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Abstract

A family of positivity-preserving finite element methods are considered for the solu-
tion of the advection equation in one space dimension. The approach uses B-spline
spatial discretization methods in conjunction with Forward Euler timestepping and
a mass matrix iteration that preserves positivity. The method is compared against
a positivity-preserving finite volume scheme on travelling wave and pulse examples
including an inviscid Burgers equation example.

1 Introduction

There are many situations in the numerical solution of partial differential
equations (p.d.e.s) in which the computed solution values should, on physical
grounds, remain non-negative. One of the simplest examples is that of the
simple advection equation with non-negative initial data while other cases are
those of concentrations of chemical compounds in reacting flow calculations. In
both cases preserving positivity is essential to avoid the numerical calculation
becoming meaningless. Consider the solution of the advection equation as
given by ∂U

∂t
+ ∂U

∂x
= 0 with appropriate initial and boundary conditions on

a spatial interval [xl, xr]. Applying the standard Galerkin method with linear
basis (hat) functions φi(x) on a uniformly spaced mesh xi, i = 1, ..., N gives

xi+1
∫

xi−1

∂U

∂t
φi(x) dx =

xi+1
∫

xi−1

−
∂U

∂x
φi(x) dx, i = 1, ..., N, (1)
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where the approximate finite element solution to this p.d.e. is defined by
U(x, t) =

∑N
i=1 φi(x)Ui(t) where φi(xj) = δij . Evaluating the integrals gives

rise to the numerical scheme defined by

1

6

[

U̇i−1 + 4U̇i + U̇i+1

]

=
−1

2δx
(Ui+1 − Ui−1) (2)

where δx is the uniform mesh spacing in this case and where U̇i = dUi

dt
. Defin-

ing the time-dependent vector U by U = [U1, ..., UN ]T allows this system of
equations to be rewritten in the form

AU̇(t) = F (U(t)) (3)

where the matrix A is referred to as the mass matrix.

An alternative to linear basis functions is to use the standard quadratic basis
functions as used for hyperbolic equations by Gresho and Sani [11] and by
Griffiths [12]. Christie and Mitchell also use cubic polynomials, [7].

It is well-known that the standard Galerkin method is unsatisfactory for hy-
perbolic equations in a very similar way to that of linear central difference
schemes, [19]. Many modified Galerkin methods have been proposed to rem-
edy this situation. A survey of such methods is given in [19] and includes
Streamline Upwind Petrov-Galerkin (SUPG) methods in which the test func-
tions are modified to improve the behaviour of the method and Discontinuous
Galerkin (DG) methods [9] in which discontinuous basis functions are used.
In the simplest case the piecewise constant DG method for the advection
equation with positive velocity equal to one is given in a semi-discrete form
by

U̇i =
−1

δx
(Ui − Ui−1). (4)

In this case the method is identical to first-order upwind differencing and so is
overly diffusive. There are many other approaches such as the modified Petrov-
Galerkin method of Cardle [5] in which the test function is modified differently
for the spatial and temporal terms. In this case the numerical scheme that
results is given by

U̇i +
1 − β

6

[

U̇i−1 − 2U̇i + U̇i+1

]

=
−(Ui+1 − Ui−1)

2δx
+

α

2δx
δ2Un

i (5)

where δ2Un
i = Un

i+1 − 2Un
i + Un

i−1, β and α are the constants multiplying the
Petrov-Galerkin additional polynomials in time (cubic polynomial) and space
(quadratic polynomial), see [5].
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In the case of many of these methods the magnitude of unphysical values may
be controlled by a careful choice of problem dependent tuning parameters so
as to be not as large as in the case of the standard Galerkin method.

Some recent papers addressing positivity preservation are those of Sheu et al.
[20], Baker et al. [1] and MacKinnon and Carey [18]. The approach adopted
here differs from all of these methods, and is perhaps closer to the method
of Cockburn and Shu [8]. The definition used here for a positivity-preserving
scheme for the advection equation is one (see [16]) for which the numerical
solution at time tn+1 may be written in terms of the numerical solution at
time tn in the form

Ui(tn+1) =
∑

j

ajUj(tn) where
∑

j

aj = 1, and aj ≥ 0 . (6)

The key observation with regard to preserving positivity is due to Godunov
[10] who proved that any scheme of better than first order which preserves
positivity for the advection equation must be nonlinear. For example, the
coefficients aj in (6) above must depend on the numerical solution to the p.d.e.
This means that α and β in (5) must also depend on the solution. There are
two main steps needed to derive positive finite element schemes for hyperbolic
equations. The first step is to have a positive scheme for the discretisation of
the space derivative term. The second step is to have an update formula at the
next time level that preserves positivity. In this latter case it is necessary to
consider the effect of the presence of the mass matrix. Although one possible
approach is to lump the mass matrix the approach taken here will follow the
general approach taken by Berzins [3] in maintaining an approximation to the
mass matrix in which a solution-based switch is used to modify the form of
the matrix. The approach used here will build on this but differ from it in that
the modifications to preserve positivity are only applied after Forward Euler
discretization in time is used. The other substantial difference from earlier
work is that a family of positive discretization schemes based on variable-
order B-splines is derived, although the ideas apply equally well to standard
polynomial-based Galerkin methods.

1.1 A simple variable order finite difference scheme

The simplest approach for deriving positivity-preserving schemes goes back for
steady state problems at least as far as Harten and Zwas [13] and is discussed
in Chapter 22 of [16]. The idea is simply to use a scheme only when it preserves
positivity and otherwise to switch to a more suitable scheme.

Consider the standard central-difference second-order spatial discretisation
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scheme applied to the advection equation:

U̇i =
−1

2δx
(Ui+1 − Ui−1). (7)

Applying Forward Euler timestepping and rearranging the equation gives

Un+1
i = Un

i −
δt

δx
(Un

i − Un
i−1) −

δt

2δx

[

Un
i−1 − 2Un

i + Un
i+1

]

(8)

where Un
k denotes the value at mesh point k at time tn. This scheme, in an

unmodified form, is generally regarded as unsuitable for hyperbolic equations.
Noting that
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[

Un
i+1 − 2Un

i + Un
i−1

]

=(rn
i − 1)(Un

i − Un
i−1) (9)

= (1/rn
i − 1)(Un

i − Un
i+1) (10)

where rn
i = (Un

i+1 − Un
i )/(Un

i − Un
i−1) allows equation (8) to be rewritten as:

Un+1
i = Un

i

[

1 −
δt

δx
(1 +

(rn
i − 1)

2
)

]

+ Un
i−1

[

δt

δx
(1 +

(rn
i − 1)

2
)

]

(11)

Considering the spatial derivative on its own and imposing the condition that
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the method is positive (and also upwind range preserving see Laney [16]) gives
the requirement:

0 ≤
δt

δx

[

1 +
(rn

i − 1)

2

]

≤ 1 (12)

Figure 1 shows the values of this coefficient when the scheme of equation (11)
is applied to the advection of a modest gradient. The figure shows that the co-
efficient rapidly exceeds the range [0, 1] required for positivity. Figure 2 shows
what happens when a switch is inserted so that when the condition specified
by equation (12) is violated then the first order upwind scheme defined by
equation (4) is used. The results in the figure are positive and the equation
(12) is satisfied everywhere except for one value outside the range of the graph
corresponding to the top of the slope where (Ui − Ui−1) is close to zero.

1.2 Outline of the paper.

This simple example illustrates the theme of this paper namely that by switch-
ing the order of the method to be used it is possible to preserve positivity of
the numerical solution in a way that may be consistent with the solution of
the advection equation. In order to achieve this a family of methods based on
B splines due to Chin at al. [6] will be rewritten in an upwind form in Sections
2,3,4 and 5. The upwind form used nests the methods in a nonlinear way and
includes a nonlinear iteration to take into account the mass matrix. Section
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6 describes how these methods are modified so as to preserve positivity and
also in the case of the linear method, how to conserve mass. Section 7 uses
computational experiments to demonstrate that positivity is indeed preserved.
In Section 8 the extension to a single nonlinear conservation law is considered
and a Burgers equation example in Section 9 is used to demonstrate that the
approach also applies in this case too. A summary of the paper is given in Sec-
tion 10 while Appendix A provides a brief description of how the algorithm is
modified if the flow direction is reversed from that used in Sections 1-9.

2 Overview of Positive B-spline Finite Element Methods

An overview of the new positive methods discussed below is given as follows.
Consider a B-Spline pth order basis consisting of functions bi,p(x) such as is
used by [6] in a Galerkin approach to get

xR
∫

xL

∂U

∂t
bi,p(x) dx =

xR
∫

xL

−
∂U

∂x
bi,p(x) dx (13)

where the discrete solution is defined by U(x, t) =
∑N

i=1 bi,p(x)Ui(t). The ap-
proach adopted here will be to define a positive scheme of the form:

(1 + a1,p)U
n+1
i − a1,pU

n+1
i+1 = −a3,p(U

n
i − Un

i−1) + Un
i (1 − a2,p) + a2,pU

n
i−1 (14)

where the coefficients ai,j (which are nonlinearly dependent on the solution
values) satisfy two conditions to ensure positivity as defined by equation (6):

a1,p ≥ 0, (15)

0 ≤ a2,p + a3,p ≤ 1 (16)

for i = 1, 2, 3, p = 0, 1, 2, 3. These coefficients will also be shown below to be
hierarchical in that they may be written in the general form ai,p = ai,p−1 + ci,p

The idea behind the positive schemes described here is that the order, p, will be
varied so as to maintain positivity. For simplicity the Forward Euler method
will be used for timestepping but the approach used here extends to those
positive Runge-Kutta schemes which use internal stages of the same form, see
Cockburn and Shu, [8]. The method defined by equation (14) is implicit so
simple iteration will be used to solve for the new solution values. In the case
of iteration m the equations can then be written, after dividing through by
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the quantity (1 + a1,p), as:

Un+1,m+1
i =

a1,pU
n+1,m
i+1 + Un

i (1 − (a2,p + a3,p)) + (a2,p + a3,p)U
n
i−1

(1 + a1,p)
(17)

to get an iteration which is also positive if the positivity conditions (15) and
(16) are satisfied.

In the case of the piecewise constant method defined by equation (4) with
Forward Euler time integration employed the coefficients are a1,0 = a3,0 =
0 and a2,p = δt

δx
. Hence if the linear method mass matrix coefficient a1,1 is

negative and a switch is made to a1,0 (mass lumping) then the mass matrix
has been lumped based on the solution values used to define a1,1. As a1,1

depends on the ratios of solution gradients rn
i defined in equations (9) amd

(10) this may be viewed as putting a nonlinear lumping switch in the mass
matrix or as is termed by Berzins, [3], using a nonlinear form of the mass
matrix.

It should also be noted that the directionality in the formula defined by equa-
tion (14) reflects the directionality of the underlying advection equation. The
extension to negative velocity is relatively straightforward and is considered
in Appendix A.

3 Positive Linear/Constant Finite Element Method

Applying the Forward Euler method to equation (2) and separating out the
terms that depend on second differences gives

Un+1
i +

1

6

[

Un+1
i+1 − 2Un+1

i + Un+1
i−1

]

= Un
i +

1

6

[

Un
i+1 − 2Un

i + Un
i−1

]

−
δt

δx
(Un

i − Un
i−1) −

δt

2δx

[

Un
i−1 − 2Un

i + Un
i+1

]

. (18)

Using equations (9) and (10) enables equation (18) to be rewritten as:

Un+1
i +

1

6
δ2Un+1

i =
1

6
δ2Un

i + Un
i (1 −

δt

δx
βi) + Un

i−1

δt

δx
βi (19)

where βi =
[

(1 +
(rn

i
−1)

2
)
]

and the central difference operator δ2 is defined as

in equation (5). Equations (19) may be solved by using the iteration based on
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defining Un+1,m
k as the solution value at mesh point k at time tn+1 for iteration

m. Noting, as in equation (10), that

δ2Un+1,m
i = (1/rn+1,m

i − 1)(Un+1,m
i − Un+1,m

i+1 )

where rn+1,m
i = (Un+1,m

i+1 − Un+1,m
i )/(Un+1,m

i − Un+1,m
i−1 ) and writing

αn+1,m
i = (1/rn+1,m

i − 1) allows an iteration to be defined by

(1 +
αn+1,m−1

i

6
)Un+1,m

i = Un
i (1 −

δt

δx
βi)+ Un

i−1

δt

δx
βi +

αn+1,m−1
i

6
Un+1,m−1

i+1

+
(rn

i − 1)

6
(Un

i − Un
i−1) (20)

where βi is defined as in equation (19) above. The coefficients ai,j of Section
2 are then given by:

a1,1 =
αn+1,m−1

i

6
(21)

a2,1 =
δt

δx
βi (22)

a3,1 =
(rn

i − 1)

6
(23)

From these definitions and from Section 2 the positivity conditions (16) and
(15) are then

0 ≤
(1 − rn

i )

6
+

δt

δx
(1 +

(rn
i − 1)

2
) ≤ 1 (24)

and αn+1,m
i ≥ 0 respectively. These conditions may be satisfied by ensuring

that

0 ≤ rn+1,m+1
i ≤ 1, 0 ≤ rn

i ≤ 1 and 0 ≤
δt

δx
(1 +

(rn
i − 1)

2
) ≤ 5/6. (25)

It is worth noting that although this scheme is positive it is not conservative.
This issue will be addressed in Sections 6 and 8 below. It is also worth remark-
ing that it is possible to use different restrictions on r in different parts of the
algorithm. The rightmost condition (relating to the space derivative) allows
a wider range of values of rn

i than the central condition which is concerned
with the mass matrix components at tn. For example if 0 ≤ δt

δx
< 1/3 then

the condition on rn
i in the space derivative approximation may be relaxed to

0 ≤ ri ≤ 4. If these conditions do not hold the piecewise constant method
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defined by equation (4) is used instead. The predictor to provide the values
Un+1,0

i simply uses a lumped mass matrix.

4 Positive Quadratic B-Spline finite Element Method

Rather than use the standard quadratic finite element method with its dif-
ferent treatment of odd and even nodes, e.g. see Gresho and Sani [11], it is
more straightforward to use the B-spline Galerkin method introduced by Chin
et al. [6] and analysed in Vichnevetsky and Bowles [23] as the equations are
identical at each mesh point. The computational performance of these meth-
ods has been studied by Griffiths [12] and found to be at least as good or
possibly superior to that of conventional quadratic Galerkin methods. This
method gives rise to the o.d.e. system defined by

U̇i−2 + 26U̇i−1 + 66U̇i + 26U̇i+1 + U̇i+2

120
=

−10(Ui+1 − Ui−1) − (Ui+2 − Ui−2)

24δx
.

(26)

As in the previous section, apply the Forward Euler method, the notation of
equation (5) and a considerable amount of manipulation to rewrite the method
as

Un+1
i + (

1

6
+

(8 + sn+1
i + 1

sn+1

i−1

)

120
)δ2Un+1

i = Un
i + (

1

6
+

(8 + sn
i + 1

sn
i−1

)

120
)δ2Un

i

−
δt

δx
(Un

i − Un
i−1) −

δt

2δx
(1 +

1

12
(sn

i −
1

sn
i−1

)) δ2Un
i (27)

where the second derivative ratios at time levels such as tn+1 are given by

sn+1
i = δ2Un+1

i+1 /δ2Un+1
i and sn+1

i−1 = δ2Un+1
i /δ2Un+1

i−1

and the ratios at time level n denoted by sn
i and sn

i−1 are similarly defined.
Using the same approximation as in equations (9) and (10) gives

Un+1
i +

1

6
(1 +

1

20
(8 + Si,n+1

+ ))

[

1

rn
i

− 1

]

(Un+1
i − Un+1

i+1 )

= Un
i +

1

6
(1 +

1

20
(8 + Si,n

+ )) [ri − 1] (Un
i − Un

i−1)

−
δt

δx

[

1 + (1 +
1

12
(Si,n

− ))(βi − 1)
]

(Un
i − Un

i−1) (28)
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where the quantities Si,n
+ and Si,n

− are defined by

Si,n
+ = sn

i +
1

sn
i−1

and Si,n
− = sn

i −
1

sn
i−1

,

and where βi is defined by equation (19) above. This system of equations may
again be solved by using the iteration based on defining Un+1,m

k as the solution
value at mesh point k at time tn+1 at iteration m. The same procedure as used
for linear methods may be employed by rewriting the left side of equations
(28) as

Un+1,m+1
i +

1

6
(1 +

1

20
(8 + Si,n+1,m

+ ))

[

1

rn+1,m
i

− 1

]

(Un+1,m+1
i − Un+1,m

i+1 )

The coefficients defined in Section 2 are given by:

a1,2 =
1

6
(1 +

1

20
(8 + Si,n+1,m

+ ))

[

1

rn+1,m
i

− 1

]

(29)

a2,2 =
δt

δx

[

1 + (1 +
1

12
(Si,n

− ))(βi − 1)
]

(30)

a3,2 =
1

6
(1 +

1

20
(8 + Si,n

+ )) [1 − ri] . (31)

In order to get an iteration that satisfies equations (15) and (16) and preserves
positivity it is thus necessary to impose the same restriction as the two leftmost
conditions in equation (22) plus the extra condition:

1

6
(1 +

1

20
(8 + Si,n+1,m

+ )) > 0 (32)

Assuming that 0 ≤ Si,n
+ ≤ 2 and that −1 ≤ Si,n

+ ≤ 1 (see Section 6) the
positivity condition (16) may then be written as:

0 ≤ (
1

4
+

δt

δx
(
13 − βi

12
)) ≤ 1 (33)

which is satisfied by the range of βi values allowed by equations (24) in the
linear case providing that

0 ≤
δt

δx
≤

9

12.5
. (34)
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5 Positive Cubic B-Spline Finite Element Method

Rather than use the standard cubic finite element method with its different
treatment of odd and even nodes as used by Christie and Mitchell [7], it is
again more straightforward to use the B-spline Galerkin method introduced
by Chin et al. [6]. This gives rise to the o.d.e. system defined by

1

5040

[

U̇i−3 + 120U̇i−2 + 1191U̇i−1 + 2416U̇i + 1191U̇i+1 + 120U̇i+2 + U̇i+3

]

=
−245

720δx
(Ui+1 − Ui−1)

−56

720δx
(Ui+2 − Ui−2)

−1

720δx
(Ui+3 − Ui−3). (35)

The same idea as with linear and quadratic elements may be used to rewrite
this as a positive scheme. Applying Forward Euler timestepping gives

Un+1
i +

1

6
(1 +

1

20
(8 + sn+1

i +
1

sn+1
i−1

))δ2Un+1
i

+
258

5040
δ2Un+1

i +
80

5040

[

δ2Un+1
i+1 + δ2Un+1

i−1

]

+
1

5040

[

δ2Un+1
i+2 + δ2Un+1

i−2

]

= Un
i +

1

6
(1 +

1

20
(8 + sn

i +
1

sn
i−1

))δ2Un
i

+
258

5040
δ2Un

i +
80

5040

[

δ2Un
i+1 + δ2Un

i−1

]

+
1

5040

[

δ2Un
i+2 + δ2Un

i−2

]

−
δt

δx
(Un

i − Un
i−1) −

δt

2δx
(1 +

1

12
(sn

i −
1

sn
i−1

))δ2Un
i

−
28

720

δt

δx

[

δ2Un
i+1 − δ2Un

i−1

]

−
1

720

δt

δx

[

δ3Un
i+1 − δ3Un

i−1

]

(36)

where δ3Un
i = Un

i+2 − 2Un
i+1 + 2Un

i−1 − Un
i−2 and δ3Un

i = δ2Un
i+1 − δ2Un

i−1.

The additional terms over and above the quadratic B-spline method may be
rewritten as follows. Consider first the mass matrix terms

1

5040

[

258δ2Un+1
i + 80

(

δ2Un+1
i+1 + δ2Un+1

i−1

)

+
(

δ2Un+1
i+2 + δ2Un+1

i−2

)]

=

1

5040

[

258 + 80(sn+1
i +

1

sn+1
i−1

) + (sn+1
i+1 sn+1

i +
1

sn+1
i−2

1

sn+1
i−1

)

]

δ2Un+1
i . (37)

The substitutions of equations (9) and (10) enable these terms to be rewritten
in the same positivity preserving form as the quadratic method above. The
same approach is used with the extra stiffness matrix terms
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−
28

720

δt

δx

[

δ2Un
i+1 − δ2Un

i−1

]

−
1

720

δt

δx

[

δ3Un
i+1 + δ3Un

i−1

]

=

−
28

720

δt

δx

[

sn
i −

1

sn
i−1

]

δ2Un
i −

1

720

δt

δx

[

wn
i +

1

wn
i−1

]

δ3Un
i (38)

where the third derivative ratios at time levels such as tn are given by

wn
i = δ3Un

i+1/δ
3Un

i and wn
i−1 = δ3Un

i /δ2Un
i−1.

Using the substitutions of equations (9) and (10) and the substitution
δ3Un

i = (sn
i − 1

sn
i−1

) [rn
i − 1] (Un

i − Un
i−1) enables the right side of (38) to be

rewritten as

−
28

720

δt

δx

[

δ2Un
i+1 − δ2Un

i−1

]

−
1

720

δt

δx

[

δ3Un
i+1 + δ3Un

i−1

]

=

−
1

720

δt

δx

[

28 + (wn
i +

1

wn
i−1

)

] [

sn
i −

1

sn
i−1

]

[rn
i − 1] (Un

i − Un
i−1). (39)

Now defining the quantities W j,n
+ and Γn,i

+ by

W j,n
+ =

[

wn
j +

1

wn
j−1

]

and Γn,i
+ = sn

i+1s
n
i + 1/sn

i−1 1/sn
i−2

allows equations (36) to be rewritten as:

(
1

6
+

(8 + Si,n+1
+ )

120
+

[

258 + 80Si,n+1
+ + Γn+1,i

+

]

5040
)

[

1

rn+1
i

− 1

]

(Un+1
i − Un+1

i+1 )+

Un+1
i = Un

i + (
1

6
+

(8 + Si,n
+ )

120
+

[

258 + 80Si,n
+ + Γn,i

+

]

5040
) [rn

i − 1] (Un
i − Un

i−1)

−
δt

δx

[

1 + (1 +
Si,n
−

12
(1 +

(28 + W i,n
+ )

30
))(βi − 1)

]

(Un
i − Un

i−1) (40)

where βi is defined by equation (19) above. A similar iteration method to the
linear and quadratic cases is used. The coefficients of Section 2 are now given
by

a1,3 = a1,2 +

[

258 + 80Si,n+1
+ + Γn+1,i

+

]

840

[

1

rn+1
i

− 1

]

(41)

a2,3 = a2,2 +
Si,n
−

12
(
(28 + W i,n

+ )

30
)(βi − 1) (42)
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a3,3 = a3,2 +

[

258 + 80Si,n
+ + Γn,i

+

]

840
[1 − rn

i ] (43)

In order to satisfy the positivity conditions (15) and (16) we make the as-
sumptions that it will be possible to implement the constraints 0 ≤ W i,n

+ ≤ 2
and that 0 ≤ Γn,i

+ ≤ 2. This assumption will be justified in the next section.
A worst-case analysis using these assumptions then gives rise to the positivity
condition

0 ≤ (
1

3
+

δt

δx
(1 + βi −

1

6
(βi − 1))) < 1 (44)

which, after assuming the constraint on βi given by equation (25), gives

0 ≤
δt

δx
≤

6

11
. (45)

6 Preserving Positivity and Changing Order.

In order to preserve positivity the values that the coefficients ai,j can take
must satisfy equations (15) and (16). In this section some possible ways of
achieving this for the methods defined above are discussed. These are not the
only mechanisms nor are they necessarily the best, but are an attempt to show
that the ideas discussed here have potential for further development.

6.1 Positive Linear/Constant Finite Element Method

Although the method as defined in Section 3 preserves positivity it is not
conservative in the sense of [14]. This means that the numerical approximation
to a wave may travel at a different speed from the true solution to the p.d.e.
Although this issue will be discussed further in Section 7 the solution adopted
may be briefly described here by noting the restriction for the space derivative
terms given by

0 ≤ rn
j ≤ R, j = 1, ..., N (46)

is a global restriction. This suggest that the term (1 + (rn
i − 1)/2)(Ui(t) −

Ui−1(t)) should be calculated by taking into account the restriction imposed
by equation (46) on both rn

i−1 and rn
i . Hence in the definition of δ2Ui(t) in

13



equation (18) and βi in equation (19) the term δ2Ui(t) is replaced by the
approximation

δ2Ui(t) ≈ ΦR(rn
i )(Ui(t) − Ui−1(t)) − ΦR(rn

i−1)(Ui−1(t) − Ui−2(t)) (47)

where ΦR(rn
j ) = max(0, min(rn

j , R)), is the minmod function used, for ex-
ample, by [4]. Values of R employed have ranged from R = 1 to R = 4 and
both of these values have yielded good results. It is important to note that
equality in this approximation holds only if both rn

i−1 and rn
i satisfy equation

(46). In the case when equation (47) is used to substitute for the final right-

most instance of δ2Un
i in equation (18) then βj =

[

1 +
ΦR(rn

j
)

2
−

ΦR(rn
j−1

)

2rn
j−1

]

. The

righthand side of equation (20) is then similar to the expression that arises
when a finite volume method with van Leer limiter is applied to the same
equation to get

U̇j(t) =
−1

δx

[

1 +
V (rn

j )

2
−

V (rn
j−1)

2rn
j−1

]

(Uj(t) − Uj−1(t)) (48)

and where the limiter function is defined by: V (rn
j ) =

rn
j
+|rn

j
|

1+|rn
j
|
, [16]. The im-

portance of this approach is that it results in a spatial discretisation of the
spatial derivative terms that is conservative, see [14]. The computational re-
sults in the next section show that the new method may give better resolution
than the traditional finite volume approach but at the greater computational
expense of using the mass matrix.

6.2 Positive Quadratic Finite Element Method

The restrictions on the functions Si,n
+ and Sn,i

− may be satisfied by the same
general method as used with linear functions. This is done by redefining these
functions as:

Si,n
+ =

[

Φ1(s
n
i ) + Φ1(

1

sn
i−1

)

]

, (49)

Si,n
− =

[

Φ1(s
n
i ) − Φ1(

1

sn
i−1

)

]

, (50)

where the function Φ1(.) is defined as in equation (47)with R = 1. It is worth
noting that 0 ≤ Si,n

+ ≤ 2 and that −1 ≤ Si,n
− ≤ 1 as required. The quantities

Si,n+1
± and Φ1(s

n+1
i ) are similarly defined at time tn+1. In the case when Si,n

− = 0
(and the method defaults to the linear method in approximating the the space

14



derivative) it follows that Φ1(s
n
i ) = Φ1(

1
sn
i−1

) and that the values of sn
i and

1
sn
i−1

are either less than 0 or greater than 1. Alternatively sn
i = 1

sn
i−1

and

so δ2un
i+1 = δ2un

i−1 thus implying that second derivative approximations are
constant and thus that a linear approximation is more appropriate.

6.3 Cubic Spline Positive Finite Element Method

The restrictions on the functions W j,n
+ and Γn,i

+ may be satisfied by the same
general method as used with linear and quadratic functions. This is done by
redefining these functions as:

W i,n
+ =

[

Φ1(w
n
i ) + Φ1(

1

wn
i−1

)

]

and

Γn,i
+ = Φ1(s

n
i+1)Φ1(s

n
i ) + Φ1(1/s

n
i−1) Φ1(1/s

n
i−2)

This ensures that 0 ≤ W i,n
+ ≤ 2 and that 0 ≤ Γn,i

+ ≤ 2 as was required in
deriving the constraint defined by equation (44) for positivity .

6.4 Adaptive order Algorithm.

The general strategy employed in changing the order of the polynomial used in
the method described above is to use the highest order possible unless its use is
precluded by the positivity conditions operating in such a way as to reduce the
order. This strategy has been influenced by variable order strategies such as
the h-p methods used by Biswas, Devine and Flaherty [4] in which successive
polynomial derivatives are limited. For the purposes of changing the order
only the space derivative terms are considered, although the mass matrix may
still be modified independently. In changing from piecewise discontinuous to
piecewise linear if βi = 1 then the limiters are both zero so we stay with the
discontinuous method of equation (4). In changing from linear to quadratic if
Sj,n
− = 0 then then quadratic terms in the derivative are switched off and so a

linear basis is used. In the case when a quadratic method is used and at least
one cubic limiter term is not zero or one then 0 < W j,n

+ < 2 and so if this
condition is not satisfied we stay with a quadratic method. This algorithm is
applied on a point by point basis.
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7 Linear Advection Numerical Experiments.

Two advection test problems are used to demonstrate the positivity of the new
method and to compare its performance against a traditional finite volume
method. The first problem consists of the advection of a square pulse. This
problem is quite a demanding one in that the top of the pulse is only five
mesh intervals across and the gradient is sufficiently steep to be viewed as a
discontinuity. The solution to this travelling pulse problem with the piecewise
constant and linear methods is shown in Figure 3. The lefthand image shows
the pulse at three times and shows the results of the new method and of the
finite volume method with the van Leer harmonic limiter defined by equation
(48). The difference between the two methods is shown by the small pulses at
the bottom of the leftmost diagram. The righthand image shows the order used
at each of these times. The solution to the same travelling pulse problem but
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Fig. 3. Simple limited FE Scheme vs van Leer

now also using the option of switching to a quadratic basis is shown in Figure
4. The lefthand image shows the pulse at three times while the righthand
image shows the order used at each of these times. The L1 error norm for
the finite volume scheme is 1.06e-2 while that for the finite element method
is 1.08e-2. These results show that both methods preserve positivity and the
the accuracy of both methods is comparable. The second advection problem
has a solution which is both smooth and which has a steep profile is given by
[15] as an 11th order polynomial which is defined in terms of the variable z,
where

z = (0.3 + t + ds ∗ 0.5 − x)/ds; (51)
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In the case when z > 1 then u(x, t) = 1.1 while if z < 0 then u(x, t) = 0.1.
For 0 ≤ z ≤ 1 the value of u(x, t) = p(z) where

p(z) = z6
[

−252z5 + 1386z4 − 3080z3 + 3465z2 − 1980z + 462
]

(52)

and where z is defined by equation (51). The solution has a front of width ds
centred about 0.3+ t. Two sets of numerical experiments were conducted with
this problem. This is an example with a less steep gradient which demonstrates

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2
 Advection cfl  0.200

 x 

 S
ol

ut
io

ns
 a

t t
 =

 0
.5

, 1
.0

 a
nd

 1
.5

0 0.5 1 1.5 2
0

0.5

1

1.5

2
 order of basis 0, 1, or 2 

 x 

* Exact, + van Leer FV, d new FE

t= 0.5      t = 1.0      t=1.5
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the use of the cubic method. Figure 6 show the profiles at t = 1.5 and Table
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1 shows the the errors in the L1 norm at the same time. The value of R used

L1 Error Norms

Finite Volume Finite Element

van Leer limiter linear quadratic cubic R value used

2.1e-2 2.4e-2 2.1e-2 1.8e-2 4

2.1e-2 1.5e-2 1.5e-2 1.3e-2 1

Table 1
L1 Error Norm for Finite Element and Finite Volume Schemes

in equation (46) is specified in Table 1. The results are encouraging in that
quadratic and cubic methods are used away from the top and bottom of the
front. Improvements in accuracy obtained by using the high order methods
are modest when measuring the error over the whole range of integration,
possibly because of the relatively small spatial interval over which the higher
order methods are used.

8 Nonlinear Conservation Laws.

In considering the extension of the method described above to nonlinear con-
servation laws the approach of Spekreijse, [21], is followed for the scalar partial
differential equation in one space dimension given by:

ut + [f (u)]x = 0 (53)
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where f(u) is the advective flux function which describes wave movements in
the solution. Spekreijse, [21], assumes that this can be split into positive and
negative parts:

f (u) = fl (u) + fr (u) (54)

where

dfl (u)

du
≥ 0 and

dfr (u)

du
≤ 0 . (55)

Using this approach with the piecewise constant DG method defined by equa-
tions (4) with the Forward Euler method with time step δt gives the equations:

Ui(tn+1) = Ui(tn) +
δt

δx

[

An
i+1/2(Ui+1(tn) − Ui(tn)) − Bn

i−1/2(Ui(tn) − Ui−1(tn))
]

where i = 1, ..., n, tn+1 = tn + k and where

An
i+1/2 =−

fr(Ui+1(tn)) − fr(Ui(tn))

Ui+1(tn) − Ui(tn)

Bn
i−1/2 =

fl(Ui(tn)) − fl(Ui−1(tn))

Ui(tn) − Ui−1(tn)
.

The approach taken in considering nonlinear problems may be illustrated by
considering the inviscid Burgers’ equation defined by

∂u

∂t
= −

∂

∂x

(

u2

2

)

, (x, t) ǫ (0, 2) × (0, 2] , (56)

with Dirichlet boundary conditions and the initial condition consistent with
the analytic solution

u(x, t) =
0.1A + 0.5B + C

A + B + C
(57)

where A = e(−0.05(x−0.5+4.95t)/ν), B = e−0.25(x−0.5+0.75t)/ν), C = e(−0.5(x−0.375)/ν)

and where the limit as ν ↓ 0 is taken. This gives a solution consisting of a pair
of steep fronts that eventually form one front. In this case the flow is in the
direction of increasing x and so

f (u) = fl (u) =

(

u2

2

)

(58)
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and consequently that

An
i+1/2 =0

Bn
i−1/2 =

1

2
(Ui(tn) + Ui−1(tn)).

Applying a natural extension of the approach used in Sections 3 and 6 above
gives

Un+1
i +

1

6
δ2Un+1

i =
1

6
δ2Un

i + Un
i (1 −

δt

δx
βi) + Un

i−1

δt

δx
βi (59)

where the central difference operator δ2 is defined as in equation (5) and where

βi =

[

1 +
ΦR(f̄ r

n
i )

2
−

ΦR(f̄ r
n
i−1)

2f̄ r
n
i−1

]

Bn
i−1/2. (60)

In this case the ratio f̄ r
n
i is a ratio of values of the function f(u) as defined

by

f̄ r
n
i =

f(Un
i+1) − f(Un

i )

f(Un
i ) − f(Un

i−1)
(61)

Equations (59) may be solved by using the same iteration as was used in
Section 3 in which Un+1,m

k is defined as the solution value at mesh point k
at time tn+1 with iteration m. Defining terms as in equation (20) allows an
iteration to be defined by

(1 +
αn+1,m−1

i

6
)Un+1,m

i = Un
i (1 −

δt

δx
βi)+ Un

i−1

δt

δx
βi +

αn+1,m−1
i

6
Un+1,m−1

i+1

+
(rn

i − 1)

6
(Un

i − Un
i−1) (62)

where βi is defined as in equation (60) above. The restriction for positivity is
similar to that given in equation (24), in that

0 ≤
(1 − rn

i )

6
+

δt

δx
βi ≤ 1 (63)

In the same way as is described at the end of Section 3 a different restriction
on the ratios of solution jumps was needed for the mass matrix iteration. The
restriction used to compute the results shown was

0 ≤ ri, r
n+1,m
i ≤ 1/2, → αn+1,m−1

i > 1. (64)
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The need for this extra restriction requires further research and may in some
way be related to the difficulties documented by Venkatakrishnan [22] when
using limiter based schemes as part of iterative solution procedures when solv-
ing nonlinear problems.

8.1 Conservative Form.

Although the importance having local conservation properties in finite volume
schemes is well understood, [14], the local conservation properties of finite el-
ement Galerkin schemes are less well understood though recently it has been
shown by Larson et al. [17] that Galerkin methods may have better conserva-
tion properties than was previously thought. In the case of the scheme defined
above the piecewise constant method is well-known to be conservative and it
can be shown that a modified version of the iteration defined by equation (20)
is conservative. Consider the linear basis function scheme defined by equation
(19) with the term βi defined as in Section 6.1. In addition modify the iteration
defined by equation (20) to read:

Un+1,m+1
i =

−1

6
δ2Un+1,m

i +
1

6
δ2Un

i + Un
i (1 −

δt

δx
βi) + Un

i−1

δt

δx
βi (65)

which in turn can be written as

Un+1,m+1
i = Un

i + F m
i+1/2 − F m

i−1/2 (66)

where the numerical fluxes F m
i+1/2 and F m

i−1/2 at iteration m are defined by

F m
i+1/2 =

−1

6
(Un+1,m

i+1 − Un+1,m
i ) +

1

6
(Un

i+1 − Un
i )

−
δt

δx
(Un

i +
ΦR(rn

i )

2
(Un

i − Un
i−1)) (67)

and

F m
i−1/2 =

−1

6
(Un+1,m

i − Un+1,m
i−1 ) +

1

6
(Un

i − Un
i−1)

−
δt

δx
(Un

i−1 +
ΦR(rn

i−1)

2
(Un

i−1 − Un
i−2)) (68)

The same approach works in the case when the approximation defined by equa-
tion (47) is used. Thus providing that the updates in any iteration are done
in a Jacobi-type fashion the iteration has a conservative form. It is possible to
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extend this approach to the quadratic and cubic cases. In the quadratic case,
as defined in Section 4 without using limiters, the formula given by equation
(27) may be written as:

Un+1,m+1
i = Un

i + Gm
i+1/2 − Gm

i−1/2 (69)

where the numerical fluxes Gm
i+1/2 and Gm

i−1/2 at iteration m are defined by

Gm
i+1/2 =

−1

4
(Un+1,m

i+1 − Un+1,m
i ) −

1

120
(δ2Un+1,m

i+1 − δ2Un+1,m
i )

+
1

4
(Un

i+1 − Un
i ) +

1

120
(δ2Un

i+1 − δ2Un
i )

−
δt

δx
(Un

i +
1

2
(Un

i+1 − Un
i ) +

1

24
(δ2Un

i+1 + δ2Un
i )) (70)

and

Gm
i−1/2 =

−1

4
(Un+1,m

i − Un+1,m
i−1 ) −

1

120
(δ2Un+1,m

i − δ2Un+1,m
i−1 )

+
1

4
(Un

i − Un
i−1) +

1

120
(δ2Un

i − δ2Un
i−1)

−
δt

δx
(Un

i−1 +
1

2
(Un

i − Un
i−1) +

1

24
(δ2Un

i−1 + δ2Un
i )) (71)

It is also important to point out that in order to get a conservative form
the term δt

24δx
δ2Un

i has been added to both fluxes and thus cancels when the
difference of the fluxes is taken. As in the case of the linear method defined
by equations (66),(67) and (68) it is possible to limit terms consisting of first
and second differences. In order to get a conservative quadratic method it
is necessary to limit the fluxes so that each flux is treated consistently in
both the equations it appears in. The limiting techniques used in Section 6.2,
which limit each term individually, may be used in exactly the same way
as with the method when expressed in nonconservative form. The only real
difficulty occurs when there is an order change between a pair of elements.
In this case, say, part of flux Gm

i−1/2 could be set to zero in one element and
used unmodified in a neighbouring element. The issue of order selection and
its impact on conservation thus may require further study.

An alternative approach is to note that the results of Hou and LeFloch [14]
may be applied. They show that a conservative method may be obtained
by switching from a non-conservative method to a conservative one if the
condition

|Un
i − Un

i−1| + |Un
i+1 − Un

i | ≤ b (δx)a (72)
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is violated for some constants 0 < a < 1 and b > 0. As the linear method used
here is conservative and as

|δ2Un
i | ≤ |Un

i − Un
i−1| + |Un

i+1 − Un
i | (73)

Then a method switch based on the terms δ2Ui will provide a positive conserva-
tive scheme in the sense of [14]. This would amount to imposing an additional
condition on top of the previously defined switching conditions in Section 6.

9 Inviscid Burgers Equation Numerical Experiments.

This is the example as outlined in equations (56) to (58). Two cases are pre-
sented. In the first case a linear method is used and is compared against the
finite volume method. In the second case the full adaptive method is used.
In both cases the higher order methods are used only in the vicinity of the
front and the results show the front correctly positioned and to be without
overshoots and undershoots. The linear finite element scheme produces a pos-
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Fig. 7. Linear limited FE Scheme vs van Leer on inviscid Burgers Equation

itive solution with an L1 error norm of 5.6e-3 which is an improvement on the
finite volume error norm of 7.1e-3. Figure 7 shows both the computed and true
solutions and where piecewise constant and linear basis functions are used at
the final time. In the quadratic case shown in Figure 8 the l1 error is 6.02e-3.
In the full cubic case adaptive case only a few cubic elements are used where
the front is steepest but with a decrease in accuracy. In both these cases the
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Fig. 8. Quadratic limited FE Scheme vs van Leer on inviscid Burgers Equation

higher order basis functions are only used on one or two mesh intervals so it
is not surprising that there is no increase in accuracy.

10 Summary

In this paper a novel approach to preserving positivity for variable-order finite
element methods has been taken. The approach relies on using a nonlinear
form of the mass matrix in conjunction with positivity preserving conditions
on the method coefficients. Initial steps in extending the method to more
general hyperbolic conservation laws has also been considered. Extensions to
advection in two dimensions have been undertaken by Berzins and Hubbard
[2]. Although initial results are promising further work is needed to assess the
usefulness of the method in particular in the areas of conservation and of order
change.
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Appendix A

Consider the case of the advection equation with the opposite wave speed to
that considered in equation (1) for which the Galerkin form is given by

xi+1
∫

xi−1

∂U

∂t
φi(x) dx =

xi+1
∫

xi−1

∂U

∂x
φi(x) dx, i = 1, ..., N. (74)

The piecewise constant DG method for the advection equation with positive
velocity equal to one is given in a semi-discrete form by

U̇i =
1

δx
(Ui+1 − Ui) (75)

The linear finite element method is obtained as above by applying the Forward
Euler method to equation (75) and separating out the terms that depend on
second differences to get

Un+1
i +

1

6

[

Un+1
i+1 − 2Un+1

i + Un+1
i−1

]

= Un
i +

1

6

[

Un
i+1 − 2Un

i + Un
i−1

]

+
δt

δx
(Un

i+1 − Un
i ) −

δt

2δx

[

Un
i−1 − 2Un

i + Un
i+1

]

(76)

The quadratic positive finite element method is given by the same process as

Un+1
i +

1

6
(1 +

1

20
(8 + Si,n+1

+ ))
[

rn+1
i − 1

]

(Un+1
i − Un+1

i−1 )

= Un
i +

1

6
(1 +

1

20
(8 + Si,n

+ ))

[

1

rn+1
i

− 1

]

(Un
i − Un

i+1)
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−
δt

δx

[

1 + (−1 +
1

12
(Si,n

− ))(βi − 1))
]

(Un
i+1 − Un

i ) (77)

where the quantitiesβi and Si,n
+ and Si,n

− are defined as in equations (19) and
(28) respectively.
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