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Abstract

The positivity preserving approach of Berzins is generalized by using a derivation based on
bounded polynomial approximations and order selection. The approach is extended from
the B-spline based methods used previously to the use of moreconventional continuous
Galerkin elements. The conditions relating to positivity preservation are considered and a
numerical example used to demonstrate the performance of the method on a model advec-
tion equation problem.
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1 Introduction

This paper follows earlier work of Berzins [3,4] which is concerned with the de-
velopment of positivity preserving finite element methods for the solution of hy-
perbolic equations in one space variable. The focus in this paper again will again
be the simple advection equation with non-negative initialdata:∂U

∂ t + ∂U
∂x = 0 with

appropriate initial and boundary conditions on a spatial interval [xl ;xr ℄. Applying
the standard Galerkin method with basis functionsφi(x) on a meshxi ; i = 1; :::;N
gives

xi+1Z
xi�1

∂U
∂ t

φi(x) dx= xi+1Z
xi�1

� ∂U
∂x

φi(x) dx; i = 1; :::;N; (1)
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where the approximate finite element solution to this p.d.e.is defined byU(x; t) =
∑N

i=1φi(x)Ui(t).
Evaluation of the integrals, use of the initial and Dirichlet boundary conditions and
defining the time-dependent vectorU by U = [U1; :::;UN℄T whereU̇i = dUi

dt . gives
rise to the numerical scheme defined by the system of equations:

AU̇(t) = F(U(t)) (2)

where the matrixA is referred to as the mass matrix.

It is well-known that the standard Galerkin method is unsatisfactory for hyperbolic
equations in a very similar way to that of linear central difference schemes, [19].

An important aspect of this poor performance is that the method does not preserve
positivity with regard to the standard definition used here for a positivity preserving
scheme for the advection equation. This definition requires(see Laney [17]) that the
numerical solution at timetn+1 may be written in terms of the numerical solution
at timetn in the form

Ui(tn+1) = ∑
j

a jU j(tn) where ∑
j

a j = 1; anda j � 0 : (3)

The key observation with regard to preserving positivity isdue to Godunov [9] who
proved that any scheme of better than first order which preserves positivity for the
advection equation must be nonlinear. For example, the coefficientsa j in (3) above
must depend on the numerical solution to the p.d.e.

There are recent papers addressing positivity preservation are referenced by Berzins
[4] who also notes that the approach suggested in that paper differs from most of the
others, but is perhaps closer to the method of Cockburn and Shu [7]. Other meth-
ods based on finite elements but taking a different approach to the one described
here are those of Sheu et al. [22,23]. The simplest approach for deriving positivity
preserving schemes goes back for steady state problems at least as far as Harten
and Zvas [13] and is discussed in Chapter 22 of [17]. The idea is simply to use a
scheme only when it preserves positivity and otherwise to switch to a more suitable
scheme.

This paper extends the approach of Berzins by using a boundedpolynomial approx-
imation framework to derive the methods and extends the earlier work in which a
family of Galerkin B-spline methods were modified to preserve positivity to the
case of more conventional Galerkin methods.
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2 H-P Finite Element Spaces

The approximation space used here differs from two standardchoices of h-p finite
element spaces in that for basis functions of degreep the pth derivative is allowed
to be discontinuous. LetTh be a subdivision of[a;b℄ into individual elements. The
approximation space is given bySh where

Sh = Sp;�1([a;b℄;Th) = fv;vjK 2 Pp(K)8K 2 Thg (4)

Within this space are contained not only the usual discontinuous Galerkin functions
but also the standard continuous Galerkin methods.

2.1 Interpolation Results.

Consider the case in which we have an approximating polynomial U I(x) based on
a set of nodal valuesU(xi) and defined using divided differences as defined by the
usual notation

U [xi;xi+1; :::;xi+k℄ = U [xi+1;xi+2:::;xi+k℄�U [xi;xi+1; :::;xi+k�1℄
xi+k�xi

(5)

whereU [xi℄ =U(xi) and

U [xi;xi+1℄ = U [xi+1℄�U [xi℄
xi+1�xi

(6)

Suppose that a set of mesh points are given byx0;x1;x2;x3;x4::: with associated
solution valuesU [x0℄; :::;U [x4℄::: then the standard Newton divided difference form
of the interpolating polynomial is given by

U I(x) =U [x0℄+ (x�x0)U [x0;x1℄+ (x�x0)(x�x1)U [x0;x1;x2℄+(x�x0)(x�x1)(x�x2)U [x0;x1;x2;x3℄+ ::::+(x�x0):::(x�xn�1) U [x0; ::::xn℄
(7)

It is then possible to order the point so that the pointsx0;x1;x2;x3;x4::: map onto
the mesh points close toxi asxi ;xi�1;xi+1;xi�2;xi+2::: to give the following form of
the approximating polynomial , see Hildebrand [15] to rewrite the approximating
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polynomial in divided difference form as either left or right biased interpolants
denoted byU I

L(x) andU I
R(x) respectively where

U I
L(x) =U [xi℄+b1;i(x) U [xi�1;xi℄+b2;i(x) U [xi�2;xi�1;xi ℄+b3;i(x) U [xi�3;xi�2;xi�1;xi℄+ ::::+ (8)

for x� xi where

b1;i(x) = (x�xi); b2;i(x) = (x�xi)(x�xi�1);
b3;i(x) = (x�xi)(x�xi�1)(x�xi�2) (9)

U I
R(x) =U [xi℄+c1;i(x) U [xi;xi+1℄+c2;i(x) U [xi;xi+1;xi+2℄+c3;i(x) U [xi;xi+1;xi+2;xi+3℄+ ::::+ (10)

for x� xi where

c1;i(x) = (x�xi); c2;i(x) = (x�xi)(x�xi+1);
c3;i(x) = (x�xi)(x�xi+1)(x�xi+2) (11)

Harten makes the observation [14] (see also Arandiga et al. [1], p.9) that the lack of
smoothness may effect the quality of the approximation., For example in the case
when dpU

dxp has a jump discontinuity in the interval[xi ; :::;xi+m℄ then one can prove
that if the thekth divided differences has a jump discontinuity then

U [[xi; :::;xi+m℄ =O([U (p)℄)=hm�p if m > p=O([U (m)℄) otherwise (12)

Which immediately suggests that there may be no advantage inusing a polynomial
of order higher thanp. A similar situation occurs when a steep gradient is found
close to areas of zero gradient and may then appear like a discontinuity. Consider
the second divided difference

U [xi�1;xi;xi+1℄ = U [xi;xi+1℄�U [xi�1;xi℄(xi+1�xi�1) (13)

and suppose thatU [xi�1;xi ℄ = O(ε)U [xi;xi+1℄. It then follows that

U [xi�1;xi;xi+1℄ = (1�O(ε)) U [xi;xi+1℄(xi+1�xi�1) (14)
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At the top and bottom of discontinuities this has the implication that the highest or-
der polynomial to be used in a steep gradient should have a stencil that is contained
within the front. In the case when neighboring divided differences have different
signs (e.g. letU [xi�1;xi℄ =�λU [xi;xi+1℄ for λ > 0), it follows that

U [xi�1;xi;xi+1℄ = (1+λ )) U [xi;xi+1℄(xi+1�xi�1) (15)

and the situation is similar to that of a discontinuity in thehighest derivative. As
an aside it is perhaps worth mentioning that the DASSL DAE code of Petzold [5]
decreases order when it detects increasing higher-order differences.

2.2 Example of Polynomial Order Selection Procedure

The properties of this space are illustrated by the following example taken from
Berzins [4] in which an advection problem has a solution which is both smooth and
which has a steep profile is given by an 11th order polynomial which is defined in
terms of the variable z, where

z= (0:3+ t+ds�0:5�x)=ds; (16)

In the case whenz> 1 thenu(x; t) = 1:1 while if z< 0 thenu(x; t) = 0:1. For
0� z� 1 the value ofu(x; t) = p(z) where

p(z) = z6
h�252z5+1386z4�3080z3+3465z2�1980z+462

i
(17)

and wherez is defined by equation (16). The solution has a front of widthds
centered about 0:3+ t. The numerical experiments conducted with this problem
consisted of using spline approximations of degree 0 to 3 andalso of using a h-p
approximations in which the order was selected by the following procedure.

(i) construct linear quadratic and cubic spline interpolants based on a set of nodal
values,U(xi).
(ii) construct first second and third divided difference approximations,
U [xi�1;xi+1℄ U [xi�1;xi;xi+1℄ andU [xi�2;xi�1;xi;xi+1℄.
(iii) select the order of approximation on the sub-interval[xi;xi+1℄ to be that for
which there is no sign change in the highest divided difference used in the polyno-
mial.

The errors in the different cases are as follows in the L1 norm.
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Method dx 0 1 2 3 h-p

L1 Error 0.08 1.8e-2 6.0e-2 9.5e-2 1.1e-1 6.0e-2

L1 Error 0.04 2.0e-2 1.7e-2 1.8e-2 2.1e-2 1.4e-2

L1 Error 0.02 5.0e-3 1.1e-3 1.4e-4 5.2e-4 1.3e-4
Table 1
Comparison of Spline Error Norms on Travelling Front Example

The key feature of these results is that high order polynomials are used inside the
steep gradient. This is demonstrated by the results shown inFigures 1 to 3 which
show the individualpth order approximations, their errors and the h-p approxima-
tion. Table 1 shows that the h-p approximation outperforms the fixed p approxima-
tions in a way that is consistent with many other h-p results,e.g. Schwab [21].

3 Data Bounded Polynomial Interpolants

The example above is illuminating and while it suggests a wayof changing order
it does not help directly to reduce oscillations. One possible step in developing
positive finite element schemes is to define bounded polynomial interpolants which
may be based on ratios of divided differences such as, for example,

r [i;i+1℄[i�1;i℄ = U [xi;xi+1℄
U [xi�1;xi ℄ (18)

with obvious extensions to higher differences and other indices.

In order to construct bounded interpolants the functionΦ(r) is defined byΦ(r) =
max(0;min(r;R)) whereR is a known maximum value yet to be defined, see [4].
This function is applied to divided difference terms to define bounded divided dif-
ferences denoted by[::::℄B .

U [xi;xi+1℄B = Φ(r [i;i+1℄[i�1;i℄)U [xi�1;xi℄ (19)

which may be written as

U [xi;xi+1℄B = R̂[i;i+1℄[i�1;i℄)U [xi�1;xi℄ : (20)

whereR̂[i;i+1℄[i�1;i℄) = Φ(r [i;i+1℄[i�1;i℄). It should be noted thatU [xi;xi+1℄B = r [i;i+1℄[i�1;i℄U [xi�1;xi ℄
if 0 � r [i;i+1℄[i�1;i℄)� R. Furthermore let

U [xi�1;xi℄B = Ŝ[i�1;i℄[i�2;i�1℄U [xi�1;xi ℄ (21)
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whereŜ[i�1;i℄[i�2;i�1℄ = Φ(r [i�1;i℄[i�2;i�1℄)
r [i�1;i℄[i�2;i�1℄ is a filter that has value one if 0� r [i�1;i℄[i�2;i�1℄ � 1 and

has value zero otherwise.

A number of useful illustrations of this are:

U [xi�1;xi;xi+1℄B = Φ(r [i;i+1℄[i�1;i℄)U [xi�1;xi℄�Φ(r [i�1;i℄[i�2;i�1℄)U [xi�2;xi�1℄
xi+1�xi�1

(22)

and

U [xi�1;xi;xi+1℄B =  Φ(r [i;i+1℄[i�1;i℄)� Φ(r [i�1;i℄[i�2;i�1℄)
r [i�1;i℄[i�2;i�1℄ !(xi+1�xi�1) U [xi�1;xi ℄ (23)

which may be written as

U [xi�1;xi;xi+1℄B = S[i�i;i℄[i�1;i;i+1℄(xi+1�xi�1)U [xi�1;xi℄ (24)

where

S[i�1;i℄[i�1;i;i+1℄ =0�Φ(r [i;i+1℄[i�1;i℄)� Φ(r [i�1;i℄[i�2;i�1℄)
r [i�1;i℄[i�2;i�1℄ 1A : (25)

Furthermore thêS[:::℄[:::℄ operator will be used in connection with mass matrices and

positivity

U [xi�1;xi;xi+1℄M = Ŝ[i;i+1℄[i�1;i℄ U [xi�1;xi;xi+1℄ (26)

whereŜ[i;i+1℄[i�1;i℄ is defined as in equation (21) and which, when substituted, gives

U [xi�1;xi;xi+1℄M = ΦM(r [i;i+1℄[i�1;i℄)
r [i;i+1℄[i�1;i℄  

1� 1
r [i;i+1℄[i�1;i℄!(xi+1�xi�1) U [xi;xi+1℄ (27)
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whereΦM(r) = r if 0 � r � 1 and is zero otherwise. The extensions to higher
divided differences follow in a similar way:

U [xi�1;xi;xi+1;xi+2℄B = (Φ(r [i�1;i;i+1℄[i;i+1;i+2℄� Φ(r [i�1;i;i+1℄[i�2;i�1;i℄)
r [i�1;i;i+1℄[i�2;i�1;i℄ )(xi+2�xi�1) U [xi�1;xi ;xi+1℄B (28)

which may be written as

U [xi�1;xi;xi+1;xi+2℄B = S[i�1;i;i+1℄[i�1;i;i+1;i+2℄(xi+2�xi�1) U [xi�1;xi ;xi+1℄B: (29)

The bounded form of the functionΦ(r) makes it straightforward to bound the func-
tionsS[::::℄[::::℄ by�1� S[::::℄[:::℄ � R: (30)

Consider the case of polynomials of degree 2 given by equations (8) and (9)

U I
L(x) =U [i℄+"b1;i(x)+ b2;i(x)(xi �xi�2)S[i�1;i℄[i�2;i�1;i℄# U [xi�1;xi ℄: (31)

The condition for this polynomial to be data bounded in that it satisfies
U [i�1℄�U I(x)�U [i℄, is

0� hb1;i(x)+ b2;i(x)(xi�xi�2)S[i�1;i℄[i�2;i�1;i℄i
xi �xi�1

� 1 : (32)

Let x= xi�1+λ hi , 0� λ � 1, h= xi �xi�1 andµh= xi�1�xi�2. Substituting in
the previous equation then gives

0� (1�λ )�1+ λ
1+µ

S[i�1;i℄[i�2;i�1;i℄�� 1 : (33)

Routine consideration of values ofλ ;µ gives�1� S[i�1;i℄[i�2;i�1;i℄ � 1 : (34)

which corresponds to equation (30) withR= 1. The extension to higher order poly-
nomials would seem to require further restrictions on the higher-order divided dif-
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ferences to maintain data-boundedness. In the context of time-varying solutions
the addition of(tn) will signify the time at which solution values are used when
evaluating the divided difference expressions.

3.1 Relationship to Polynomial Filtering

The application of the successive multipliers such asS[i;i+1℄[i�1;i;i+1℄ to the divided dif-

ference terms in a recursive way may be immediately interpreted as a polynomial
filtering method. The idea behind the polynomial filtering methods of Gottlieb and
Shu [10] is to modify the polynomial coefficients so as to improve accuracy in the
presence of discontinuities. The application of this idea to hyperbolic equations
when spectral methods are used is described by Gottlieb and Hesthaven [11].

In teh context of this work, for example, the polynomial defined by equation (9)
may be modified by replacing the coefficientsb j ;i to get modified coefficients̄b j ;i.
The form of the modified coefficient may be seen by combining equations (8),(22)
and (28) to define the modified polynomial by

U I ;B(x) =U [xi℄+b1;i(x) U [xi�1;xi℄+b2;i(x) U [xi�2;xi�1;xi ℄B+b3;i(x) U [xi�3;xi�2;xi�1;xi ℄B
(35)

for x> xi . From this it is straightforward to write this polynomial as

U I ;B(x) =U [xi℄+ b̄1;i(x) U [xi�1;xi℄+ b̄2;i(x) U [xi�2;xi�1;xi ℄+b̄3;i(x) U [xi�3;xi�2;xi�1;xi ℄
(36)

whereb̄1;i(x) = b1;i(x)U [xi�1;xi ℄B=U [xi�1;xi℄;
b̄2;i(x) = b2;i(x) U [xi�2;xi�1;xi ℄B=U [xi�2;xi�1;xi ℄ and

b̄3;i(x) = b3;i(x) U [xi�3;xi�2;xi�1;xi℄B=U [xi�3;xi�2;xi�1;xi℄. It is is also worth re-
marking that the filter defined here is nonlinear as the modifying coefficients de-
pend on the solution and on approximations to its derivatives.

4 Overview of Positive Finite Element Method

An overview of the new positive methods discussed below is given as follows.
Consider a pth order basis consisting of functionsΦi;p(x) and suppose, for ease of
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exposition, that the number of basis functions and their spatial position does not
change as the order changes. Let thepth order polynomial approximation based on
a set of nodal solution values be given by

Up(x; t) = N

∑
i=1

φi;p(x)Ui(t) (37)

where the nodal values are given byUi(t) and where the inflow values are specified
by a Dirchlet condition. The standard Galerkin approach then gives:

xRZ
xL

∂Up

∂ t
φi;p(x) dx= xRZ

xL

� ∂Up

∂x
φi;p(x) dx; i = 1; :::;N; (38)

Suppose that we discretize in time using the forward Euler method or a positive
Runge - Kutta method such as those of Shu and Osher [20] which involve stages
similar in form to forward Euler. Equation (38) may then be written as:

xRZ
xL

(Up(x; tn+1)�Up(x; tn))φi;p(x) dx=�δ t

xRZ
xL

∂Up(x)
∂x

(x; tn)φi;p(x) dx; i = 1; :::;N (39)

wheretn+1 = tn+δ t. Define the residualRp(Up;x; t) by

Rp(Up;x; tn) = (Up(x; tn+1)�Up(x; tn))+δ t
∂Up

∂x
(40)

and rewrite equation (39) as(Rp(Up;x; tn);φi;p) = 0; i = 1; :::;N (41)

In the simplest case the piecewise constant (DG) method for the advection equation
with positive velocity equal to one is given by(R0(U0;x; tn);φi;0) = (U0(xi; tn+δ t)�U0(xi ; tn))+ δ t

δx
(U0(xi ; tn)�U0(xi�1; tn) (42)

whereδx is the uniform mesh spacing. The higher order positive schemes consid-
ered here (and by Berzins [4]) will mostly have the form:
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a0;pUn+1
i +a1;p(Un+1

i �Un+1
i+1 ) = a0;pUn

i �a3;p(Un
i �Un

i�1)�a2;p(Un
i �Un

i�1)
(43)

It will however also be necessary to consider the alternative form given by

a0;pUn+1
i + ā1;p(Un+1

i �Un+1
i�1 ) = a0;pUn

i � ā3;p(Un
i �Un

i+1)�a2;p(Un
i �Un

i�1)
(44)

in the case of the equations at the edges of quadratic elements. In order to satisfy
the positivity condition given by equation (3) the coefficients satisfy the equations,
[4];

0� a1;p=a0;p � 1 (45)

0� (a2;p+a3;p)=a0;p � 1 (46)

for i = 1;2;3; p= 0;1;2. (N.B. In the form considered by Berzins [4] all the equa-
tions were scaled beforehand by dividing through bya0;p ). In the case of equation
(44) a1;p anda3;p are replaced with ¯a1;p and ā3;p respectively. In the case of the
piecewise constant method defined by equation (42) with forward Euler time inte-
gration employed, the coefficients area0;0 = 1, a1;0 = a2;0 = 0 anda3;0 = δ t

δx. For
higher order basis functions the coefficientsa j ;p are defined by:

a0;p= xRZ
xL

φi;p(x) dx (47)

a1;p= 1
Un+1

i �Un+1
i+1

xRZ
xL

(UM
p (x; tn+1)�UM

p (xi; tn+1))φi;p(x) dx (48)

a3;p= 1
Un

i �Un
i�1

xRZ
xL

(Um
p (x; tn)�Um

p (xi ; tn))φi;p(x) dx (49)

a2;p= δ t
Un

i �Un
i�1

xRZ
xL

∂UB
p (x; tn)
∂x

φi;p(x) dx (50)

i = 1; :::;N:
In the case of the method written in the form defined by equation (44)

ā1;p= 1
Un+1

i
�Un+1

i�1

xRZ
xL

(UM
p (x; tn+1)�UM

p (xi; tn+1))φi;p(x) dx (51)
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ā3;p= 1
Un

i �Un
i+1

xRZ
xL

(Um
p (x; tn)�Um

p (xi ; tn))φi;p(x) dx (52)

i = 1; :::;N:
The general approach that will be used is that polynomials defined in Sections 2
and 3 will be used to define the polynomialsUM(x; t);Um(x; t) andUB(x; t) in the
integrands. The method defined by equation (43) is implicit so Jacobi iteration will
be used to solve for the new solution values. In the case of iterationm the equations
can then be written, after dividing through by the quantity(a0;p+a1;p), as:

Un+1;m+1
i = a1;pUn+1;m

i+1
+Un

i (a0;p� (a2;p+a3;p))+(a2;p+a3;p)Un
i�1(a0;p+a1;p) (53)

to get an iteration which is also positive if the positivity conditions (45) and (46)
are satisfied.The predicted values ofUn+1;m+1

i
are given by the explicit methods

defined by equation (43) witha1;p = a3;p = 0.

In the case of the method written as in equation (44) a similariteration is given by:

Un+1;m+1
i = ā1;pUn+1;m

i�1
+Un

i (a0;p� (a2;p+ ā3;p))+a2;pUn
i�1+ ā3;pUn

i+1(a0;p+ ā1;p) (54)

Upon using equations (45) and (46) in (53) it can be seen that these conditions
ensure that the value ofUn+1;m+1

i
is positive. Equation (54) yields a similar result.

It should also be noted that the directionality in the formula defined by equation
(43) reflects the directionality of the underlying advection equation. The extension
to negative velocity is relatively straightforward, [4].

4.1 Quadratic Basis Function Method

For ease of exposition consider the case of quadratic approximations. Berzins [4]
considered the case of quadratic splines whereas here we consider the case of stan-
dardC0 continuous Galerkin Methods, [12]. There are two kinds of situations to
consider in the Galerkin orthogonality relationships in equation (41). In the case
when the test function is at at the element edge, as shown byφe

i in Figure 4, the
the underlying polynomial approximation is onlyC0 continuous at the edge of an
element. The second case is that of a test function interior to and non-zero only in
the element as shown byφm

i+1 in Figure 4.

The first step is to define the form of the solution in the cases when the test function
is at the edge of an element and when it is the interior to an element. In the first case
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Fig. 4. Comparison of individual p version approximations

it is necessary to consider the divided difference form of the solution spanning both
sides of the element edge and then to replace the divided difference polynomials by
bounded approximations. The approximating polynomial is only continuous at the
nodexi and so has the form:

Up(x; tn) =U [xi℄n+b1;i(x) U [xi�1;xi ℄n+b2;i(x) U [xi�2;xi�1;xi℄n (55)

for x � xi whereb1;i(x) andb2;i(x) are defined by equation (9). The subscriptn

indicates that the divided difference expression is evaluated attn.

Up(x; tn) =U [xi℄n+c1;i(x) U [xi;xi+1℄n+c2;i(x) U [xi;xi+1;xi+2℄n (56)

for x� xi wherec1;i(x) andc2;i(x) are defined by equation (11). The form of the
solution in the domain in which the midpoint test function polynomial is non-zero
and has value one at nodexi is given by

Up(x; tn) =U [xi℄n+d1;i(x) U [xi�1;xi ℄n+d2;i(x) U [xi�1;xi;xi+1℄n: (57)

In the case when linear basis functions are usedb2;1 = c2;1 = 0 and as every node
is the edge of an element equation (57) is not used.

4.1.1 Positive form of Derivative Terms

In defining the coefficienta2;p the new forms of the two polynomials defined by
equations (55) and (56) are derived by modifying the polynomials so that their
derivatives contain the factor(Un

i �Un
i�1) in a similar way to equation (31) and are

given by

UB
p (x; tn) =U [xi℄n+ (58)0�b1;i(x)Ŝ[i�1;i℄[i�2;i�1℄(tn)+b2;i(x)S[i�1;i℄[i�1;i;i+1℄(tn)� R̂[i�1;i;i+1℄[i�2;i�1;i℄(tn)(xi+1�xi�1) 1AU [xi�1;xi ℄n
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for x� xi and

UB
p (x; tn) =U [xi℄n+ (59)0�c1;i(x)R̂[i;i+1℄[i�1;i℄(tn)+c2;i(x)S[i;i+1℄[i�1;i;i+1℄(tn)� R̂[i�1;i;i+1℄[i;i+1;i+2℄(tn)(xi+1�xi�1) 1AU [xi�1;xi ℄n

for x� xi and whereR̂; Ŝ;Sandr are defined in Section 3.

The modified form of the solution in the domain in which the solution polynomial
is given by equation (57) is given by

UB
p (x; tn) =U [xi℄+0�d1;i(x)Ŝ[i�1;i℄[i�2;i�1℄+d2;i(x)S[i�1;i℄[i�1;i;i+1℄(tn)(xi+1�xi�1)1AU [xi�1;xi℄n:(60)

In each case differentiating these modified polynomials gives an expression of the
form

∂Up(x; tn)
∂x

= w(x) U [xi�1;xi ℄n (61)

where the generic polynomialw(x) is defined by differentiating the right side of
equations (58), (59) or (60) as required. Hence the generic form of the coefficient
a2;p is

a2;p = δ t

xRZ
xL

w(x)φi;p(x) dx: (62)

4.1.2 Positive form of Mass Matrix Terms

In order to obtain an expression fora1;p the same series expansions as in the pre-
vious sub-section are used. The forms of the modified polynomials specific to the
mass matrix are different however and are required by equation (43) to contain the
factor (Un+1

i �Un+1
i�1 ) in a similar way to that of the previous sub-section and are

given by

UM
p (x; tn+1) =U [xi℄n+1+ Ŝ[i;i+1℄[i�i;i℄ (tn)� (63)0�b1;i(x)+b2;i(x)R̂[i�2;i�1;i℄[i�1;i;i+1℄(tn+1)� (r [i;i+1℄[i�1;i℄(tn+1)�1)(xi+1�xi�1) 1AU [xi�1;xi ℄n+1
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for x� xi and

UM
p (x; tn+1) =U [xi℄n+1+ Ŝ[i;i+1℄[i�i;i℄ (tn+1)U [xi�1;xi ℄n+1� (64)0�c1;i(x)r [i;i+1℄[i�1;i℄)(tn+1)+c2;i(x)R̂[i;i+1;i+2℄[i�1;i;i+1℄(tn+1)� (r [i;i+1℄[i�1;i℄(tn+1)�1)(xi+1�xi�1) 1A

for x� xi . The midpoint polynomial modified form is given by

UM
p (x; tn+1)=U [xi℄n+1+ Ŝ[i;i+1℄[i�i;i℄ (tn+1)U [xi;xi+1℄n+1� (65)0�d1;i(x)r [i�1;i℄[i;i+1℄(tn+1) +d2;i(x) (1� r [i�1;i℄[i;i+1℄(tn+1))(xi+1�xi�1) 1A

Thus in the case of equations (63) and (64) the generic form ofthe polynomial used
here is thus given by:

UM
p (x; tn+1) =U(xi; tn+1)+w(x) (Un+1

i �Un+1
i�1 ) (66)

wherew(x) is a polynomial whose precise form is given by equations (63)and (64).

ā1;p = xRZ
xL

w(x)φi;p(x) dx: (67)

In the case of equation (65) the generic form of the polynomial used here is thus
given by:

UM
p (x; tn+1) =U(xi; tn+1)+w(x) (Un+1

i+1 �Un+1
i ) (68)

wherew(x) is a polynomial whose precise form is given by equations (57)and (65).
Hence

a1;p = xRZ
xL

w(x)φi;p(x) dx: (69)

and In the final case the situation is complicated because of the need to constrain
polynomials in a way that is consistent across the time step.This is done by using
the functionŜ[i;i+1℄[i�i;i℄ (tn+1) in the mass matrix polynomials at bothtn andtn+1. The
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modified forms of the mass matrix polynomials used at the edges of elements are
given by

Um
p (x; tn) =U [xi℄n+ Ŝ[i;i+1℄[i�i;i℄ (tn+1)� (70)0�b1;i(x)r [i�1;i℄[i;i+1℄(tn)+b2;i(x)R̂[i�2;i�1;i℄[i�1;i;i+1℄(tn)� (1� r [i�1;i℄[i;i+1℄(tn))(xi+1�xi�1) 1AU [xi;xi+1℄n

for x� xi

Um
p (x; tn) =U [xi℄n+ Ŝ[i;i+1℄[i�i;i℄ (tn+1)� (71)0�c1;i(x)+c2;i(x)R̂[i;i+1;i+2℄[i�1;i;i+1℄(tn)� (1� r [i�1;i℄[i;i+1℄(tn))(xi+1�xi�1) 1AU [xi;xi+1℄n

for x� xi .

The midpoint polynomial for an element in modified form is given by

Um
p (x; tn)=U [xi℄n+ Ŝ[i;i+1℄[i�i;i℄ (tn+1)� (72)0�d1;i(x) +d2;i(x) (r [i;i+1℄[i�1;i℄(tn)�1)(xi+1�xi�1) 1AU [xi�1;xi℄n:

At the edges of elements the form of the polynomial that results may be written as:

Um
p (x; tn) =U(xi; tn)+w(x) (Un

i+1�Un
i ) (73)

wherew(x) is a polynomial whose precise form is given by equations (70)and (71)
respectively. Hence

ā3;p = xRZ
xL

w(x)φi;p(x) dx: (74)

and in the case of equation (72)

Um
p (x; tn) =U(xi; tn)+w(x) (Un

i �Un
i�1) (75)
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wherew(x) is a polynomial whose precise form is given by equation (72).Hence

a3;p = xRZ
xL

w(x)φi;p(x) dx: (76)

4.2 Galerkin Orthogonality

The definitions of the three polynomialsUB
p (x; t);UM

p (x; t) andUm
p (x; t) given above

now make it possible to define the residual functionR�p(Up;x; t) associated with the
new method as

R�p(Up;x; tn) = (UM
p (x; tn+1)�Um

p (x; tn))+δ t
∂UB

p

∂x
(77)

and to note that the method is defined by ensuring that the Galerkin orthogonality
condition(R�p(Up;x; tn);φi;p) = 0; i = 1; :::;N (78)

is satisfied. This makes it possible to describe the method asa nonlinear and variable-
order Petrov-Galerkin method.

5 Positive Linear/Constant Finite Element Method

The standard linear finite element discretization of the advection equation on a
uniform mesh (the case of a non-uniform mesh is considered byGresho and Sani
[12]) is given by:

1
6

�
U̇i�1+4U̇i +U̇i+1

�= �1
2δx

(Ui+1�Ui�1) (79)

whereδx is the uniform mesh spacing in this case and whereU̇i = dUi
dt . The residual,

as defined by equation (41) withp= 1, may be written as

Un+1
i + 1

6
δ 2Un+1

i =Un
i + 1

6
δ 2Un

i � δ t
δx

(Un
i �Un

i�1)x� δ t
2δx

δ 2Un
i (80)

whereUn
k denotes the value at mesh pointk at timetn and whereδ 2 is defined by

δ 2Un
i = �Un

i�1�2Un
i +Un

i+1

�
The processes of Sections 4.1.1. and 4.1.2 then give
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rise to three different approximations to theδ 2 terms in this equation and to the
expressions:

a0;1= δx (81)

a1;1= (r [i�1;i℄[i;i+1℄(tn+1)�1)
6

Ŝi;i+1
i�1;i(tn+1)δx (82)

a3;1= (r [i;i+1℄[i�1;i℄(tn)�1)
6

Ŝi;i+1
i�1;i(tn+1)δx (83)

a2;1= δ t
δx

241+ S[i�1;i℄[i�1;i;i+1℄(tn)
2

35δx: (84)

The positivity conditions as given by Berzins [3] are then

0� r [i;i+1℄[i�1;i℄(tn+1); r [i;i+1℄[i�1;i℄(tn)� 1 and0� δ t
δx

(1+ S[i�1;i℄[i�1;i;i+1℄(tn)
2

))� 5
6
: (85)

If these conditions do not hold the piecewise constant method defined by equation
(42) is used instead.

6 Positive Quadratic finite Element Method

Using the standard quadratic finite element method, again ona regular mesh, with
its differing treatment of edge and interior nodes, e.g. seeGresho and Sani [12],
gives rise to the o.d.e.s at element edges defined by:�U̇i�2+2U̇i�1+8U̇i +2U̇i+1�U̇i+2

10
= �4(Ui+1�Ui�1)+(Ui+2�Ui�2)

4δx
:

(86)

at interior nodes

U̇i�1+8U̇i +U̇i+1

10
= �(Ui+1�Ui�1)

2δx
:

(87)

In order to understand the way that these methods are modifiedby using the poly-
nomials of Section 4 apply the Forward Euler method as in equation (40) and a
some manipulation to rewrite the method in the case of edge nodes as
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Un+1
i � ((sn+1

i + 1
sn+1
i�1

)
10

)δ 2Un+1
i =Un

i � ((sn
i + 1

sn
i�1

)
10

)δ 2Un
i� δ t

δx
(Un

i �Un
i�1) � δ t

2δx
(1+ 1

2
(sn

i � 1
sn
i�1

)) δ 2Un
i (88)

and in the case of nodes in the interior of elements as

Un+1
i +(1

6
� 1

15
)δ 2Un+1

i =Un
i +(1

6
� 1

15
)δ 2Un

i� δ t
δx

(Un
i �Un

i�1) � δ t
2δx

δ 2Un
i (89)

where the second derivative ratios at time levels such astn+1 are given by

sn+1
i = r [i;i+1;i+2℄[i�1;i;i+1℄(tn+1) and sn+1

i�1 = r [i�1;i;i+1℄[i�2;i�1;i℄(tn+1)
and the ratios at time leveln denoted bysn

i and sn
i�1 are similarly defined. The

positive quadratic method is defined by applying the function Φ() to terms ass��
and by using the same functions as were applied in the linear case to theδ 2 terms.
Define the functions

Si;n+ = hR̂[i;i+1;i+2℄[i�1;i;i+1℄(tn)+ R̂[i�2;i�1;i℄[i�1;i;i+1℄(tn)i ; (90)

Si;n� = hR̂[i;i+1;i+2℄[i�1;i;i+1℄(tn)� R̂[i�2;i�1;i℄[i�1;i;i+1℄(tn)i ; (91)

where the function̂R(:) is defined as in equation (20). The quantitiesSi;n+1� are sim-
ilarly defined at timetn+1. Using these quantities and the form of the polynomials
defined in Section 4 equations (88) may be written as

Un+1
i � Si;n+1+

10
Ŝ[i;i+1℄[i�1;i℄(tn+1)(r i;i+1

i�1;i(tn+1)�1)(Un+1
i �Un+1

i�1 )=Un
i � Si;n+

10
Ŝ[i;i+1℄[i�1;i℄(tn+1)(1� r i�1;i

i;i+1(tn))(Un
i+1�Un

i )� δ t
δx

(Un
i �Un

i�1) � δ t
2δx

(1+ 1
2
(Si;n� ))S[i�1;i℄[i�1;i;i+1℄(tn)(Un

i �Un
i�1) (92)

In the case of nodes at the edges of elements the coefficients defined in Section 2
are given by

a0;2= a0;12
3

(93)
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ā1;2= a3;1 6
10

Si;n+1+ a0;2 (94)

ā3;2= a1;1
a0;1 6

10
Si;n+ a0;2 (95)

a2;2=(a2;1
a0;1 +(a2;1

a0;1 �1)1
2
(Si;n� )))a0;2 (96)

In the case of the interior nodes the only difference betweenthe linear and quadratic
cases lies in the scaling of theδ 2 terms and so the coefficients are then very similar
to those defined by equations (81) to (89) and are given by:

a0;2= δx
2
3

(97)

a1;2= (r [i�1;i℄[i;i+1℄(tn+1)�1)
10

Ŝi;i+1
i�1;i(tn+1)a0;2 (98)

a3;2= (r [i;i+1℄[i�1;i℄(tn)�1)
6

Ŝi;i+1
i�1;i(tn+1)a0;2 (99)

a2;2= δ t
δx

241+ S[i�1;i℄[i�1;i;i+1℄(tn)
2

35a0;2 (100)

The definition of these coefficients then makes it possible todetermine the condi-
tions for positivity by substituting from equations (94) and (95) into equation (46)
to get:

0� Si;n+
10

Ŝ[i;i+1℄[i�1;i℄(tn+1)(r [i�1;i℄[i;i+1℄(tn)�1)+ δ t
2δx

"
2+(1+ Si;n�

2
)S[i�1;i℄[i�1;i;i+1℄(tn)#� 1

(101)

where 0� r [i;i+1℄[i�1;i℄(tn) � 1. The stability condition thus involves ratios of solution

values at bothtn andtn+1. The condition for the stability of the predictor ( i.e. no
mass matrix) is somewhat simpler in that a worst case analysis gives:

δ t
δx

� 4
5

(102)

which is similar to that of Berzins [4], equation (34).
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6.1 Adaptive order Algorithm.

The general strategy employed in changing the order of the polynomial used in
the method of Berzins [4] is to use the highest order possibleunless its use is
precluded by the positivity conditions operating in such a way as to reduce the
order. This strategy has been influenced by variable order strategies such as the
h-p methods used by Biswas, Devine and Flaherty [6] in which successive polyno-
mial derivatives are limited. For the purposes of changing the order only the space
derivative terms are considered, although the mass matrix may still be modified
independently. Moreover in the quadratic case the switching criteria are defined
by the equations corresponding to the edges of elements and not to the interior. In
changing from piecewise discontinuous to piecewise linearif βi = 1 then the lim-
iters are both zero so we stay with the discontinuous method of equation (42). In
changing from linear to quadratic ifSj ;n� = 0 then then quadratic terms in the deriva-
tive are switched off and so a linear basis is used. In the casewhenSi;n� = 0 (and
the method defaults to the linear method in approximating the the space derivative)
it follows that values ofsn

i and 1
sn
i�1

are either less than 0 or greater than 1. Al-

ternativelysn
i = 1

sn
i�1

and soδ 2un
i+1 = δ 2un

i�1 thus implying that second derivative

approximations are constant and thus that a linear approximation is more appropri-
ate. This approach is applied on a point by point basis.

6.2 Numerical Example

The numerical problem used to demonstrate the performance of the code is the
same advection problem used by Berzins [4] whose solution isgiven by equations
(16) and (17) above. A mesh of 101 evenly spaced points is usedwith a cfl number
of 0.2. Figure 5 show the profiles att = 1:5 and Table 1 shows the the errors in the
L1 norm at the same time. The method of this section is described asC0 quadratic
and gives comparable results than the quadratic B-spline method in Berzins [4].
The value ofR used in equation(19) is varied as in [4] and has the values 1 or4.
The van Leer limiter used by Berzins [4] gives results comparable withR= 4. In
the case of theC0 method described here the results forR= 1 are much worse than
for R= 4 . The penultimate column of the table shows the results witha lumped
mass matrix and thus that this is mostly due to the treatment of the spatial derivative
rather than the mass matrix.

Figure 5 shows that the method does preserve positivity as itshould and that quadratic
polymnomial approximations are used in the vicinity of the steep gradient.
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L1 Error Norms

Finite Element

Finite Volume Linear Quadratic Cubic C0 C0 lumped R value

using FE limiter Basis B spline B spline quadratic quadratic used

2.1e-2 2.4e-2 2.1e-2 1.8e-2 2.0e-2 2.0e-2 4

4.3e-2 1.5e-2 1.5e-2 1.3e-2 5.8e-2 4.4e-5 1
Table 2
Comparison of Error Norms on Travelling Front Example
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Fig. 5. Comparison of individual p version approximations

7 Further Developments.

There are a number of further develolpments that merit attention.

7.1 Higher Order Methods.

In considering the extension of the above ideas to higher order polynomials one
constraint in the present method is that interpolation is avoided by the used of
common points between the methods of different orders. The use of fourth order
polynomials would make it possible to decompose a fourth order element into two
quadratic polynomials which could then be decomposed into four linear elements.
The quarticC0 elements based on equally- spaced points suffer from a disadvan-
tage in that the basis functions have sub-optimal approximation properties. This
manifests itself in the plots of the basis functions N1 to N5 as shown in Figure 6
where the functions N2 and N4 both exceed one. The obvious alternative to this is
to adopt a spectral element or DG approach with non-uniform mesh spacing, see
[11,8].
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Fig. 6. Quartic Basis Functions with nodes at p/4 , p = 0,...4

7.2 Conservative Form.

Local conservation properties in hyperbolic schemes are important for ensuring that
the numerical solution travels with the correct speed, [16]. This remains an issue
with Galerkin schemes although Larson at al. [18] have shownhow to post-process
steady Galerkin method solutions to ensure conservation. In the case of the scheme
defined above the piecewise constant method is well-known tobe conservative and
noting the results of Hou and LeFloch [16] who show how a conservative method
may be obtained by switching from a non-conservative methodto a conservative
one may be applied to higher order schemes, see [4].

7.3 Nonlinear Conservation Laws.

The extension of the method described above to nonlinear conservation laws is
considered by Berzins [4] and may be used equally well with the methods described
here. An important issue is how to extend the ideas presentedhere to the case when
approximate Riemann solvers need to be used.
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7.4 Two Dimensional Problems.

Extensions to advection in two dimensions have been undertaken by Berzins and
Hubbard [2]. Although initial results are promising further work is needed.

8 Summary

In this paper a novel approach to preserving positivity for variable-order finite ele-
ment methods has been extended in a general way using the ideaof filtered poly-
nomial approximations. The approach relies on using a nonlinear form of the mass
matrix in conjunction with positivity preserving conditions on the method coeffi-
cients.
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