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Abstract

The positivity preserving approach of Berzins is geneedliby using a derivation based on
bounded polynomial approximations and order selectiore dpproach is extended from
the B-spline based methods used previously to the use of owoneentional continuous
Galerkin elements. The conditions relating to positivitggervation are considered and a
numerical example used to demonstrate the performancesshéthod on a model advec-
tion equation problem.
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1 Introduction

This paper follows earlier work of Berzins [3,4] which is aamed with the de-
velopment of positivity preserving finite element methodsthe solution of hy-
perbolic equations in one space variable. The focus in thggepagain will again
be the simple advection equation with non-negative initéth: %2 + %2 = 0 with
appropriate initial and boundary conditions on a spatitérival [x,, X ]. Applying
the standard Galerkin method with basis functigq(x) on a mestx,i =1,...,N
gives
Xip1

ou ouU .
E(R(X) dx = / —W(g(x) dxi=1,...,N, 1)

X1 X1
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where the approximate finite element solution to this pid.defined byJ (x,t) =

S @(0U(t).

Evaluation of the integrals, use of the initial and Diridid@undary conditions and
defining the time-dependent vectdrby U = [U,, ...,UN]T Wherel'Ji = %. gives
rise to the numerical scheme defined by the system of eqation

AU(t) =F(U(t)) (2)

where the matrix is referred to as the mass matrix.

It is well-known that the standard Galerkin method is ursfatitory for hyperbolic
equations in a very similar way to that of linear central elifince schemes, [19].

An important aspect of this poor performance is that the wetfoes not preserve
positivity with regard to the standard definition used hewresf positivity preserving
scheme for the advection equation. This definition requses Laney [17]) that the
numerical solution at timg,, ; may be written in terms of the numerical solution
at timet, in the form

Uit 1) = Zajuj(tn) where zaj =1, anda; > 0. (3)
] ]

The key observation with regard to preserving positivitglie to Godunov [9] who
proved that any scheme of better than first order which pvesguositivity for the
advection equation must be nonlinear. For example, theficimftsaj in (3) above
must depend on the numerical solution to the p.d.e.

There are recent papers addressing positivity preservatmreferenced by Berzins
[4] who also notes that the approach suggested in that p#fesdrom most of the
others, but is perhaps closer to the method of Cockburn and3hOther meth-
ods based on finite elements but taking a different appraa¢het one described
here are those of Sheu et al. [22,23]. The simplest appraadtefiving positivity
preserving schemes goes back for steady state problemasatae far as Harten
and Zvas [13] and is discussed in Chapter 22 of [17]. The idesnply to use a
scheme only when it preserves positivity and otherwise titcémio a more suitable
scheme.

This paper extends the approach of Berzins by using a boyralgdomial approx-
imation framework to derive the methods and extends theéeeavbrk in which a
family of Galerkin B-spline methods were modified to presepositivity to the
case of more conventional Galerkin methods.



2 H-P Finite Element Spaces

The approximation space used here differs from two standaotces of h-p finite
element spaces in that for basis functions of degréee pth derivative is allowed
to be discontinuous. L&, be a subdivision ofa, b] into individual elements. The
approximation space is given I8 where

S, =S Y([ab],T,) = {v;V| € Po(K)VK € T} (4)

Within this space are contained not only the usual discaptiis Galerkin functions
but also the standard continuous Galerkin methods.

2.1 Interpolation Results.

Consider the case in which we have an approximating polyalduli(x) based on
a set of nodal valued (x;) and defined using divided differences as defined by the
usual notation

U X1 X000 %0 = U DX g0 X )

UX, X g0 X0 = X o — % (5)
whereU [x] =U(x) and
U[x 4] —U[x]
U[X,% 4] = Xi++1 ~x (6)

Suppose that a set of mesh points are giverxpy,,X,,X;,X,... with associated
solution valuedJ [Xy], ...,U[x,]... then the standard Newton divided difference form
of the interpolating polynomial is given by

U' (%) = U]+ (X Xo)U [Xg: Xy + (X Xg) (X — X )U [X, X X
(X Xg) (X — X1 ) (X— X )U [Xg, Xq, Xp, Xg] + ... +-
(X—=X%g)--- (X=X 1) U[Xg; ----Xn]

(7)

It is then possible to order the point so that the poits;, X,,X3,X,... Map onto
the mesh points close #0asx;, X _1,%_ 1:%_ %o to give the following form of
the approximating polynomial , see Hildebrand [15] to rég/the approximating



polynomial in divided difference form as either left or righiased interpolants
denoted by/ (x) andU/(x) respectively where

UL(%) = U] +by; (%) U 1.1+ by 00 U 2,% 4,%]
b3 (X) UX 3.% 2% 1. %]+t (8)

for x <x; where

ba;i () = (X %) (X—%_1) (X~ %_5) 9)

UR(X) = U [x] +C,i (%) U X, % 4]+ €5 (%) U X, %4 4,% 4]
+C35(X) UX, X 1%, 2, % 3] + oo (10)

for x> x, where

LX) = (X=%), C(%) = (X=X (X~ X, ).
3100 = (x=%) (x= ) (X=X )

Harten makes the observation [14] (see also Arandiga €el]ab[9) that the lack of
smoothness may effect the quality of the approximation.,example in the case
When% has aju.m.p disqontinuity in the i.ntervb{, ...,xi+‘m] .then one can prove
that if the thekth divided differences has a jump discontinuity then

U[[%, s X ] = O(UP]) /AP if m > p
—O([U™])  otherwise (12)
Which immediately suggests that there may be no advantaggng a polynomial
of order higher thamp. A similar situation occurs when a steep gradient is found

close to areas of zero gradient and may then appear like ardisaity. Consider
the second divided difference

U DG, %] U g, %]

UX 1%, % ] = 13
%1%, %44 (%) (13)
and suppose that[x_,,x] = O(g)U[x,%_,]. It then follows that
U[X,X
Ul y%,) = (1-0fe)) o el (14)

i1~ % 1)



At the top and bottom of discontinuities this has the impglaathat the highest or-
der polynomial to be used in a steep gradient should havenaiktieat is contained
within the front. In the case when neighboring divided ddigces have different
signs (e.9. leU[x,_,,%] = —AU[x,x_ ] for A > 0), it follows that

U, % 4]

UlX 1,%:.% 1] = (1+2)) T (15)

and the situation is similar to that of a discontinuity in thighest derivative. As
an aside it is perhaps worth mentioning that the DASSL DAEecofdPetzold [5]
decreases order when it detects increasing higher-ortierathces.

2.2 Example of Polynomial Order Selection Procedure

The properties of this space are illustrated by the follgvaxample taken from
Berzins [4] in which an advection problem has a solution Whscboth smooth and
which has a steep profile is given by an 11th order polynomiatiwis defined in
terms of the variable z, where

z=(0.3+t+dsx0.5—-x)/ds (16)

In the case wher > 1 thenu(x,t) = 1.1 while if z< 0 thenu(x,t) = 0.1. For
0 < z<1thevalue olu(x,t) = p(z) where

p(z) = 2 | —2522 + 13867 — 3080¢° + 3465 — 198+ 462 (17)

and wherez is defined by equation (16). The solution has a front of widgh
centered about.8+t. The numerical experiments conducted with this problem
consisted of using spline approximations of degree 0 to 3adsm of using a h-p
approximations in which the order was selected by the fahgvprocedure.

() construct linear quadratic and cubic spline interptddmased on a set of nodal
valuesU (x;).

(ii) construct first second and third divided difference apgmations,
UDX_ 1% 1] U 1.%, % 1] @ndU X o, % 1,%, %, q]-

(iii) select the order of approximation on the sub-intejxak; ., ;] to be that for
which there is no sign change in the highest divided diffeeemsed in the polyno-
mial.

The errors in the different cases are as follows in the L1 norm
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Method  dx 0 1 2 3 h-p
L1 Error 0.08 1.8e-2 6.0e-2 9.5e-2 1.1le-1 6.0e-2
L1 Error 0.04 2.0e-2 1.7e-2 1.8e-2 2.1e-2 1l.4e-2

L1 Error 0.02 5.0e-3 1.1e-3 1.4e-4 52e-4 13e-4
Table 1
Comparison of Spline Error Norms on Travelling Front Exaenpl

The key feature of these results is that high order polyntsnaiee used inside the
steep gradient. This is demonstrated by the results showigires 1 to 3 which
show the individuapth order approximations, their errors and the h-p approxima
tion. Table 1 shows that the h-p approximation outperfotmesfixed p approxima-
tions in a way that is consistent with many other h-p reselig, Schwab [21].

3 Data Bounded Polynomial Interpolants

The example above is illuminating and while it suggests a @faghanging order
it does not help directly to reduce oscillations. One pdss#ibep in developing
positive finite element schemes is to define bounded polyalanterpolants which
may be based on ratios of divided differences such as, fanplka

[| i+1] U [Xi’xi—l—l]

130 T Uy, %] 49

with obvious extensions to higher differences and otheicesl

In order to construct bounded interpolants the functitin) is defined by®(r) =
max 0, min(r,R)) whereR is a known maximum value yet to be defined, see [4].
This function is applied to divided difference terms to defisounded divided dif-
ferences denoted Hy...|®

U[x,%,4]% = ®(r H Hiﬂ)u[xiflvxi] (19)

which may be written as

Ux. %)% = RV %] (20)

whereREﬁlﬂ) = d(r H 'ﬂ) It should be noted that[x,%_ ;|8 = H 'g’HU[xifl,m

if0 < rH’iﬁ) < R. Furthermore let

i

Ulx_y.x]% =8 51 U _1.x] (21)



S o(rli-Li o
whereS' 11— L2 s g filter that has value one if @ rl 21 <1 and
[i—2,i—1] r[i—2:i—1] [i—2,i—1]

has value zero otherwise.
A number of useful illustrations of this are:

Ol x] =Dl HT YU % ]

 B_ i—1,i] i—2,i—1]
U[Xifjjxpr_l] Xi_l_]__xi,]_ (22)
and
o(rlily i il y)
. fi—1,] r[[;:;:;[l]
UX_1,%:%.4]" = (%1 % 1) U X1, %] (23)
+ —
which may be written as
i—i,i]
i—1,i,i+1
Ul% 1.%:%,4]° = ﬁu X _1,%] (24)
+ —
where
d(rli-L
i—1,i] _ i+l i-2i-1]
SEfl,:,H—l] o ((D(r[illl,i}) rli—1,] : (25)
i—2i-1]

Furthermore thésf-% operator will be used in connection with mass matrices and
positivity

Ul%_1,%:% 4]V = %:f{ﬂ U X 1,%:%.4] (26)

whereégfﬂ} is defined as in equation (21) and which, when substituteesgi

1]
1
o, (rHi+1] (1_ [i,i+1])
M M(r[i—l,i}) =% U

r{:iﬂ (%1 —% 1)

U [Xiflvxi'/XH—l [Xivxi+1] (27)



where®,,(r) =r if 0 <r <1 and is zero otherwise. The extensions to higher
divided differences follow in a similar way:

CD( rli- 1|I+1])
pli—Lii+l T [i2i-1i]
5 (p(r [:|+1I|I+2] rH ;:‘ﬁ ) 5
UIX 1%, %1, % 0] = U X 1.%.% 4] (28)
(|+2 XI 1)
which may be written as
i—1,ii+1]
[7111+17+2}
U 1:%:%1.%,0% = (= S U 1% (29)
+2 %1

The bounded form of the functioh(r) makes it straightforward to bound the func-
tionsS[[-"% b

1<§-l<Rr
1< s{} <R (30)
Consider the case of polynomials of degree 2 given by equai(i®) and (9)

U100 = U+ |y 00+ — 20 _gt 21 .}] Ul 1% @)

0% o) 12

The condition for this polynomial to be data bounded in thaatisfies
Uli -1 <U'(x) <UJil,is

bz,i (%) i—1ii
{blvi(x) TRy S{ifz,ifl,i}

X —%X_1

<1. (32)

Letx=x_,+Ah ,0<A <1, h=x-x_;anduh=x_; —X_,. Substituting in
the previous equation then gives

A Qic
Oﬁ(l_")(l*m%zu,q <1. (33)

Routine consideration of values &f u gives
i—1,i]
—1< S[ —2,i—1i] — (34)

which corresponds to equation (30) wih= 1. The extension to higher order poly-
nomials would seem to require further restrictions on trghhr-order divided dif-



ferences to maintain data-boundedness. In the contexima-varying solutions
the addition of(t,) will signify the time at which solution values are used when
evaluating the divided difference expressions.

3.1 Relationship to Polynomial Filtering

The application of the successive multipliers sucfﬁb’é}lﬂ} to the divided dif-

ference terms in a recursive way may be immediately intéedras a polynomial
filtering method. The idea behind the polynomial filteringtheals of Gottlieb and
Shu [10] is to modify the polynomial coefficients so as to ioy@ accuracy in the
presence of discontinuities. The application of this idednyperbolic equations
when spectral methods are used is described by Gottlieb asthelven [11].

In teh context of this work, for example, the polynomial definby equation (9)
may be modified by replacing the coefficieits to get modified coefficients, ;
The form of the modified coefficient may be seen by combiningagiqns (8), (22)
and (28) to define the modified polynomial by

U'B(x) =Ux] +byi(X) UX_1,%]+Dby;(x) U % 2% 1:%]°
+0y (X U X 5,% 5% 1,%]°

(35)
for x> x;.. From this it is straightforward to write this polynomial as
UI’B(X)ZU[Xi]+61,i(X)U[X| X 4Dy, F QU 2% 1, %]
+b3|() X _3:%_2:%_1,%]
(36)

V_Vheregl,i(x) = by (U [x_1.%]%/U[%_q. ],
by (X) = by () UX_5.%_1.%]5/U[x_.%_y.%] and

ba; (%) = b3 (}) UX_3,%_2.%_1,%]B/UX_3.%_2%_1,%]. Itis is also worth re-
marking that the filter defined here is nonlinear as the maaljfoefficients de-
pend on the solution and on approximations to its derivative

4  QOverview of Positive Finite Element Method

An overview of the new positive methods discussed below vergias follows.
Consider a pth order basis consisting of functidns,(x) and suppose, for ease of

10



exposition, that the number of basis functions and theitigpposition does not
change as the order changes. Letptieorder polynomial approximation based on
a set of nodal solution values be given by

N
Uplxt) = 3 85941 (37)

where the nodal values are givenyt) and where the inflow values are specified
by a Dirchlet condition. The standard Galerkin approacim tipges:

XR xR

ou .
=L@ ,(x) dx= / - d—xp(q’p(x) dx, i=1,..,N, (38)

XL XL

Suppose that we discretize in time using the forward Eulethowor a positive
Runge - Kutta method such as those of Shu and Osher [20] winciive stages
similar in form to forward Euler. Equation (38) may then batten as:

XR XRaU
/ (Up(X,thi1) = Up(X,tn)) @ n(X) dx= —ot / ;)EX) (X.tn) @ p(x) dx
L ,i;l,...,N (39)

wheret, | =t,+ dt. Define the residudRp(Up, x,t) by

ou
Rp(Up, X, tn) = (Up(X,t, 1) —Up(Xtn)) + 5td—xp (40)

and rewrite equation (39) as
(Rp(Up,X/tn),(H’p) :0/ | :1,/N (41)

In the simplest case the piecewise constant (DG) methotiéamdvection equation
with positive velocity equal to one is given by

(Ro(Ug: X, tn), @ 0) = (Ug(X;:ta + Ot) — Ug(X;, tn))

0
+5_:((U0(Xi7tn) —Up(Xi_1,tn) (42)

wheredx is the uniform mesh spacing. The higher order positive s&setonsid-
ered here (and by Berzins [4]) will mostly have the form:

11



ag UMt +ay (UM = U = ay U —ag (UM —U ;) —a, (UM —U" )
(43)

It will however also be necessary to consider the alteredtivm given by

ag UMt +ay (UM UM = ay U — & (UM —UfLy) — &, (U - U y)
(44)

in the case of the equations at the edges of quadratic elemardrder to satisfy
the positivity condition given by equation (3) the coeffitie satisfy the equations,

[4];
0<a ,/85,<1 (45)

0< (az,p+"Bli-z,p)/ao,pS 1 (46)

fori=1,23p=0,12. (N.B. In the form considered by Berzins [4] all the equa-
tions were scaled beforehand by dividing througha%) In the case of equation
(44) a, P anda3 are replaced witha, 1p anda3 respectively. In the case of the
piecewise constant method defined by equatlon (42) withdahviEuler time inte-
gration employed, the coefficients aag, = 1,8, o =a,, =0 andag ; = & For
higher order basis functions the coefﬁmeaﬁ, are defined by:

xR
Z/fﬁ,p(X) dx (47)
X
xR
1
Qp= Uiz n+1/(Up (% thia) — Up' (%t 1)) @ p(¥) dx (48)
Upr U
1 F
ap= g | (U0 t) ~ U, t) @ (%) dx (49)
Ui Uifle
xR
ot AU (X tn)
omgrup, ] xS % =
X
i— 1 .N.

In the case of the method written in the form defined by equatdd)

_ 1 h
al,pzw/ (Up' (%t 1) = Up' (% thy 1))@ p(x) dX (51)

,XL

12



xR

_ 1
as,p_W/ (Up' (X tn) = Up'0%,tn)) @ ,(X) dx (52)

The general approach that will be used is that polynomidimee in Sections 2
and 3 will be used to define the polynomial¥' (x,t),U™(x,t) andUB(x,t) in the
integrands. The method defined by equation (43) is implacitacobi iteration will
be used to solve for the new solution values. In the caseratiteymthe equations
can then be written, after dividing through by the quarl(thé(p+ al’p), as:

1
UM+ LML _ 8y U UMy p— (g p+35 ) + (B p + 85 )V
' (B p+ayp)

(53)

to get an iteration which is also positive if the positivitgrditions (45) and (46)
are satisfied.The predicted vaIuesLt!ﬁJflvm+1 are given by the explicit methods
defined by equation (43) WitiiL_Lp =a3,=0.

In the case of the method written as in equation (44) a sintéeation is given by:

_ L _ _
UnHLmL _ a; UMM +UMN g p— (g p+385 ) +ag UM g +ag U
! (8g,p+ 2y p)

(54)

Upon using equations (45) and (46) in (53) it can be seen teset conditions
ensure that the value of"t1™*1 js positive. Equation (54) yields a similar result.
It should also be noted that the directionality in the forandefined by equation
(43) reflects the directionality of the underlying adventequation. The extension
to negative velocity is relatively straightforward, [4].

4.1 Quadratic Basis Function Method

For ease of exposition consider the case of quadratic appations. Berzins [4]
considered the case of quadratic splines whereas here waleothe case of stan-
dardC° continuous Galerkin Methods, [12]. There are two kinds tiaions to
consider in the Galerkin orthogonality relationships iruation (41). In the case
when the test function is at at the element edge, as showgf lry Figure 4, the
the underlying polynomial approximation is orB? continuous at the edge of an
element. The second case is that of a test function intexiant non-zero only in
the element as shown ", in Figure 4.

The first step is to define the form of the solution in the casesnihe test function
is at the edge of an element and when it is the interior to anete. In the first case

13
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Fig. 4. Comparison of individual p version approximations

itis necessary to consider the divided difference form efgblution spanning both
sides of the element edge and then to replace the divideztelifte polynomials by
bounded approximations. The approximating polynomiahiy continuous at the
nodex; and so has the form:

Up(x,tn) = U[x]"+ bl,i (X) Ux_q,%]"+ b27i ) UX 2% 1.%]" (55)
for x < x, where bl’i(x) and bz’i(x) are defined by equation (9). The subscript
indicates that the divided difference expression is exatliatt;,.

Up(X,tn) = U x]" +C1;(X) UDG, % 41"+ €5 (0) U %%, 1. %, 0] (56)

for x> x wherec, ;(x) andc,;(x) are defined by equation (11). The form of the
solution in the domain in which the midpoint test functiodypmmial is non-zero
and has value one at nogés given by

Up(X,tn) = UD4]"+dy (%) U[x %]+ 0y 00 UDG 1%, X,.4]™ (57)

In the case when linear basis functions are usgd= c,, = 0 and as every node
is the edge of an element equation (57) is not used.

4.1.1 Positive form of Derivative Terms

In defining the coefﬁmenia2 the new forms of the two polynomials defined by
eguations (55) and (56) are derlved by modifying the polyiadenso that their

derivatives contain the factgt" —U," ;) in a similar way to equation (31) and are
given by
U (%, tn) =Ux]"+ (58)
gi-1i] (tn) x Ri—Lii+1] (tn)
_ di—1,i] _ [i—1,i,i+1] [i—2,i—1,i] : 1N
(bl,l (X)g[ifZ,ifl} (tn) + b2,| (X) (XH_]_ if ) U [lelvxl]

14



forx <x and

Ug(xtn) =U[x]"+ (59)

i,i+1] (tn) x Rli—1i, |+1}(t )
(Cll( )ﬁ[lwl}(tn)*'cg’i(x) [i—1,i,i+1] [i,i+1,i+2] U[Xi,l,Xi]n

[i=L,] (%41~ %_1)

for x > x, and whereR, § Sandr are defined in Section 3.

The modified form of the solution in the domain in which theusimin polynomial
is given by equation (57) is given by

SE i:}H—l}(t)
Up (%.tn) = U[x] + [ dy( )SH %: 1 +d2,i(x)(— Ulx_1,%]"(60)

i1~ % 1)

In each case differentiating these modified polynomialegan expression of the
form

J I n
Wollo) _ wix) Uk 1. x] (61

where the generic polynomial(x) is defined by differentiating the right side of
eqguations (58), (59) or (60) as required. Hence the genenm bf the coefficient
ay s

&= 5t/ W(X)@ 5(x) dx (62)

4.1.2 Positive form of Mass Matrix Terms

In order to obtain an expression fa{ the same series expansions as in the pre-
vious sub-section are used. The forms of the modified polyalsnspecific to the
mass matrix are different however and are required by egu&#i3) to contain the
factor (U1 — Ui”jll) in a similar way to that of the previous sub-section and are
given by

Up' (X th,g) =U[x]" 1+ S () (63)
RI—2i—1i](t X [||+1}t 1
(bl,i(x)+b2,i( X) - 1““}(??1 (XEI 1)}(%1) )) X1

15



forx <x and

Up' (Xt g) = U x]™ 4 S0 (1, U Dy x]™ (64)
N REHLI2( ) s (Pl ) — 1)
(o,

for x> x;.. The midpoint polynomial modified form is given by

U (X,tn+1 n+1_|_5{| |+1 n_|_1 X| X|_|_1]n+1 % (65)

o (L-riiy tne)
(dl,i(X)fH,iiﬂ(tn+1) () (% [1+1]X1 ;r)l )
1%

Thus in the case of equations (63) and (64) the generic fotimegbolynomial used
here is thus given by:

U (et 1) = U (% by ) +W00) (U2 U (66)

wherew(x) is a polynomial whose precise form is given by equations &5i®j) (64).

B1p— [ W00 () dx (67)

In the case of equation (65) the generic form of the polynbosad here is thus
given by:

Up' (Xt 1) = U (%t 1) = W(X) (U UMY (68)

wherew(x) is a polynomial whose precise form is given by equations &it) (65).
Hence

a = / WX) @ p(X) dx (69)

and In the final case the situation is complicated becauseeafi¢ed to constrain
polynomials in a way that is consistent across the time Steis.is done by using
the functions{[;ﬂ“’# (t,,1) in the mass matrix polynomials at bathandt,, ;. The

16



modified forms of the mass matrix polynomials used at the eddelements are
given by

U (ctn) =UDx]"+ S 0t ) (70)

(mﬂw{hﬂam+b <>Hihﬂﬁijleiiﬂm»)uvmmﬂ“
for x < x,

UD(x,th) = U [x]"+ sl; 'fﬁ (thy1) ¥ (71)

(CM(X) iU “n”) Ul "

for x> x;.

The midpoint polynomial for an element in modified form is gjivby

UF(xtn) =U )"+ S}t ) (72)

@tﬂam—m
dy (%) +dy;(x) ’ Ux_3,%]"

(%1% 1)

At the edges of elements the form of the polynomial that tesuhy be written as:

Up'(%,tn) = U (%, tn) +wW(x) (U} 1 —U") (73)

wherew(x) is a polynomial whose precise form is given by equations ér@j (71)
respectively. Hence

xR

%’p:/w(x)q’p(x) dx (74)

X
and in the case of equation (72)
Up'(X.tn) =U (%, tn) + W(x) (U"=Uj" ) (75)
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wherew(x) is a polynomial whose precise form is given by equation (FH&nce

Bgp= [ W)@ p(x) dx (76)

4.2 Galerkin Orthogonality

The definitions of the three ponnomi&Il%(x,t),UB"(x,t) andU'(x,t) given above
now make it possible to define the residual funcﬂRpﬁUp, x,t) associated with the
new method as

B

% M m aUp
Ro(Up: X tn) = (Up (Xt 1) —Up (X tn)) + Ot— " (77)

and to note that the method is defined by ensuring that thedalerthogonality
condition

(R}S(Up,x,tn),()q’p) — O, | — 1, ceesy N (78)

is satisfied. This makes it possible to describe the methachaslinear and variable-
order Petrov-Galerkin method.

5 Positive Linear/Constant Finite Element Method

The standard linear finite element discretization of theeatlen equation on a
uniform mesh (the case of a non-uniform mesh is considere@regho and Sani
[12]) is given by:

1

: . 1
6 U +4U,+U, 4] = @((UM*UH) (79)

wheredx is the uniform mesh spacing in this case and Wlti};ﬁe %. The residual,
as defined by equation (41) wifh= 1, may be written as

1
6

1
6

ot ot
&°U - = (UM - U )x— 25

Uin+1 + e~

S2UMt=un+ 52U (80)

whereU}' denotes the value at mesh pokmt timet, and whered? is defined by
32U = (UM, — 2U"+ U/ ] The processes of Sections 4.1.1. and 4.1.2 then give
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rise to three different approximations to tdé terms in this equation and to the
expressions:

8y, = OX (81)
() 1)
a,,= ﬂ¢+}6 Sfﬁamﬁéx (82)
ii+1]
_ (r[ifla”(t ) 1)§,i+1 Po) 83
81~ 6 1 (fh 1) OX (83)
L (g
ot [ S%ifl,i,H—l}(n -I
81 =5 [1+ e J SX. (84)

The positivity conditions as given by Berzins [3] are then

S[ifl,i} (t )
. o ot i1ty " 5
0< r{;iﬂ (thy1): r%‘iﬂ (t) <1and0< — (1+—2——)) < &. (85)

If these conditions do not hold the piecewise constant nietiedined by equation

(42) is used instead.

6 Positive Quadratic finite Element Method

Using the standard quadratic finite element method, agamregular mesh, with
its differing treatment of edge and interior nodes, e.g. Geesho and Sani [12],
gives rise to the o.d.e.s at element edges defined by:

—U p+2U0  +8U+2U -V, -4V -U )+ (U ,-U ) _

10 40X
(86)
at interior nodes
U 3 +84+Uiy  — (YY)
10 20X '
(87)

In order to understand the way that these methods are modb¥ieding the poly-
nomials of Section 4 apply the Forward Euler method as in gégug40) and a
some manipulation to rewrite the method in the case of eddesas
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g g
Uin+1 ( T -1 )52UIn+1 _ Uin ( 101 1 )52U|n
St oo St 1 1 on

and in the case of nodes in the interior of elements as

1 1
n+1 21+l N 21 n
U (5 )5 UMt =Ul+ (3 15)5 U,
5t St
— —5X(Ui ~u",)) - >5x 32U (89)

where the second derivative ratios at time levels sudfi'dsare given by

142 1 1, 1
S|n+ H Iil:il%(tml) and s —I’F 2:Ii&(tn+1)

and the ratios at time level denoted bys' ands ; are similarly defined. The
positive quadratic method is defined by applying the fumctid) to terms ass;
and by using the same functions as were applied in the lirees# © thed? terms.
Define the functions

in_ [Qli+Li+2) ¢ [i-2i-1,] ¢
S R0 R ). (90
in__ A[i,i+1,i+2} Sli—2,i 1,|}
Sf= {R[ifl,i,H—l}( n) R[ifl,i,H—l}( ”)] ’ (91)

where the functiofiR(.) is defined as in equation (20). The quantifH;;E%r*1 are sim-
ilarly defined at timet,, ;. Using these quantities and the form of the polynomials
defined in Section 4 equations (88) may be written as

n+1 S.—I’—n_l—l qi,i+1] ii+1 n+1 n+1
U™ — TS&’ 1”(tn+1)(ri’ 1i(thsd) = DU =UT)
—UP— SES ) (e ) (U - U)
0 0 1
SUPUMY) o (EEMS L Gur Uy (92)

In the case of nodes at the edges of elements the coefficiefited in Section 2
are given by

2
%2=%13 (93)
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&, =33 103 n+1a0’2 (94)

_ a6 d
Az, = %01 10 SHE:RP (95)

o= (2 (2 1) (S)ag (96)
22 1 9 20 ?

In the case of the interior nodes the only difference betviketinear and quadratic

cases lies in the scaling of tld8 terms and so the coefficients are then very similar

to those defined by equations (81) to (89) and are given by:

2= 5X§ (97)

(r=Lle ) —1)
[ , +1} n—l—l e

2= - 10 Suiﬁ(tnﬂ)ao,z (98)
(i) -1

832= 5 S it 130 (99)

i—1,i] t )

ot [ S%l Li,i+1] -|

B2~ 5x [1+ fJ N, (100)

The definition of these coefficients then makes it possiblgetermine the condi-
tions for positivity by substituting from equations (94)daf95) into equation (46)
to get:

ot

—*Osi["“uH)({:,j;}(t) D+ |24+ (14 Pen )] <1

li— 1,|,|+1}

(101)

where 0< r[' '+1} (tn) < 1. The stability condition thus involves ratios of solution

values at bO'[hln andt, ;. The condition for the stability of the predictor (i.e. no
mass matrix) is somewhat simpler in that a worst case arsadyees:

ot
— <
5x = (102)

ol s~

which is similar to that of Berzins [4], equation (34).
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6.1 Adaptive order Algorithm.

The general strategy employed in changing the order of thgnpmial used in
the method of Berzins [4] is to use the highest order possibless its use is
precluded by the positivity conditions operating in such ayvas to reduce the
order. This strategy has been influenced by variable ordategfies such as the
h-p methods used by Biswas, Devine and Flaherty [6] in whigltessive polyno-
mial derivatives are limited. For the purposes of changiregdrder only the space
derivative terms are considered, although the mass mataix still be modified
independently. Moreover in the quadratic case the swittlniteria are defined
by the equations corresponding to the edges of elementsatrid the interior. In
changing from piecewise discontinuous to piecewise lifefy = 1 then the lim-
iters are both zero so we stay with the discontinuous methedjoation (42). In
changing from linear to quadratic®-" = 0 then then quadratic terms in the deriva-

tive are switched off and so a linear basis is used. In the whsa S:" = 0 (and
the method defaults to the linear method in approximatiegiie space derivative)
it follows that values ofs! and i are either less than O or greater than 1. Al-

ternativelys® = § and sod?u, ; = 32U ; thus implying that second derivative

approximations are constant and thus that a linear appatiomis more appropri-
ate. This approach is applied on a point by point basis.

6.2 Numerical Example

The numerical problem used to demonstrate the performahteeccode is the
same advection problem used by Berzins [4] whose solutigiven by equations
(16) and (17) above. A mesh of 101 evenly spaced points iswiba cfl number
of 0.2. Figure 5 show the profilestat= 1.5 and Table 1 shows the the errors in the
L1 norm at the same time. The method of this section is desd@tsC® quadratic
and gives comparable results than the quadratic B-splindoden Berzins [4].
The value ofR used in equation(19) is varied as in [4] and has the values4l or
The van Leer limiter used by Berzins [4] gives results commpbe withR = 4. In
the case of th€® method described here the results®oe 1 are much worse than
for R=4 . The penultimate column of the table shows the results avitlmped
mass matrix and thus that this is mostly due to the treatnfehespatial derivative
rather than the mass matrix.

Figure 5 shows that the method does preserve positivitysiwiild and that quadratic
polymnomial approximations are used in the vicinity of tkeep gradient.
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L1 Error Norms

Finite Element

Finite Volume | Linear | Quadratic| Cubic o CO lumped | R value

using FE limiter| Basis | B spline | B spline | quadratic| quadratic | used

2.1e-2 2.4e-2| 2.1le-2 1.8e-2 2.0e-2 2.0e-2 4
4.3e-2 1.5e-2 1.5e-2 1.3e-2 5.8e-2 4.4e-5 1
Table 2

Comparison of Error Norms on Travelling Front Example

* EXACT, + VAN LEER FV, d NEW POSITIVE FE

ADVECTION CFL 0.125 ORDER OF BASIS 0, 1 or 2
1.2 3
g e 5 ».): -
iti t=15
g 0.8 Initial Values o3 5
E G
a 0.6 R 15
¢
§ %
n04 o] 1 ® O
z
< s
Go2 ; 05
;
X %
w
0
0 0.5 1 15 2

Fig. 5. Comparison of individual p version approximations

7 Further Developments.

There are a number of further develolpments that merit titen

7.1 Higher Order Methods.

In considering the extension of the above ideas to higheergodlynomials one
constraint in the present method is that interpolation isiged by the used of
common points between the methods of different orders. Beeofi fourth order
polynomials would make it possible to decompose a fourtleloetement into two
guadratic polynomials which could then be decomposed mtio linear elements.
The quarticC® elements based on equally- spaced points suffer from adisad
tage in that the basis functions have sub-optimal appraximaroperties. This
manifests itself in the plots of the basis functions N1 to M5hown in Figure 6
where the functions N2 and N4 both exceed one. The obvioemalive to this is

to adopt a spectral element or DG approach with non-uniforshrspacing, see
[11,8].
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LAGRANGE QUARTIC BASIS FUNCTIONS

BASIS

Fig. 6. Quartic Basis Functions with nodes at p/4,p=0,...4

7.2 Conservative Form.

Local conservation properties in hyperbolic schemes apmntant for ensuring that
the numerical solution travels with the correct speed, .[T®lis remains an issue
with Galerkin schemes although Larson at al. [18] have shioevmto post-process
steady Galerkin method solutions to ensure conservatiaied case of the scheme
defined above the piecewise constant method is well-knowe tmwnservative and
noting the results of Hou and LeFloch [16] who show how a corsdare method
may be obtained by switching from a non-conservative metbaal conservative
one may be applied to higher order schemes, see [4].

7.3 Nonlinear Conservation Laws.

The extension of the method described above to nonlineasereation laws is
considered by Berzins [4] and may be used equally well wigmtlethods described
here. An important issue is how to extend the ideas presdérterto the case when
approximate Riemann solvers need to be used.
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7.4 Two Dimensional Problems.

Extensions to advection in two dimensions have been uridartay Berzins and
Hubbard [2]. Although initial results are promising furtheork is needed.

8 Summary

In this paper a novel approach to preserving positivity farable-order finite ele-
ment methods has been extended in a general way using thefititared poly-
nomial approximations. The approach relies on using a nealiform of the mass
matrix in conjunction with positivity preserving conditie on the method coeffi-
cients.
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