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Abstract A class of high-order data-bounded polynomials on general meshes are derived
and analyzed in the context of numerical solutions of hyperbolic equations. Such polyno-
mials make it possible to circumvent the problem of Runge-type oscillations by adaptively
varying the stencil and order used, but at the cost of only enforcingC0 solution continuity at
data points. It is shown that the use of these polynomials, based on extending the work of [1]
to nonuniform meshes, provides a way to develop positivity preserving polynomial approx-
imations of potentially high order for hyperbolic equations. The central idea is to use ENO
(Essentially Non Oscillatory) type approximations but to enforce additional restrictions on
how the polynomial order is increased. The question of how high a polynomial order should
be used will be considered, with respect to typical numerical examples. The results show
that this approach is successful but that it is necessary to provide sufficient resolution in-
side a front if high-order methods of this type are to be used,thus emphasizing the need to
consider nonuniform meshes.
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1 Introduction

This paper considers positivity preserving methods for hyperbolic equations, by combining
two distinct approaches. The first approach is the substantial and influential body of work
on ENO and WENO methods [12]. The second approach is recent work on data-bounded
polynomial interpolants, [1]. The overall aim is to make it possible to derive methods for
many physical problems such as the solution to hyperbolic equations in which the computed
solution values should, on physical grounds, remain non-negative e.g. the advection equation
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with non-negative initial data as given by

∂u
∂ t

+a
∂u
∂x

= 0 (1)

with appropriate boundary conditions on a spatial interval[A,B].
In spite of the influential and substantial body of work on ENOand WENO methods See [5,
12], there are still a few unresolved questions with regard to these methods. An early mod-
ification to the ENO approach to enable the method to be TVD is provided in the preprint
of Shu [11]. A slightly different approach so as to keep the ENO stencil closer to a linearly
stable stencil is also described by Shu [13]. Balsara and Shu[3] construct specific high-order
schemes. Shu points out in a recent survey of WENO methods it is difficult to generalize
analysis of some of the methods beyond third order, [12]. Recently Zhang and Shu [15] have
extended TVD WENO schemes to sixth order [15], by using a novel approach.
The approach taken here involves the use of polynomials whose higher divided differences
may be written as bounded multiples of lower divided differences. This will be seen to be
important in deriving schemes with positivity preserving properties. The algorithm used will
limit the signs and growth of divided difference terms to arrive at bounded monotone poly-
nomial approximations of potentially arbitrarily high degree within an interval. While this
limiting process may be used with any divided difference polynomial, its use in conjunction
with ENO and WENO schemes is natural in that both approaches seek to control the size
of the divided differences used in the schemes. The overall intention is to derive conditions
under which ENO and WENO methods are positive with regard to the standard definition
used here for a positivity preserving scheme for the advection equation. This definition re-
quires (see [4]) that the numerical solution at timetn+1 be written in terms of the numerical
solution at timetn in the form

Ui(tn+1) = ∑
j

a jU j(tn) where ∑
j

a j = C, anda j ≥ 0 . (2)

The constantC should ideally be one, [4]. The key observation with regard to preserving
positivity is due to Godunov see [4] who proved that any scheme of better than first order
which preserves positivity for the advection equation mustbe nonlinear. For example, the
coefficientsa j in (2) above must depend on the numerical solution to the p.d.e. For a re-
cent discussion of this topic see [4]. In obtaining such results for the methods considered
here the first step is to prove that the data-bounded polynomial approximation on uniform
meshes derived by Berzins [1] is also data-bounded on non-uniform meshes. This is done in
Section 2 of this paper. These results then make it possible to prove results about positivity-
preserving schemes of potentially high order in space in Section 3. Numerical results on
three test problems in Section 4 show that it is possible to use polynomial of a higher or-
der than is often done, but that it is important to resolve features such as steep waves with
enough mesh points for high-order ENO methods to be effective.

2 ENO Divided Difference Polynomial Interpolation

In common with the standard treatments of ENO and WENO methods e.g. see [5,12], the
divided difference form of polynomial interpolation is used here as it enables the unified
treatment of polynomial approximations based on any set of spatial points. In this paper we
will use divided differences as defined by the usual notationwhereU [xi ] = U(xi) and

U [xi ,xi+1] =
U [xi+1]−U [xi ]

xi+1−xi
, (3)
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and where subsequent differences are defined recursively by

U [xi ,xi+1, ...,xi+k] =
U [xi+1,xi+2...,xi+k]−U [xi ,xi+1, ...,xi+k−1]

(xi+k−xi)
. (4)

Suppose that a set of mesh points are given byxi ,xi+1,xi+2,xi+3,xi+4...xi+N with associated
solution valuesU [xi ], ..., U [xi+N], then the standard Newton divided difference form of the
interpolating polynomialU(x)is given by

U(x) = U [xi ]+π1,i(x) U [xi ,xi+1]+π2,i(x) U [xi ,xi+1,xi+2]

+π3,i(x) U [xi ,xi+1,xi+2,xi+3]+ ....+πN,i(x) U [xi , ...,xi+N], (5)

where

π1,i(x) = (x−xi), π2,i(x) = (x−xi)(x−xi+1),

π3,i(x) = (x−xi)(x−xi+1)(x−xi+2), etc. (6)

In this case each additional term in the series makes use of the next mesh point and associ-
ated solution value to the right of the previous ones. An alternative polynomial could have
been constructed by starting at the pointx j , j > 0 and then adding successive points to the
left or right of x j , [9]. As the divided difference,U [xi ,xi+1, ...,xi+k], is invariant under per-
mutations of the pointsxi ,xi+1, ...,xi+k, the convention adopted here is that the points will
be ordered as an increasing sequence when the difference is evaluated. The denominator in
equation (5) will also then be the width of the stencil of points used to evaluate the differ-
ence. The idea behind ENO methods is to vary the difference stencil to consistently pick
the best polynomial for each interval, rather than to use just one polynomial over the spatial
range. For example, suppose thati > 1, then one valid quadratic polynomial for interpola-
tion on the interval[xi ,xi+1] is given by the first three terms of the sum on the right side
of equation (5) which uses the three data pointsU(xi),U(xi+1) andU(xi+2). An alternative
polynomial using the pointsU(xi),U(xi+1) andU(xi−1) is given by

U(x) = U [xi ]+π1,i(x) U [xi ,xi+1]+π2,i(x) U [xi−1,xi ,xi+1] (7)

with the same values of the functionsπ1,i(x) andπ2,i(x). ENO methods [5] pick the polyno-
mial with the smallest divided differences in order to potentially reduce oscillations. In the
above case if

|U [xi−1,xi ,xi+1]| < |U [xi ,xi+1,xi+2]| (8)

then the polynomial defined by equation (7) is used rather than the polynomial defined by
the first three terms on the right side of equation (5). WENO methods use a combination of
both of these polynomials, see [12], to achieve a higher degree of accuracy.

2.1 A Recursive Formulation of ENO Interpolants

A key step in constructing a provably data-bounded interpolant is to write the divided differ-
ence interpolation scheme in recursive form. This is important as it enables techniques used
in in the finite volume solution of hyperbolic equations to generate data-bounded low-order
polynomials to be extended to high order polynomials. In order to do this it is helpful to
define the ratios of divided differences, for example, by

r [i,i+1]
[i−1,i] =

U [xi ,xi+1]

U [xi−1,xi ]
, (9)
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with obvious extensions to higher differences and other indices. Such ratios are used as part
of many very widely used positivity methods for solving compressible flow problems, see
[14]. The main idea here is to use ratios of divided differences in constructing polynomials
that may form part of positivity-preserving discretization methods of possibly arbitrarily
high order. As an example, when the next divided difference approximation to be computed
incorporates a new point from the leftxi−1, it may be written in the form

U [xi−1,xi , ...,xi+k,xi+k] =

(

1− r [xi−1,...,xi+k−1]
[xi ,...,xi+k]

)

xi+k−xi−1
U [xi ,xi+1, ...,xi+k]. (10)

An alternative divided difference computed fromU [xi ,xi+1, ...,xi+k] is

U [xi ,xi+1,xi+2, ...,xi+k+1] =

(

r
[xi+1,...,xi+k+1]

[xi ,...,xi+k]
−1

)

xi+k+1−xi
U [xi ,xi+1, ...,xi+k]. (11)

In this case the ENO scheme picks the next difference to beU [xi−1,xi , ...,xi+k,xi+k] if

(

|1− r
[xi−1,...,xi+k−1]

[xi ,...,xi+k]
|
)

|xi+k−xi−1|
<

(

|r
[xi+1,...,xi+k+1]

[xi ,...,xi+k]
−1|

)

|xi+k+1−xi |
, (12)

or picksU [xi ,xi+1,xi+2, ...,xi+k+1] otherwise. In the approach of [1], providing that the val-

ues ofr [...]
[...] satisfy the restriction

0≤ r [...]
[...] ≤ 1, (13)

then, if equation (12) holds we pick the next stencil point tobe to the ”left” i.e.xi−1 as in
equation (10) and defineλk+1 (a term used in the next sub-section) by

1≥ λk+1 =
(

1− r
[xi−1,...,xi+k−1]

[xi ,...,xi+k]

)

≥ 0 (14)

Alternatively if equation (12) does not hold, then the next stencil point is picked to the
”right”, as in equation (11),xi+1 and defineλk+1 by

−1≤ λk+1 =
(

r
[xi+1,...,xi+k+1]

[xi ,...,xi+k]
−1

)

≤ 0. (15)

It is worth remarking that the restriction defined by equation (13) is an extension to higher
order differences of the well-known minmod limiter for hyperbolic equations, see [14]. In

the case when both components ofr [...]
[...] are zero the value is set to zero as a safety strategy.

While the restriction onr [...]
[...]

is a potentially severe one it does not seem easy to circumvent
it for arbitrary degree polynomials. Berzins [1] proved in the case of uniform meshes that
the polynomial defined by the approach of equations (5,...,15) is data-bounded i.e.

Min(U(xi),U(xi+1)) ≤U(x) ≤ Max(U(xi),U(xi+1)).

In Section 2.2, Theorem 1, a much simplified proof will be given that extend the approach
to non-uniform meshes. It is also worth remarking that thereare potentially many other ap-
proaches to limiting polynomials, but this approach is, to the best of the authors knowledge,
perhaps the only one that works for polynomials of arbitrarily high degree.
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2.2 A General Data-Bounded ENO Polynomial

In order to extend the proof of Berzins [1] to non-uniform meshes, it is helpful to define
notation to describe the left and right edges of the stencil.Mesh points,xi , are defined around
a pointx0 by adding or subtracting multiples of an the mesh spacingh so that the mesh points
chosen by the ENO approach at each stage are denoted byxe

i as defined by

xe
i = x0 +eih, i ≥ 1,where h= (x1−x0), (16)

for some valueei and wheree1 = 1. In the case whenei > 0 thenei > 1. At the ith stage of
the ENO process let the leftmost and right most parts of the stencil in use may be defined as
xl

i andxl
i , where

xl
i = min(xe

i ,x
l
i−1), xl

0 = x0, (17)

xr
i = max(xe

i ,x
r
i−1), xr

0 = x0. (18)

Further, define a local co-ordinate, denoted bys, in the interval[x0,x1] by:

s=
x−x0

x1−x0
. (19)

These definitions allow the limited ENO polynomial, [1], to be written as:

U l (x) = U [x0]+ [U(x1)−U(x0)]PN(s) (20)

wherePN(s) is the polynomial defined by:

PN(s) = s(1+
(s−1)

D2
λ2 (1+

(s−e2)

D3
λ3× (1+

(s−e3)

D4
λ4× ...(1+

(s−eN−1)

DN
λN)...)

(21)

and where
Di = (xr

i −xl
i )/(x1−x0). (22)

Equation (21) may be rewritten as

PN(s) = (s+s
(s−1)

D2
λ̄2 +

s(s−1)(s−e2)

D2D3
λ̄3 +

s(s−1)(s−e2)(s−e3)

D2D3D4
λ̄4 + .......+

s(s−1)(s−e2)...(s−eN−1)

D2D3...DN
λ̄N) (23)

whereλ̄ j = ∏ j
k=2 λk, and where−1≤ λ̄ j ≤ 1. from the restrictions in equations (14) (15). It

is perhaps worth remarking that the original ENO polynomialhas the same form as that in
equation (23), but without any restriction on the values ofλ̄ j . The differences between the
two polynomials and hence the error introduced by introducing the data bounded approach
are thus straightforward to describe, see [1].
Theorem 1The interpolating functionU I (x constructed using the ENO approach with lim-
ited ratios of divided differences is data-bounded on a nonuniform mesh in that

Min(U(xi),U(xi+1))≤U I (x) ≤ Max(U(xi),U(xi+1)).

Proof. In proving this result is that we need to show that for 0≤ s≤ 1,

0≤ PN(s)≤ 1 (24)
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wherePN(s) is defined by equation (23), for every possible consistent choice ofDi ,ej and
λ̄k. The approach taken is to construct two bounding polynomials such that

P−
N (s)≤ PN(s)≤ P+

N (s). (25)

Consider the polynomial defined by

SN(s) = s
N−1

∑
i=0

(1−s)i . (26)

The value of this sum is given by:

SN(s) = (1− (1−s)N). (27)

Two polynomials that are upper and lower bounds on the interpolating polynomial are de-
noted byP+

N andP−
N respectively and are given by:

P−
N (s) = sN = 1−SN(1−s), (28)

P+
N (s) = SN(s). (29)

The proof starts by considering supposing that the assertion is true forN. The largest possi-
ble polynomial of degreeN+1 must have the form

P+
N+1(s) = SN(s)+s(1−s)N−1(−1+

1
eN

)+
s(1−s)N−1(s−eN)

eNDN+1
λN+1, (30)

where
DN+1 ≥ eN ≥ 1, (31)

The largest possible value ofλN+1 and one that also makes the last term positive is given by

λN+1 = −1. (32)

Similarly the last term is maximized by a value ofDN+1 = 1 given in equation ( 31). For the
assertion to be true we require that

P+
N+1(s)≤ SN+1(s). (33)

Comparing the differences between the polynomials defined by equations (23) and (26), it
follows that this is true if

[

(−1+
2
eN

)−
s−eN

e2
N

]

≤ 1−s,

and hence that

−1+
2

eN
−

s

e2
N

≤ 1−s, (34)

as the value of the left side decreases as the value ofeN increases above one, it follows
immediately that the largest polynomial forN+1 is given by

eN = 1. (35)
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Hence if the assertion is true forN it is also true forN+1 The proof also applies to the base
quadratic case, thus closing the induction. Similarly for the lower bound, a similar process
leads to

P−
N+1(s) = 1−SN(1−s)− (1−s)(s)N, (36)

as required.
Remark 1 The bounding polynomialSN(s) corresponds to a polynomial with data points
at s= 0 and then multiple data points ats= 1. It is possible to get arbitrarily close to this
polynomial with data points defined bys= 0, s= 1 and thens= 1+ iε in the polynomial as
defined by

TN(s) = s+s
N−1

∑
i=1

i

∏
j=1

(1−s− ( j −1)ε)

1+ jε
,ε > 0. (37)

Remark 2 With this method any monotone polynomial whose values in theinterval lie
outside of the region bounded by 1−SN(1− s) andSN(s), for examplesN+1, will be ap-
proximated by a polynomial whose values are contained in this region. The error in this
approximation is given by [1]. This observation may make it possible to construct limiting
algorithms whose bounding curves lie closer to the edges of the box.
In order to illustrate these results random polynomials of degree 23 were created to provide
a sample of 100 polynomials in which the underlying mesh varies randomly by mesh ratios
that change from one cell to the next by as much or as little as 105 and 10−5. Figure 1 plots
the polynomials and shows the distribution of the mesh ratios on a logarithmic scale, for
each of the 100 cases. The bounding polynomials used in the proof are also shown. The
polynomialTn(s) is evaluated withε = 0.001. The results show the data-bounded nature of
the polynomial, even for extreme mesh ratios.

2.3 Reintroducing Extrema.

It is well-known that a key feature of schemes for hyperbolicequations is that they must
not clip local extrema, [3]. One possible problem with the proposed approach of bounding
the polynomial by the values at either end of the interval is that if the true solution has an
extremal value in between the data points then this value will be truncated. One solution
to this is to detect possible extrema in an interval and switch off limiting in that interval.
The proposed condition for detecting possible extrema is given by requiring that the cells on
either side of the ”flat” cell have opposite and significant slopes. In other words the following
two conditions must hold for extrema to be assumed to exist:
(i) U [xi+1,xi+2]/U [xi−1,xi ] ≤ 0,
(ii) U [xi+1,xi+2]/U [xi ,xi+1] ≥ 1 U [xi ,xi+1]/U [xi−1,xi ] ≤ 1.
In the case when a possible extremal value is detected then limiting is switched off in that
interval and a standard ENO polynomial used. The effectiveness of this approach on Runge’s
function 1/(1+25x2), with NPTS evenly data points spaced so as to exclude the extremal
value atx = 0, is shown by the numerical results in Table 1. In Table 1, NP is the number
of points used to define the polynomial, or the order plus one.The table (not surprisingly)
shows that carefully allowing extrema gives much greater accuracy than truncating extrema.
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Fig. 1 Random Polynomial coefficient results to illustrate Theorem 1. The left figure shows the values of the
polynomials. The right figure shows the mesh point spacing ratios for the 100 randomly chosen cases.

Method NPTS L2 Error L∞ Error Max NP Min NP Avg NP
6 3.4e-3 5.0e-1 4 3 3

No New 14 5.7e-4 1.3e-1 8 3 7
Extrema 30 8.6e-5 2.9e-2 17 3 15
Allowed 60 1.5e-5 7.1e-3 34 3 32

120 2.6e-6 1.3e-4 57 3 53
6 2.9e-3 4.3e-1 6 3 4

New 14 1.9e-4 4.3e-2 14 5 8
Extrema 30 2.3e-6 4.7e-4 30 15 16
Allowed 60 5.7e-9 2.3e-6 60 18 33

120 5.1e-8 1.1e-8 120 38 54

Table 1 Approximation of Runge’s Function With and Without ExtremaCreation

2.4 Derivative Approximations in ENO Schemes

In order to use the above approximation results in the context of numerical schemes for
hyperbolic equations it is important to understand the behavior of the polynomial derivatives
at the the spatial mesh points. This behavior is described bythe following theorem.
Theorem 2: The interpolating function,U I (x), constructed using the modified ENO algo-
rithm satisfies the equation:

dUI (x)
dx

= (U(x1)−U(x0)) f (x)
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where f (x)≥ 0 for x = x0 andx = x1.
Proof: From equation (20), the interpolating polynomial on an interval [x0,x1] may be writ-
ten as

U I (x) = U [x0]+
[U(x1)−U(x0)]

(x1−x0)
(x−x0)(1+(x−x1)P

∗(s)) (38)

whereP∗(s) is defined by rearranging the terms in the polynomial expansion defined by
equation (23) as

P∗(s) =
λ2

D2(x1−x0)
(1+

(s−e2)

D3
λ3× (1+

(s−e3)

D4
λ4× ...1+

(s−eN−1)

DN
(λN), (39)

with sdefined as in equation (19). Differentiating equation (38) gives

dUI (x)
dx

=
U(x1)−U(x0)

(x1−x0)

[

(x−x0)(x−x1)
dP∗(s)

dx
+(1+(2x−x0−x1))P

∗(s))

]

. (40)

Evaluating this expression at the grid pointx = x1 gives

dUI (x1)

dx
=

(U(x1)−U(x0)

(x1−x0)
[1+(x1−x0)P

∗(1)] (41)

and again evaluating this expression at the grid pointx = x0 gives

dUI (x0)

dx
=

(U(x1)−U(x0))

(x1−x0)
[1− (x1−x0)P

∗(0)] . (42)

As the polynomialU I (x) is data-bounded on the interval it follows that the derivatives at the
end points must have the same sign as the first divided difference ofU(x) and so that the
quantities[1+(x1−x0)P∗(1)] and [1− (x1−x0)P∗(0)] must be positive. These quantities
may be zero in the cases when

P∗(s) =
±1

(x1−x0)
.

More precise upper bounds for these expressions may be obtained by substituting forPN(s)
using equation (38) into equation (25) and using equations (28) and (29) to get

sN ≤ s+s(s−1)(x1−x0)P
∗(s) ≤ s

N−1

∑
i=0

(1−s)i . (43)

Subtractings from all the terms and dividing bys(1−s) gives.

(sN−1−1)

(s−1)
≤−(x1−x0)P

∗(s) ≤
N−2

∑
i=0

(1−s)i. (44)

Consequently ats= 1, after using L’Hôpital’s rule and rearranging gives

0≤ 1+(x1−x0)P
∗(1) ≤ N, (45)

and ats= 0
0≤ 1− (x1−x0)P

∗(0) ≤ N. (46)

Thus giving bounds on the right sides of equations (41) and (42).
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2.5 Rounding Error Analysis

The rounding error analysis of Newton polynomials and Horner’s scheme is as old as modern
numerical analysis. Higham [7], pp.109-115, gives an excellent survey of work going back
to Wilkinson. Some of the more recent results show that severe rounding error difficulties
may be encountered at very high orders. In the approach here astencil of points is defined for
each interval. Once the points are chosen the polynomial maybe evaluated with any suitable
method. An important part of this evaluation for the differential equations considered here
is to evaluate the derivatives of the polynomial at the mesh points. In order to consider the
rounding error in this the approach of [7] may be applied as the polynomialP∗(x), as defined
by (38), is simply calculated in the same way as applying Horner’s scheme toPN(x) and then
truncating the summation two steps early and dividing by(x1−x0)

2. As the summation takes
place at the mesh points Higham’s analysis is immediately applicable. It is also worth noting
that recent work on the compensated Horner scheme substantially improves the accuracy,
[6]. One possible problem with the approach described here is that rounding errors in the
individual divided differences with introduce errors in parameters̄λ j , in equations (26-28),
and hence possibly in the choice of stencil used. In the worstcase, with rounding error, using
equation (24) directly to evaluate the polynomial may result in a bounded polynomial when
this should not be the case.

3 Positivity Preserving ENO Schemes

Once the polynomial approximation is defined as above, it is straightforward to use the
results of Theorem 2 to prove results about ENO and WENO schemes. These schemes
integrate equation (1) over the interval[xi−1,xi ] of width hi to get:

∂ ūi+1/2

∂ t
+a

[u(xi , t)−u(xi−1, t)]
(xi −xi−1)

= 0 (47)

where

ūi+1/2(t) =
1

(xi −xi−1)

∫ xi

xi−1

u(x, t)dx. (48)

Defining the ENO reconstruction functionwi(x, t) by:

wi(x, t) =

∫ x

x̄i−1

u(x∗, t)dx∗,x∈ [xi−1,xi ] , (49)

wherex̄i−1 is an arbitrary lower limit, immediately provides the relationship

wi(xi , t)−wi(xi−1, t) = ūi+1/2(t)hi . (50)

From differentiating equation (49) it follows that

dwi

dx
(xi , t)−

dwi

dx
(xi−1, t) = u(xi , t)−u(xi−1, t). (51)

At the boundaryx= 0 the appropriate solution valueU0(t) is substituted foru(xi−1, t). Using
this relation in equation (47) and integrating in time usingthe forward Euler method gives.

ūi+1/2(tn+1) = ūi+1/2(tn)−
aδ t
hi

[

dwi

dx
(xi , tn)−

dwi

dx
(xi−1, tn)

]

. (52)
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In calculating the values of these derivatives ofdwi
dx (x, t), it is necessary to take into account

upwind directions, see [13]. For a more general p.d.e. we would have to evaluate flux func-
tion values using Riemann solvers etc. The essence of the ENOalgorithm for the advection
equation is to take the following steps:
(i) On each interval create initial values of ¯ui+1/2(t) by using exact or high-order quadrature
based on the valuesu(x, t).
(ii) Use equation (50) to create the first differences of the functionwi(x, t).
(iii) Use these differences and subsequent differences to create a high order polynomial
approximation on each interval towi(x, t); we denote this polynomial byw∗

i (x, t).

(iv) Calculatedw∗
i

dx (xi , t) and dw∗
i

dx (xi−1, t) using the algorithm described in Section 2.
(v) Advance the solution in time using equation (52) with a sufficiently small timestep,δ t.
From the analysis of Section 2 and using the data bounded polynomial approximation of
that section, it follows that

dw∗
i

dx
(xi , t) =

w(xi, t)−w(xi−1, t)
hi

(1+hiP
⋄
i (xi , t)) (53)

whereP⋄
i (x, t) is the polynomialP∗(s) evaluated on the interval[xi ,xi+1] at timet, and con-

sequently, from equation (50) and using an upwind approach on [xi−1,xi ] that

dw∗
i

dx
(xi , t) = ūi+1/2(t)(1+hiP

⋄
i (xi , t)). (54)

In similar vein, using an upwind approach on[xi−2,xi−1], it follows that

dw∗
i−1

dx
(xi−1, t) =

w(xi−1, t)−w(xi−2, t)
hi−1

(1+hi−1P⋄
i−1(xi−1, t)) (55)

and
dw∗

i−1

dx
(xi−1, t) = ūi−1/2(t)(1+hi−1P⋄

i−1(xi−1, t)). (56)

Hence equation (52) may be written as

ūi+1/2(tn+1) = ūi+1/2(tn)

−
aδ t
hi

[

ūi+1/2(t)(1+hiP
⋄
i (xi , tn))− ūi−1/2(t)(1+hi−1P⋄

i−1(xi−1, tn−1))
]

. (57)

Positivity of theū1+1/2 values then requires

0≤
aδ t
hi

(1+hiP
⋄
i (xi , tn))≤ 1, (58)

0≤
aδ t
hi

(1+hi−1P⋄
i−1(xi−1, tn)) ≤ 1. (59)

For a sufficiently small Courant number this follows from Theorem 2 and from the bounds
provided by equations (45) and (46). Harten style positivity, see Borisov, [4]. requires that
when all solution values are constant that ¯ui+1/2(tn+1) = ūi+1/2(tn). This follows immedi-
ately as all divided differences are zero in this case. It is worth remarking that positivity of
the averaged values is different from the scalar case as the averaged exact advection equation
solution values (denoted with the superscripte) satisfy:

ūe
i+1/2(tn+1) = λ1ūe

i+1/2(tn)+λ2 ūe
i−1/2(tn) (60)
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where

λ1 =

∫ xi+1−aδ t
xi

u(x, tn)dx.
∫ xi+1

xi
u(x, tn)dx.

andλ2 =

∫ xi
xi−aδ t u(x, tn)dx.
∫ xi

xi−1
u(x, tn)dx.

.

Clearly λ1 + λ2 6= 1 in general and there exist functions for whichλ1 = λ2 = 1, such as
the function that has value one on[xi − aδ t,xi+1 − aδ t] at time tn and is zero elsewhere.
Conservation is thus in the global sense in that

∑
i

ūe
i+1/2(tn+1) = ∑

i
ūe

i+1/2(tn). (61)

Positivity of the numerical solution valueUi(t) at the mesh pointxi requires a further step.
From equation (51) the numerical solution values satisfy:

dw∗
i

dx
(xi , t)−

dw∗
i−1

dx
(xi−1, t) = Ui(t)−Ui−1(t), (62)

and hence that

Ui(t) =
i

∑
j=1

[

dw∗
j

dx
(x j , t)−

dw∗
j−1

dx
(x j−1, t)

]

+u0(t). (63)

From equation (56), and if
dw∗

0
dx (x0) = u0(t), it follows that

Ui(t) = ūi+1/2(t)(1+hiP
⋄
i (xi , t)), (64)

and that positivity of the numerical averaged values ¯ui+1/2(t) implies positivity of the numer-
ical solution valuesUi(t). In order to show that the valuesUi(t) satisfy positivity, equation
(57) is rewritten as:

Ui(tn+1) = (1+hiP
⋄
i (xi , tn+1))

[

Ui(tn)

[

1
(1+hiP⋄

i (xi , tn))
−

aδ t
hi

]

+Ui−1(tn)
aδ t
hi

]

.

This equation may be rewritten in the form of equation (2) as:

Ui(tn+1) =
(1+hiP⋄

i (xi , tn+1))

(1+hiP⋄
i (xi , tn))

[Ui(tn)(1−αi)+Ui−1(tn)αi ] .

where, from equations (58) and (59), the positive termαi is

0≤ αi = (1+hiP
⋄
i (xi , t))

aδ t
hi

≤ 1. (65)

The data bounded polynomial approach used here guarantees that this term is positive. The
condition for strict positivity given by

(1+hiP
⋄
i (xi , tn+1)) ≤ (1+hiP

⋄
i (xi, tn)). (66)

may be obtained by varying the order used to create the polynomial that is used to compute
Ui(t), via equation (64).
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3.1 Dealing with Extrema in ENO Methods

Suppose that possible extrema in the solution are detected by tests such as the simple test
in Section 2.3. The bounded polynomial approach is not appropriate in its original form but
may be modified in a way that allows a bounded extremal value tobe created. Assuming that
the value of the differenceu[x0,x1] is small and thatλ2 as in equation (39) violates (14,15)
and satisfies

|λ2| ≥ 1. (67)

The derivatives in equations (41,42) then have opposing signs atx= x0 andx= x1. Rewriting
equations (20,21) to define a modified interpolation polynomial Û l (x)by:

Û l (x) = U [x0]+λ2U [x0,x1]P̂N(s) (68)

where the termλ2U [x0,x1] is the second difference defined as in Section 2 and where

P̂N(s) = s(
1
λ2

+
(s−1)

D2
(1+

(s−e2)

D3
λ3× (1+

(s−e3)

D4
λ4× ...1+

(s−eN−1)

DN
(λN).

Assuming that the signs ofλ2 andu[x0,x1] are the same it follows from Theorem 2 that a
bounds on any new maximum value ofÛ l (x) are given by:

U [x0] ≤ Û l (x) ≤U [x0]+ [U(x1)−U(x0)]λ2,∀x∈ [x0,x1] (69)

A similar argument may be made when the signs ofλ2 and u[x0,x1] are different and a
minimum is created.

3.2 A Simple Alternative ENO Positivity Preservation Algorithm

The positivity condition based upon data-bounded polynomials is sufficient for positivity but
not necessary in that positivity is still possible if the polynomialsP⋄

i (xi , t) andP⋄
i−1(xi−1, t)

satisfy equations (58) and (59). Hence an alternative approach to seeking positivity is to
simply require that the order of the ENO method be chosen so that this is the case. When
using this approach it is possible to get results that are as accurate as the original ENO
approach by switching positivity preservation off when

|u(xi , t)−u(xi−1, t)| ≤ TOL. (70)

This algorithm has performed well withTOL= 0.0001 in the experiments described below.

4 Investigation of the Order in ENO Methods

In order to illustrate and investigate the effect of using the positivity preserving methods
described above three test problems will be used. In order toperform these experiments
in a time-independent way, the spatial truncation error of the different approaches will be
calculated and compared. In these experiments the originalENO method will be compared
against the new approaches derived in Section 3.
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4.1 ENO truncation Error

The classical spatial truncation error for ENO methods may be calculated from the exact
solutionue(x, t) by first calculating ¯ui+1/2(t) and then using the polynomial approximation

procedure to arrive at approximationsdw∗
i

dx (xi , t). The truncation error is then denoted by
TEeno(x, t), where

TEeno(x, t) =
ue(xi , t)−ue(xi−1, t)

hi
−

1
xi −xi−1

.

[

dw∗
i

dx
(xi)−

dw∗
i−1

dx
(xi−1)

]

. (71)

This truncation error provides a measure of how accuracy of an ENO method based upon
these high-order polynomial expressions can be for the problem being solved and so will be
used to investigate the performance of the different ENO-based methods.

4.2 Computational Experiments

The following three examples have been used in the past to demonstrate the properties of
hyperbolic equation solvers and are used here to illustratethe properties of the approaches
discussed above. In each case the L1 error norm is used as approximated by a discrete sum
over the mesh point values. In the tables below NPTS is the total number of mesh points
used and NP is the number of points used to define a polynomial,or the polynomial order
plus one. The method denoted by BENO is the bounded polynomial approach defined by
Section 3, without any method for re-inserting extrema. Themethod denoted by LENO is the
extension of the limited BENO approach defined by Section 3.1to switch off limiting where
there are extrema. This method gives almost identical results to the unlimited ENO method.
For the sake of brevity we refer the reader to [2] where the Gaussian example was used by
Rider at al [8], to illustrate the advantage of using high-order methods for problems with
smooth solutions shows similar results for both methods. Inthis case, given the smoothness
of the solution, it is not surprising that the best results were obtained with polynomials of
degree 12 or higher. With the problem involving the advection of u(x, t) = sin4(x), a problem
considered by Shu [13] and others, the best results are obtained with polynomials of degree
12 or higher. In this case the BENO method is less accurate than the LENO method and the
original ENO method as lower-order polynomials are used at extrema, see [2].

4.2.1 Steep Front Problem

The results of Rider [8] show that high-order methods may notbe substantially better than
low-order methods when solving problems with discontinuities. In order to investigate this
the second problem has a solution which is both smooth and which has a steep profile as
given by Hubbard [10], the 11th order polynomial:

ue(x, t) = z6
[

−252z5 +1386z4−3080z3 +3465z2−1980z+462
]

(72)

wherez= (0.5+t +ds∗0.5−x)/ds; and which has a front of widthdswhose center position
is at 0.5+ t. Three sets of numerical experiments were conducted with this problem in order
to examine the performance of the high-order methods in the presence of a progressively
steeper front. In case (a) the front width isds= 0.96 and in case (b) the front width is
ds= 0.096. and in case (c) the front width isds= 0.0096. In cases ( b) and (c) the number
of mesh points inside the front is low as shown by Table 2.
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Steep Front NPTS
ds 15 31 63 127 255 511
0.0096 1 1 1 1 3 5
0.096 1 3 5 11 23 53

Table 2 Number of Points Inside Steep Front.

Figure 2 shows the solution profiles in all three cases. The experiments were conducted with
equally spaced meshes and allowing the polynomial degree tovary to 23. The L1 norms
of the truncation errors in Table 3 show that with large values of ds> 0.1, say, using high
order polynomials leads to an improvement in accuracy. In the case whends= 0.0096 and
there is only one mesh-point in the front then the numerical evidence shows that there is
little point using more than quadratic approximations,NP= 3. The conclusions from these
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Fig. 2 Problem 3:Steep Front Example Solutions, ds=0.96,ds=0.096,ds=0.0096

experiments are that for smooth solutions where there is enough mesh resolution there are
advantages in using high order polynomials of order 6-12. The effective polynomial order
does tend to be limited by the number of mesh points in a front,as noted by [1]. The results
from these experiments demonstrate the need to have multiple points in the region of a shock
front to get high accuracy with high-order methods. One way of achieving this is to use the
nonuniform meshes permitted by Theorem 1.

5 Summary

In this paper a novel approach to preserving positivity for variable-order ENO methods has
been extended in a general way using the idea of bounded polynomial approximations. Posi-
tivity conditions have been proved and numerical experiments have shown that it is possible
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Steep Front ds=0.96 NPTS
Method NP 15 31 63 127 255 511
BENO 3 1.8e-2 6.5e-3 1.3e-3 8.4e-5 3.3e-5 7.3e-6
LENO 3 1.1e-2 8.5e-4 6.5e-5 4.1e-6 2.5e-7 1.6e-8
BENO 6 5.3e-3 1.7e-4 5.3e-6 7.9e-8 1.8e-9 4.0e-11
LENO 6 7.8e-3 8.8e-5 1.6e-6 2.0e-8 2.0e-10 8.7e-12
BENO 12 5.9e-2 8.9e-5 2.8e-7 2.7e-9 2.3e-11 7.5e-12
LENO 12 7.1e-2 1.5e-4 2.5e-7 1.9e-9 2.0e-11 9.1e-12
BENO 24 5.9e-2 1.8e-2 1.6e-4 7.2e-10 8.2e-12 5.8e-12
LENO 24 2.6e-1 1.1e-1 2.3e-4 6.8e-10 8.0e-12 5.7e-12
Problem 3 ds=0.096
BENO 3 1.3e-1 5.5e-2 1.7e-2 2.6e-3 4.6e-4 7.1e-5
LENO 3 1.3e-1 4.7e-2 1.2e-2 1.3e-3 1.7e-4 1.4e-5
BENO 6 1.2e-1 4.2e-2 7.7e-3 7.2e-4 2.5e-5 1.1e-6
LENO 6 1.2e-1 4.0e-2 7.7e-3 5.0e-4 1.9e-5 4.6e-7
BENO 12 5.7e-1 3.4e-2 6.2e-3 2.6e-4 5.5e-6 8.3e-8
LENO 12 1.4e-0 3.9e-2 6.1e-3 2.2e-4 5.4e-6 6.2e-8
BENO 24 5.7e-1 2.5e-1 6.1e-3 1.7e-4 2.8e-6 3.0e-8
LENO 24 2.0e-0 1.2e-0 5.2e-3 1.6e-4 2.7e-6 2.9e-8
Problem 3 ds=0.0096
BOTH 3 1.4e-1 6.9e-2 3.2e-2 1.4e-2 6.3e-3 2.3e-3
BOTH 6 1.4e-1 6.4e-2 3.0e-2 1.4e-2 5.7e-3 1.4e-3
BOTH 12 6.9e-1 6.3e-2 2.9e-2 1.3e-2 4.7e-3 1.1e-3
BOTH 24 6.9e-2 5.4e-2 2.8e-2 1.2e-20 4.4e-32 1.3e-3

Table 3 Comparison of L1 Norms of Truncation Errors for Steep Front Problem of Hubbard.

to use much higher order methods than is often done with ENO methods. Achieving the ap-
propriate spatial order is somewhat more problematical as on steep fronts it is important to
have a mesh that ensures that multiple points are present in the front. One issue that still re-
mains to be resolved is how to treat existing extrema in an accurate way without introducing
new extrema elsewhere.

References

1. M. Berzins,Adaptive polynomial interpolation on evenly spaced meshes, SIAM Review1 (2007), no. 4,
624–627.

2. Berzins M. Data Bounded Polynomials and Preserving Positivity in High Order ENO and WENO Methods
SCI Report UUSCI-2009-003(unpublished) University of Utah, July 2009, Revised March2010.

3. Balsara D.S. and Shiu C.W. Monotonicity preserving weighted essentially non-oscillatory schemes with
increasingly high order of accuracy.Journal of Computat. Physics160:405-452 (2000).

4. Borisov V.S. and Sorek S. On monotonicity of difference schemes for computational physics.SIAM J. Sci.
Comput.25:1557-1584, 2004.

5. Cockburn B, Karniadakis GE, Shu C-W. (eds).Advanced Numerical Approximation of Nonlinear Hyper-
bolic Equations. Lecture Notes in Mathematics 1697Springer Berlin Heidelberg, 2000; pp 325–418.

6. Graillat S. Langlois P. Louvet N. Improving the compensated Horner scheme with a fused multiply and
add. Proc. 2006 ACM symp. on Applied Comput., 1323-1327, 2006 ISBN:1-59593-108-2, ACM, NY,
USA.

7. Higham N.J. Accuracy and Stability of Numerical Algorithms. Siam, Philadelphia 1996.
8. Greenough J.A. and Rider W.J. A quantitative comparison of numerical methods for the compressible

Euler equations: mifth order WENO and piecewise-linear GodunovJ. of Computat. Physics2004;196:259–
281.

9. Hildebrand F.B.Introduction to Numerical Analysis.McGraw-Hill Book Company Inc 1956;
10. Hubbard, M E; Berzins, M.A positivity preserving finite element method for hyperbolic partial differen-

tial equations.in: Armfield S, Morgan P and Srinivas K (editors) CFD 2002, pp.205-210 Springer-Verlag.
2003.



17

11. C.-W. Shu, TVD properties of a class of modified ENO schemes for scalar conservation laws, IMA
Preprint Series 308 (1987), University of Minnesota.

12. Shu C-W . High order WENO schemes.SIAM ReviewMarch 2009;51:82-126.
13. C.-W. Shu, Numerical experiments on the accuracy of ENO and modied ENO schemes,Journal of Sci-

entic Computing, v5 (1990), pp.127-149.
14. Waterson N.P. and Deconinck H. Design Principles for bounded higher-order convection schemes - a

unified approach.J. of Computat. Physics2007;224: 182-207.
15. X. Zhang and C.-W. Shu, A genuinely high order total variation diminishing scheme for one-dimensional

scalar conservation laws, Brown University preprint, to appear in SIAM Journal on Numerical Analysis.


