As the polynomiall! (x) is data-bounded on the interval it follows that the derixeiat the
end points must have the same sign as the first divided differefU (x) and so that the
quantities[1+ (x; — xo)P*(1)] and [1— (x1 —Xo)P*(0)] must be positive. These quantities
may be zero in the cases when
P*(s) = £l .
(X1 —Xo)

More precise upper bounds for these expressions may benetthy substituting foPy (s)
using equation (38) into equation (25) and using equati28s&nd (29) to get

N < s+5(5—1)(x1—X0)P¥(9) gslijl(l—s)i. (43)

Subtractings from all the terms and dividing bg(1 — s) gives.

(N-1-1) . N-2 i
Teop - eTePes 3 s (44)

Consequently et = 1, after using L'Hopital’s rule and rearranging gives
0<1+4(x1—%)P"(1) <N, (45)

and ats=0
0<1—(x—%)P*(0) <N. (46)

Thus giving bounds on the right sides of equations (41) a2y (4
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2.5 Rounding Error Analysis

The rounding error analysis of Newton polynomials and Hosrecheme is as old as modern
numerical analysis. Higham [7], pp.109-115, gives an d&nekurvey of work going back
to Wilkinson. Some of the more recent results show that sekaunding error difficulties
may be encountered at very high orders. In the approach tstemeil of points is defined for
each interval. Once the points are chosen the polynomialbaayaluated with any suitable
method. An important part of this evaluation for the diffietial equations considered here
is to evaluate the derivatives of the polynomial at the meshtp. In order to consider the
rounding error in this the approach of [7] may be applied agblynomialP*(x), as defined
by (38), is simply calculated in the same way as applying Esrscheme té (x) and then
truncating the summation two steps early and dividingay- xo)?. As the summation takes
place at the mesh points Higham’s analysis is immediatghliegble. It is also worth noting
that recent work on the compensated Horner scheme suladiaimtiproves the accuracy,
[6]. One possible problem with the approach described hethat rounding errors in the
individual divided differences with introduce errors inrpmetersi;, in equations (26-28),
and hence possibly in the choice of stencil used. In the veast, with rounding error, using
equation (24) directly to evaluate the polynomial may reisuh bounded polynomial when
this should not be the case.

3 Positivity Preserving ENO Schemes

Once the polynomial approximation is defined as above, itraghtforward to use the
results of Theorem 2 to prove results about ENO and WENO sekeffhese schemes
integrate equation (1) over the intenJal 1, ;] of width h; to get:

Uiz | [U06,t) —u4-1,1)]

o K —xa) “n
where ~ n %
Uiy1/2(t) = %) /XF1 u(x,t)dx (48)
Defining the ENO reconstruction functiam(x,t) by:
w; (X, 1) :/; u(x*,t)dx,x € [xi—1, %], (49)
i—1

wherex;_1 is an arbitrary lower limit, immediately provides the rétatship
Wi (Xi,t) — Wi (Xi—1,t) = Ui 11/2(t)hi. (50)
From differentiating equation (49) it follows that

%(mt) - %wl,t) =u(x,t) —u(xi-1,1). D

At the boundary = 0 the appropriate solution vallg(t) is substituted fou(xi_1,t). Using
this relation in equation (47) and integrating in time usihg forward Euler method gives.

aot [dw dw;

Uir1/2(thi1) = Uipa/2(ta) — T W(Xi»tn) - a(xi—lvtn) : (52)
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In calculating the values of these derivative%f(x,t), it is necessary to take into account
upwind directions, see [13]. For a more general p.d.e. weldvioave to evaluate flux func-
tion values using Riemann solvers etc. The essence of thedithm for the advection
equation is to take the following steps:

(i) On each interval create initial values@af, 1 > (t) by using exact or high-order quadrature
based on the valuegxt).

(i) Use equation (50) to create the first differences of timectionw; (x;1).

(iii) Use these differences and subsequent differencesdate a high order polynomial
approximation on each interval W (x,t); we denote this polynomial by (x,t).

(iv) Calculate% (x,t) and%(xi,l,t) using the algorithm described in Section 2.

(v) Advance the solution in time using equation (52) with #isiently small timestepdt.
From the analysis of Section 2 and using the data bounded@oial approximation of
that section, it follows that

dw o WX, t) —w(Xi1,t) _ _
et = e CEUL AR (53)

whereR®(x,t) is the polynomialP*(s) evaluated on the intervé;, x;1] at timet, and con-
sequently, from equation (50) and using an upwind approadk; o;, x| that

dw _
d_xl(xi’t) = Ui12(t) (L+hiB7(x,1)). (54)
In similar vein, using an upwind approach gL, xi_1], it follows that
dw’_ wW(Xi_1,t) —w(Xj_2,t "
d'Xl(Xi—Lt): L )hi_l = )(1+hi—1F’|_1(Xi—1,t)) (55)
and dut
d';l (Xi—1,t) = Ui_1/2(t) (1 +hi—1 B2 1 (X1, 1)). (56)

Hence equation (52) may be written as

Uip1/2(tn+1) = Uip1/2(th)
aot _

“h (Ui 1/2(0) (1+HiB (%, tn)) — Ui —1/2(8) (1+him1R2 1 (Xi-1,th-1))] - (57)

Positivity of theu; ;> values then requires

adt
0< = (1+hR(6,tn) < 1, (58)
|
adt
0< ?(1-1- hi_1RZ1(%-1,tn)) < 1. (59)
|

For a sufficiently small Courant number this follows from Bhem 2 and from the bounds
provided by equations (45) and (46). Harten style positisee Borisov, [4]. requires that
when all solution values are constant that; >(th1) = Ui1/2(tn). This follows immedi-
ately as all divided differences are zero in this case. Itastivremarking that positivity of
the averaged values is different from the scalar case ayéhnaged exact advection equation
solution values (denoted with the superscépsatisfy:

Upa/2(tnea) = AalE, g 5 (tn) + A2 Uy 5 (tn) (60)
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where

X41-80 oy £ )dx XU th)dx
)\]_ _ fx, - ( 9 n) andAz _ .fxl;aét ( n) )
Jott u(x th)dx. Sy u(xth)dx

Clearly A1 + A2 # 1 in general and there exist functions for whigh= A, = 1, such as
the function that has value one @ — adt, xi+1 — adt] at timet, and is zero elsewhere.
Conservation is thus in the global sense in that

> Wrptnes) = 3 Uy p(tn). (61)

Positivity of the numerical solution valud;(t) at the mesh point; requires a further step.
From equation (51) the numerical solution values satisfy:

dw! dw
d—)i(xiat) - dlxl(Xi,]_,t) :Ui (t) —Ui,]_(t), (62)
and hence that
i dw; dwj_,
u=3 G 060 - S 010+, (63)

From equation (56), and ﬁc%(xo) = up(t), it follows that

c

i(t) = Uy12(t) (1+hiR°(%,1)), (64)

and that positivity of the numerical averaged valugs /> (t) implies positivity of the numer-
ical solution valuedJ;(t). In order to show that the valué(t) satisfy positivity, equation
(57) is rewritten as:

Ui(tht1) = (L4+hiP° (X, thi1)) {Ui(tn) {m — ah—(?t} +Ui,1(tn)a7ﬂ .
This equation may be rewritten in the form of equation (2) as:
Uiltnia) = ﬁf rhpgg?)qt;)l))) Ui (tn) (1 @) + Uy 1 () ar].
where, from equations (58) and (59), the positive tefns
0< Gi:(l—FhiP,Q(Xi,t))ah—éitSl. (65)

The data bounded polynomial approach used here guarahtgehis term is positive. The
condition for strict positivity given by

(1+hiP°(X;thi1)) < (1+hiP° (X, tn)). (66)

may be obtained by varying the order used to create the poliaidghat is used to compute
Ui(t), via equation (64).
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3.1 Dealing with Extrema in ENO Methods

Suppose that possible extrema in the solution are detegtéelsks such as the simple test
in Section 2.3. The bounded polynomial approach is not gp@te in its original form but
may be modified in a way that allows a bounded extremal valbe twreated. Assuming that
the value of the difference[xg, 1] is small and thaf, as in equation (39) violates (14,15)
and satisfies

|A2] > 1. (67)

The derivatives in equations (41,42) then have opposintpstk = Xo andx = x1. Rewriting
equations (20,21) to define a modified interpolation polyiadid' (x)by:

U'(x) = U[xo] + A2U [0, X1 ] B (S) (68)
where the term\2U [Xo, x1] is the second difference defined as in Section 2 and where

1 (s-1
%D,

(5=, (14 8%y, 14 o)

1
( + D3 D4 DN

(AN)-

Assuming that the signs df, and u[xo,Axl} are the same it follows from Theorem 2 that a
bounds on any new maximum valueldf(x) are given by:

Uxo] < U'(x) < Uxo] + U (x1) — U (x0) A2, ¥X € [x0,%4] (69)

A similar argument may be made when the signsigfand u[xp,x;] are different and a
minimum is created.

3.2 A Simple Alternative ENO Positivity Preservation Algam

The positivity condition based upon data-bounded polyasns sufficient for positivity but
not necessary in that positivity is still possible if the yywdmialsP®(x;,t) andP® ; (xi—1,t)
satisfy equations (58) and (59). Hence an alternative agbrdo seeking positivity is to
simply require that the order of the ENO method be chosen abttis is the case. When
using this approach it is possible to get results that arecasrate as the original ENO
approach by switching positivity preservation off when

Ju(x;,t) — u(xi_1,t)| < TOL (70)

This algorithm has performed well wifiOL = 0.0001 in the experiments described below.

4 Investigation of the Order in ENO Methods

In order to illustrate and investigate the effect of using pgositivity preserving methods
described above three test problems will be used. In ordgetform these experiments
in a time-independent way, the spatial truncation erromef different approaches will be
calculated and compared. In these experiments the origiN& method will be compared
against the new approaches derived in Section 3.
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4.1 ENO truncation Error

The classical spatial truncation error for ENO methods maycéiculated from the exact
solutionue(x,t) by first calculatingui, 1 /»(t) and then using the polynomial approximation

procedure to arrive at approximatiorgg'—(xi,t). The truncation error is then denoted by
T Eeno(%,t), where
(%i;t) — Ue(Xi—1,1) 1 dwf

. i dp
TEendX,t) = h X —Xi_1 dx( ) dx

(Xi—1)] - (71)

This truncation error provides a measure of how accuracyndEldO method based upon
these high-order polynomial expressions can be for thelpnolbeing solved and so will be
used to investigate the performance of the different EN€eHanethods.

4.2 Computational Experiments

The following three examples have been used in the past tocsnate the properties of
hyperbolic equation solvers and are used here to illustretgroperties of the approaches
discussed above. In each case the L1 error norm is used asxappted by a discrete sum
over the mesh point values. In the tables below NPTS is tte totmber of mesh points
used and NP is the number of points used to define a polynoarigthe polynomial order
plus one. The method denoted by BENO is the bounded polyn@pjaoach defined by
Section 3, without any method for re-inserting extrema. fite¢hod denoted by LENO is the
extension of the limited BENO approach defined by Section@slvitch off limiting where
there are extrema. This method gives almost identical t®suthe unlimited ENO method.
For the sake of brevity we refer the reader to [2] where thesS&umn example was used by
Rider at al [8], to illustrate the advantage of using higbesrmethods for problems with
smooth solutions shows similar results for both methodshiicase, given the smoothness
of the solution, it is not surprising that the best resultsen@btained with polynomials of
degree 12 or higher. With the problem involving the advettbu(x,t) = sin(x), a problem
considered by Shu [13] and others, the best results arenglotavith polynomials of degree
12 or higher. In this case the BENO method is less accuratetbtea ENO method and the
original ENO method as lower-order polynomials are useckaema, see [2].

4.2.1 Steep Front Problem

The results of Rider [8] show that high-order methods mayhmosubstantially better than
low-order methods when solving problems with discontiiesit In order to investigate this
the second problem has a solution which is both smooth andhwhias a steep profile as
given by Hubbard [10], the 11th order polynomial:

Ue(x,t) = 22 [—252z5 413867 — 30807 + 3465 — 1980+ 462} (72)

wherez= (0.5+t+ds«x0.5—x)/ds and which has a front of widttiswhose center position
is at 05-+t. Three sets of numerical experiments were conducted wigtptioblem in order
to examine the performance of the high-order methods in teegmce of a progressively
steeper front. In case (a) the front widthds= 0.96 and in case (b) the front width is
ds=0.096. and in case (c) the front widthds= 0.0096. In cases ( b) and (c) the number
of mesh points inside the front is low as shown by Table 2.
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Steep Front NPTS

ds 15| 31| 63 | 127 | 255 | 511
0.0096 1 1 1 1 3 5
0.096 1 3 5 11 23 53

Table 2 Number of Points Inside Steep Front.

Figure 2 shows the solution profiles in all three cases. Tipemxents were conducted with
equally spaced meshes and allowing the polynomial degrearioto 23. The L1 norms
of the truncation errors in Table 3 show that with large valoéds> 0.1, say, using high
order polynomials leads to an improvement in accuracy. énctéise wheds= 0.0096 and
there is only one mesh-point in the front then the numerigadence shows that there is
little point using more than quadratic approximatioNs? = 3. The conclusions from these

VARIABLE FRONT PROBLEM N = 511

T 1,
—+— Solution ds=0.96 —— Solution ds=0.096

—— Solution ds=0.0096

05

Fig. 2 Problem 3:Steep Front Example Solutions, ds=0.96,ds60d880.0096

experiments are that for smooth solutions where there isgimonesh resolution there are
advantages in using high order polynomials of order 6-12 @&ffiective polynomial order

does tend to be limited by the number of mesh points in a femtoted by [1]. The results
from these experiments demonstrate the need to have neytigits in the region of a shock
front to get high accuracy with high-order methods. One wiagahieving this is to use the

nonuniform meshes permitted by Theorem 1.

5 Summary

In this paper a novel approach to preserving positivity farable-order ENO methods has
been extended in a general way using the idea of boundedqraighapproximations. Posi-
tivity conditions have been proved and numerical experisméave shown that it is possible
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Steep Front| ds=0.96 NPTS

Method NP 15 31 63 127 255 511
BENO 3 1.8e-2| 6.5e-3| 1.3e-3 || 8.4e-5 | 3.3e-5 | 7.3e-6
LENO 3 1.1e-2 | 8.5e-4 | 6.5e-5 || 4.1e-6 2.5e-7 1.6e-8
BENO 6 5.3e-3| 1.7e-4 | 5.3e-6 || 7.9e-8 1.8e-9 | 4.0e-11
LENO 6 7.8e-3| 8.8e-5| 1.6e-6 | 2.0e-8 | 2.0e-10| 8.7e-12
BENO 12 5.9e-2| 89e-5| 2.8e-7 | 2.7e-9 | 2.3e-11| 7.5e-12
LENO 12 7.1e-2| 1.5e-4| 2.5e-7 | 1.9e-9 | 2.0e-11| 9.1e-12
BENO 24 5.9e-2| 1.8e-2| 1.6e-4| 7.2e-10| 8.2e-12 | 5.8e-12
LENO 24 2.6e-1| 1.1e-1| 2.3e-4 || 6.8e-10| 8.0e-12 | 5.7e-12
Problem 3 | ds=0.096

BENO 3 1.3e-1| 5.5e-2 | 1.7e-2 || 2.6e-3 4.6e-4 7.1e-5
LENO 3 1.3e-1| 4.7e-2| 1.2e-2 || 1.3e-3 | 1.7e-4 | 1.4e-5
BENO 6 1.2e-1| 4.2e-2| 7.7e-3 || 7.2e-4 | 2.5e-5 | 1.1e-6
LENO 6 1.2e-1| 4.0e-2| 7.7e-3 || 5.0e-4 1.9e-5 | 4.6e-7
BENO 12 5.7e-1| 3.4e-2 | 6.2e-3 || 2.6e-4 5.5e-6 8.3e-8
LENO 12 1.4e-0| 3.9e-2| 6.1e-3 || 2.2e-4 | 5.4e-6 | 6.2e-8
BENO 24 5.7e-1| 2.5e-1| 6.1e-3|| 1.7e-4 | 2.8e-6 | 3.0e-8
LENO 24 2.0e-0| 1.2e-0| 5.2e-3|| 1.6e-4 2.7e-6 2.9e-8
Problem 3 | ds=0.0096

BOTH 3 1l.4e-1| 6.9e-2 | 3.2e-2 || 1.4e-2 6.3e-3 2.3e-3
BOTH 6 1l.4e-1| 6.4e-2 | 3.0e-2 || 1.4e-2 5.7e-3 1.4e-3
BOTH 12 6.9e-1| 6.3e-2 | 2.9e-2 || 1.3e-2 4.7e-3 1.1e-3
BOTH 24 6.9e-2 | 5.4e-2 | 2.8e-2 || 1.2e-20| 4.4e-32| 1.3e-3

Table 3 Comparison of L1 Norms of Truncation Errors for Steep Fromtfem of Hubbard.

to use much higher order methods than is often done with ENthads. Achieving the ap-
propriate spatial order is somewhat more problematicalnesteep fronts it is important to
have a mesh that ensures that multiple points are presdm finant. One issue that still re-
mains to be resolved is how to treat existing extrema in anrate way without introducing
new extrema elsewhere.
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