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Abstract

         The theoretical background of spatial interaction models is reviewed and used
         as a basis for the derivation of a novel approach for directly calibrating spatial
         interaction models concurrently with the main solution procedure. The analysis 
was
         prompted by a link with Fisher Information. The new approach is compared 
         with a number of earlier approaches, particularly that of Sen and Smith.

1. Three approaches to spatial interaction modelling.

The intention in this paper is to look afresh at the work of one of the present authors - see
Wilson (1967, 1970) in the context of the theoretical developments in spatial interaction
modelling of Sen and Smith (1995) and the calibration issues relating to iterative 
numerical methods. The new developments reported here relate to the concept of Fisher 
Information.  These explorations arise from Frieden's (1998) claim that much of physics 
can be derived from Fisher information - a statistical inferencing concept; and that in the 
case of statistical mechanics, Fisher information and entropy are related. Intuitively, 
therefore, this implies a connection between entropy-based approaches to spatial 
interaction modelling and Fisher information. 

It has been found in the past that there are considerable benefits from exploring how 
different mathematical approaches can address the same modelling task. In particular, it 
is often the case that techniques in one approach complement those in another so that the 
power of the set of techniques available from a number of approaches is greater than the 
sum of the parts. There is a history of this in urban modelling- discussed for example in 
Wilson  (2000). In this study, the outcome is a deeper understanding of how a number of 
approaches can be linked and, specifically, a new algorithm for calibrating spatial 
interaction models can be constructed.



In what follows, it is assumed that the model being considered is that described in 
summary form in pages 62-63 of Wilson (2000), or pages 15-23 of  Wilson (1970)or 
pages 243-253 of Robinson (1998).

Consider n spatial zones and suppose that the random variable (or alternatively the 
observed value ) describing the number of trips from any zone i to any zone  j is ijN and 

the estimate of this value to be obtained from a model is ijT . In what follows, it is 
assumed that the expected value based on the observed values is given by                
                                                E ( ijN )= ijT ,                                                           (1) 

see Sen and Smith (1995). Let iO be the number of work trips originating in zone i and 

let jD be the total number of work trip destinations in zone j. (These are taken as given 
and can be actual values.)There are then two sets of constraints   
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The total number of elements in the trip interaction matrix is given by Tn
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Tn 1  There is also a cost constraint equation involving weighted summation 

over the Tn  terms of ijT :
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where ijc is the generalised cost of travelling between i and j.    Let T be the total number 
of trips i.e. 
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From elementary combinatorial theory the number of ways in which individuals can be 
arranged to get, say, the kth  particular pattern of trips is given by Wilson (1967) as the 
quantity })({ ijk Tw  where 
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The approach is then to find the matrix }{ ijT which maximises the quantity defined by  
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where L consists of the Lagrange multiplier terms given by 
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where  )2()1( , jj λλ and βare the Lagrange multipliers to ensure that the constraints (2) to 

(4) are satisfied. The maximum value of M is found by solving the equations ,0=
∂
∂
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which it can easily be shown by using Stirling's approximation as given by in the form 
log  ( ) log! xx = )(x ,x−   gives the form of ijT as
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Hence we can calculate ijT in terms of an exponential function as
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One important point to be noted is that Wilson (1970) divides iA and jB by iO and jD . 
It will be more convenient not do so here. It is also worth noting that the same general 
form   is used by Sen and Smith (1995) in their equation (5.2) on page 358 with the 
important difference that the term β−  is referred to as θ  in their work, for purely 
notational reasons. Hence the value of  θ  will be assumed negative here. 

It is also important to note that the use of Stirling’s approximation gives rise to the 
particular exponential gravity model discussed here and that the use of alternative 
approximations would give rise to different models.
 
For computational purposes, the values of Oi, Dj and T will typically be known from 
data. Similarly, C can be calculated using equation (4) on the basis of a sample. This 
may at first sight appear to restrict the application of the model to a current situation, but 
it can, of course be used to test variations in any of these terms in the future. The more 
general modelling issues posed by the use of this model (and in particular the limitations 
of the approach) are described by Robinson (1998), pp. 241-253. 

Substituting the expression (10) for ijT into equations (2) and (3) gives the pair of 
equations
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Iterative Solution Techniques 
These nonlinear equations in the variables iA and jB are solved iteratively - see pages
62-63 of Wilson (2000) or pages 15-23 of Wilson (1970).  The mathematical background 
is discussed by Wilson (2000) with reference to the fixed point theorem. The method 
used by Wilson to solve the equations may be interpreted as being equivalent to a Jacobi 
or Gauss-Seidel method, [see Ortega and Rheinboldt (1970)] and is defined as follows. 



Let m
iA and m

jB be the approximations to iA and jB respectively after the mth iteration of 

the method. In the Jacobi case the m+1th values are defined by the pair of equations 
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while in the Gauss-Seidel case the updated values of 1+m
iA may be used immediately in 

the equations for 1+m
jB .  This form is known as the Demming-Stephan-Furness or DSF 

procedure, see Sen and Smith (1995) , pp 358, and the references therein, and is widely 
used. This DSF approach which consists of using the Gauss-Seidel method  (though the 
connection is not usually mentioned) to solve the nonlinear equations arising from 
network problems is also widely and successfully used in applications areas such as gas 
transmission networks and in those applications dates at least as far back as the Hardy 
Cross (1936) method and the more widely cited method of Kruithoff (1937).

It is worth remarking - see Robillard and Stewart (1974) - that equations (11) do not 
uniquely define the values of iA and ,jB [see also Sen and Smith (1995)].   This may be 
seen by summing equation (2) over i and equation (3) over j to get the same result. One 
solution to this is to fix one value of iA and jB say JB and to move this equation from the 
set of equations, this is discussed by both Erlander and Stewart (1990) and Sen and 
Smith (1995) and will be used below. Equation (5) may be then used to calculate the 
missing coefficient. The choice of which equation to eliminate is discussed by Robillard 
and Stewart (1974).  Suppose that the JB th value is used. In this case the value of JB  is 
given by using the equation   
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where T is the total number of trips.  Hence the value jB is determined by  
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Robillard and Stewart (1974)  also show that arbitrarily assigning the value of one 
coefficient, say JB , does not change the values of  ijT  calculated but merely scales the 

values of iA  calculated. This is also shown by equation (14). In the case of the standard 

method defined by equations (12) the values of iA and jB  calculated may, depending on 
the implementation, automatically satisfy equation (5) and so the two procedures will 
then be identical. To investigate this, suppose that the values of 1+m

iA  are used in the 
second of the pair of equations (12). Multiply both sides by the term in [ ] and cancelling 

m
jB  gives the equations :  
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Summing these equations over j gives equation (5) and thus shows that the values 
computed using the Gauss Seidel version do automatically satisfy equation (5) at the end 
of each iteration.  The reverse process may be applied to equation (14) to arrive at  the 
second equation of (12) but with the coefficient of  iA   being 1+m

iA . 

 The values of β in equation (9) are calculated by using the observed values of C in 
equation (4) and then calculating β through an iterative process such as that of Hyman 
(1969). The choice of β is thus an attempt to match the cost of the solution up to the 
observed cost C in equation (4).

This procedure of calculating values of ijT that satisfy equations (2) and (3) and then 

changing β to satisfy the cost equation is different to many procedures in 
linear algebra in which all values are updated either simultaneously or in turn. The 
calibration method we introduce later will be a ‘simultaneous’ method and thus 
potentially reduces the cost of calibration. 

Probability Distributions used in Spatial Interaction Models

A central feature of any spatial interaction model is the underlying probability 
distribution. Three of the approaches which can be used to derive the equations (4) and 
(11) are considered in this section.  The first is the original entropy-maximising model of 
Wilson (1967); the second is the multinomial method used by Snickars and Weibull 
(1977); and the third is the Poisson model used by Sen and Smith (1995).

The Entropy-Maximising Approach

Wilson (1970) defines the probability that an individual trip goes from i to j is denoted 
by ijp and is given by ./TTp ijij =

He defines the probability of the set of trip to be proportional to the quantity { }( )ijk Tw  as 
defined by equation (6). As shown earlier, taking logs and applying Stirling’s 
approximation shows that this is equivalent to maximising the entropy of the probablility 
distribution. In what follows we will show the relationship between this and later 
approaches based on multinomial and Poisson probability distributions.

The Multinomial Probability Distribution

The standard multinomial distribution makes use of the probabilities ijp in the underlying 
model by assuming that the probability of the kth particular estimated matrix with entries 

[ k
ijT ] may be then taken as being defined by - see Erlander and Stewart (1990), p55 - as 
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This multinomial probability distribution has been previously used many times in



the modelling of spatial interactions. For example see Hyman (1969), Batty (1976),
Cesario (1975) and more recently Giles and Hampton (1981). A thorough description 
and
bibliography being provided by Erlander and Stuart (1990).

The Poisson Distribution

The alternative approach of Sen and Smith (1995) is to use a Poisson distribution defined 
by 
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Sen and Smith show that the Poisson and multinomial approaches are closely related - 
see equation (5.57) of their paper. They differentiate this equation to get equations (2) 
and (3) divided by iA and jB respectively and equation (4). 

Comparisons

The starting point in comparing these three approaches is to note that when Wilson finds 
the extremal value of M as defined in equation (7), he is also finding the extremal value 
of the exponential of M with the constant terms ji DO , and C eliminated as they do not 

depend on ijT . Hence, using the notation of equation (10), Wilson is also finding the 
extremal value of  
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with respect to ijT .

This form is also identical in form to that used by Wilson in the Darwin-Fowler 
derivation of the gravity model, see equation (A4.8) of Appendix 4 of Wilson (1970). 

Equation (5.58) of Sen and Smith (1995) defines the multinomial probability
distribution by   
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where βθ −=  in the notation of Wilson. The original approach of Wilson thus appears 
to be consistent with that of using the  multinomial probability distribution with the 
model values ijT  replacing  the observed or random values ijN . Sen and Soot (1981) point 
out the dangers of this substitution. However here it is done at the level of the 
summations in equations (2), (3) and (4) and in that sense is consistent with these 
equations as the assumption is that the ijN  values satisfy equations (2), (3) and (4). The 
only underlying assumption not immediately satisfied is that for Wilson’s model to be 
consistent with that of equation (19) it is necessary that })({})({ ijkijk TwNw = . In other 
words the assumption is that the combinatorial probability of the observed trips is the 



same as that of the model trips. This will be referred to as Assumption 1 when 
comparing the methods in Figure 1.

Sen and Smith (1995) (p. 360) show that taking the log of equation (17) (and also 
equation(19)) and differentiating with respect to ji BA , and β leads back to  equations 
(2), (3) and (4). 

Wilson (1967) and Jaynes (1968), p.231, and Chapter 11 of Jaynes (1994) show, as we 
noted earlier, that maximising the term })({ ijk Tw maximises the entropy 

))log(( ijijij pp∑−  associated with the values ijT . Adopting the approach above that 

leads to the multinomial distribution of equation (18) and taking the log of the right hand 
side of this equation shows that maximising the term L defined by equation (8) with ijT

replaced by ijN is equivalent to maximising the Kullback entropy defined by 

)ˆ/log( jppp iijijij∑− where TNp ijij /= , see Snickars and Weibull (1977).

The equivalence of the Poisson approach can easily be seen by taking logs and 
differentiating.

In this section we have shown that reinterpreting the approach of Wilson leads naturally 
to a multinomial based probability distribution. The results by Sen and Smith that apply 
to both multinomial and Poisson distributions make it possible for us to consider the 
relationships between the issues of existence and uniqueness of solutions. Figure 1 
shows how these methods are related and also how the solution techniques considered in 
the  second half of the paper are connected. 

FIGURE 1 Comparison of the models and method considered here.

Maximum Entropy                                         Multinomial  Model           Poisson Model 
Method                      →  Assumption 1 →    Equation (16)                     Equation (17)
Equations (6-10)
             ↓                                                   ↓                               ↓ 
    Spatial Interaction   Model defined by equations (2), (3)  and (4)
              ↓                                      ↓                                     ↓
DSF Solution Method                    New Iteration                    Sen and Smith  Methods
Equations (12)                                Equations (39-41)            Equations (44-49) 
Jacobi Newton                                Inexact  Newton

2. Fisher information and spatial interaction models.

As noted in the introduction, it was the approach of Frieden (1998) in Physics which led 
us to explore the contribution of Fisher information to the lexicon of spatial interaction 
modelling. The essential idea is this. Given a probability distribution, p = {pi} say, and 
some observed values, Fisher information is used in the estimation of the parameters of 
the distribution, say a vector, θ, by providing a lower bound on the error in these 
parameters through the Cramer-Rao inequality. In the case of  spatial interaction models 



one obvious candidate for such a parameter is β  or the equivalent value θ  used by Sen 
and Smith. Traditionally Fisher Information is used in a static way to assess the quality 
of the statistical inferencing procedures, see Scharf (1990) for a particularly clear 
exposition of this. The approach of using Fisher Information is based on statistical 
inferencing theory and provides a way of determining the error in parameters such as β . 
We follow Frieden (1998).  The focus of our primary interest is now taken to be the 
single parameter β . In this case, as there is only a single parameter, the Fisher 

Information matrix consists only of a single element defined here by .ββF The precise 
definition of this is

)(
ββββ d

dL

d
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where L is the logarithm of the right side of equation (17) and E( ) denotes the expected 
value. As indicated in general terms above, there is a relationship between the mean-
squared error in β and Fββ as given by the famous Cramer-Rao inequality. In this case - 
see van Trees (1968) – it is given by

 12 ])[( −≥− ββββ FE true .                                               (21) 

The inequality thus provides a lower bound on the mean square error in terms of the 

value. ββF . In the case of spatial interaction models Sen and Smith (1995) describe this 

procedure by referring to the information matrix (pp. 434-446). Sen and Smith further 
state that this matrix is an asymptotic approximation to the Information matrix (p437) 
and also implicitly discuss the Cramer-Rao condition on p438. In this discussion they 
point out that “The existence of the conditions [for the Cramer-Rao equality] is not 
entirely immediate for the gravity model.” - Sen and Smith (1995), p438.

Freiden’s approach is to show how mathematical models involving the Lagrangian 
approach  may be derived directly by using the concept of Fisher Information as part of a 
concept called Extreme Physical Information or EPI. Frieden also considers the close 
relationship between entropy and Fisher information in statistical mechanics. It is thus 
natural to first understand the role of Fisher Information in existing models and to 
understand how approximations to Fisher information may be used as part of the process 
of calculating unknown parameters such as β . In what follows we will show that the 
Fisher Information value plays a key role in many theoretical and practical aspects of 
spatial interaction models and in our case will  facilitate  a new approach to parameter 
estimation and hence model calibration. 
 

3. Full and Approximate Newton Iterations

The intention in this section is to make the connection between the existence and 
uniqueness results of Erlander and Stuart, the role of Fisher information in these results 
and the computation scheme used in practice as described in Section 1. The starting point 
for this is to write down the full Newton iteration corresponding to the solution of 
equations (2) (3) and (4).  Equations (2), (3) and (4) to be written in matrix  form as
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where T is the vector of with IJ elements ijT and R is defined as in the right hand sides of 
equations (2) and (3) to be 

                                    ],,,,,[ 111 −= JI DDOOR                                               (23)

From equations (2) and (3) the matrix  A has entries consisting of either 0 or 1. The 
entries with value 1 correspond to connections between origins and 
destinations .Equations (22) are not solved as they stand but are solved for the 
coefficients ji BA , and β . As in Section 1 one of the coefficients, say JB , is neglected. 
The standard Newton iteration for these equations may then be written as
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where AB∆ is the vector of changes to the coefficients ji BA , and β given by 
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The Jacobian matrix, J,  matrix obtained by forming the partial derivatives of equations 
(20) with respect to the  variables ji BA , and β  is given by Appendix A and by [Erlander 
and Stuart (1990)], P.61 as
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where the first 1−+ JI  by 1−+ JI rows and columns of  the matrix multiplying AD are 

referred to as the square matrix ,1V the vector [ ]1112 ,,,,, −= JI
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where  Ii ,,1=  and 1,,1 −= Jj  ,..., J-1. AD is the diagonal matrix whose entries are 
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and all other entries are also based on the approximate values .ijT  

It is worth remarking here that the same approach as used here may be used of a multi β-
parameter model as  these equations (as constraint equations) would generate parameters 



β(1) and β(2). Indeed the analysis in Sen and Smith (1995) treats such cases and it is 
possible to extend the approach described here without any conceptual difficulty.  As 
above a simple calculation shows that the inverse matrix ( ) 1−J  is then given by
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where 2
1

123 VVVVq T −−= and assuming that the matrix 1V has an inverse  and that q is non-
zero. The parameter q plays a large role in this matrix as its reciprocal multiplies every 
term bar one. In linear algebra terms q is the Schur complement, see for example Golub 
and Ortega (1993). Erlander and Stuart show that q  must be non-zero for the gravity 
model to have a unique solution. What is of particular interest here is the relationship 
between q and Fisher information, Fββ. This relationship is made explicit by  Sen and 
Smith who show that in the case of the parameter β the Fisher Information matrix is 
reduced to a constant whose value is given by equation (5.226) as

qF =ββ (31)

where q is defined as in  equation (30)and hence the inverse of this is by 1/q. This is also 
the quantity that will be shown below to play a role in the rate of convergence of 
iterations used to define β .In the more general case of a vector of parameters, β ,the 
matrix q would be the  Schur complement matrix.

It is also worth remarking that the matrix  q is the sensitivity matrix (or in this case 
value) of the cost function given by equation (4) with respect to the parameter q. In other 
words
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This follows by rewriting out the expression for 2
1

123 VVVVq T −−=  in terms of the partial 

derivatives represented by the matrices 21 ,VV and 3V  and by use of the chain rule.
 Both Erlander and Stuart and Sen and Smith show that the conditions for the 
invertability of the Jacobian matrix are that the matrix 1V has an inverse [as stated by 
Erlander and Stewart (1990)] and that q is non-zero).It is straightforward to calculate the 
parameter q and hence to determine whether or not the system of equations has a unique 
solution. This may be done by making use of the iterative method defined in Section 1 to 
solve the equations  

21 * VVV =  (33)

where the vector 2V and the matrix 1V are defined as in equations (26). This system of 
equations may be solved using the same algorithm as is used in to compute the values of 

iA and jB in Section (1). The iteration is given by:
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Once the values of the vector V* are known it is straightforward to calculate q from
the equation

*
23 VVVq T−=                                               (36)

as the vectors 2V and 3V are already known.
It is not computationally efficient to use equation (23) in full due to its computational 
cost as compared to the simple iteration defined by equations (11). This issue is 
discussed at length by Anderson (1981) and Robillard and Stewart (1974). The challenge 
is thus to consider ways of combining the two approaches in a way that includes the 
Fisher Information coefficient q or an approximation to it.

4. Approximate Newton Iterations

As stated in Section 1 the standard iteration as defined by equations (11) may be 
interpreted as using a Jacobi- Newton method. Such iterations are discussed by Robillard 
and Stewart (1974) without characterising the standard iteration as a modified Newton 
iteration in the way that will be done here. This connection may be seen by considering 
the iteration defined by equations (24) but using only  the diagonal of the of the Jacobian 
iteration matrix as defined by equation (26).  Appendix B shows that in this case the 
iteration is identical to that given by equations (11).

A New Approximate Newton Iteration

The iteration in the previous section does not really couple together the iteration for 
the coefficients iA and jβ with that for β in a way that reflects the rightmost
column and bottom row of the matrix given by equation (26).  One way of partially 
achieving this coupling without going to the expense of using the full Jacobian matrix is 
to replace the matrix 1V with one with the same leading diagonal but with zero elements 
elsewhere and to keep the rest of the Jacobian matrix as it is. In this case it is possible to 
make use of the fact that the inverse matrix 1

1
−V has a particularly simple form in 

working with the inverse Jacobian defined by equation (30). Hence we can write down 
the Newton iteration corresponding to this case and this is what is done in Appendix B.

In order to make it possible to explain the results of  Appendix B it is useful to define 

three quantities also defined in Appendix B. The first two of these  M
j

M
i FE ,  are defined 

by taking the mean of the quantities defined in equations (27). They may be thought of as 
the negative mean costs at the nodes iO and jD
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The third quantity is denoted as Z* and defined by
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This expression may be interpreted as the sum of the costs at the origin and destination 
nodes and the cost in the constraint due to the origin, destination and cost constraints not 
being satisfied. With these three definitions Appendix B shows that  the new method is 
given by 
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Thus giving a novel iteration method that explicitly brings in a term similar to the Fisher 
information term q above.  In this case as DV  is a diagonal matrix the term q  is easy to 
calculate as evaluating it using the expression  in equation (B11) in Appendix B  gives:
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Substituting in the values of the various parameters shows that for positive costs and 
numbers of trips this value is always negative. An  interpretation of this term is that as 
this is an approximation to the term q it may, following equation (30),  be interpreted as 
some kind of approximation to Fisher Information for β . It is also important to add that 
the DSF type approach may also be used in this iteration. In other words that the most 
recently calculated values of the coefficients are used as soon as possible. The 
significance of this result is that we now have a method which updates all the 
coefficients simultaneously, but does not preclude the more traditional approach of 
solving equations (1) and (2) before updating β . While we have not attempted to tune 
this iteration and to as yet compare it with existing methods, as a theoretical approach it 
opens the way to the development of many other algorithms and places the iterations 
used in spatial interaction models within a numerical linear algebra paradigm that may 
complement the results of Sen and Smith.

Convergence of the new iteration and of the alternatives

The convergence of iterations such that defined above is studied by  Dembo et al (1982) 
and a more general introduction to the analysis of iterative methods provided by Ortega 



and Rheinbolt (1970).  While it is possible to use the approach described by  Dembo et 
al.
to determine if the iteration will converge, there are still situations in which Newton's 
method is not satisfactory as it is not globally convergent. Should this be the case, a way 
to proceed is to note that it is still possible to revert to the original iteration by setting the 
parameter Z* to zero. This then results in values of ijT that satisfy equations (2) and (3). 
Hence in this case

Z* 





−−= ∑ CTc ij

ij
ij                                                      (43) 

and the iteration for β proceeds with this modified form of  Z*. The new value of β then 

being used in recalculating iA and jB . While this approach is then closer to that 
traditionally used in this area, the advantage of the derivation above is that we now 
understand how these approaches fit into a single framework.

Similar Iterations

The key issue is how the method in the previous section compares with the many 
methods introduced by Sen (1986)  and Sen and Smith (1995).  The paper of Sen (1986) 
introduces two methods. For both of these methods and those in Sen and Smith (1995) a 
key idea is that the change in the value of β  is coupled to the residual of equation (4) 

given the current estimates of ijT .

 In other words ρνββ +=new  where ∑−=
ij

ijijTcCν . The iteration is then 

written in terms of computing the parameter ρ . The faster of the two methods developed 
by Sen (1986) may be written in the following way. Suppose that the DSF method is 
applied so that a set of values of ji BA ,  are computed that satisfy equations (2) and (3). 
These values also then satisfy equation (4).  The objective is then to compute a new 
value of β  such that equations (4) and  (5) are both satisfied. This may be done by 
combining these two equations as

                            
T

Tc
C ij

ij
ij

11 =∑ ∑
ij

ijT                                                            (44)

and hence to calculate new values of  ρ and hence β  so that the equation 
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Tc
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                                                        (45) 

is satisfied by the new values of ijT . One further step is taken in that the equation is 
scaled 
by the parameter ν . This scaling has the effect of changing the scaling of ρ so that in 
the Newton iteration the calculated values of changes in ρ are multiplied by ν  to give 
the equivalent of changes in β . Aside from the novel scaling and parameterisation 
involved this method thus represents an early attempt to combine the iterations for 



solving equations (2) and (3) with the separate iteration for equation (4). The completely 
coupled equation that we have developed takes this process a stage further and the 
scaling used by Sen (1986) could be employed in the same framework.

The Modified Scoring method described by Sen and Smith [1995] as given by equation 
(5.160) (with k=1)of their book gives an  iteration that is similar in form to the iteration 
above but is derived in quite different way. The starting point for this iteration is a set of 
values of ijT that satisfy equations (2) and (3) .The correction to these solution values is 

then defined in terms of a correction to β  

                                      )( ββ −−=∆ new
ijijij cTT .                                                     (46)

Two further iterations on the values ijT∆ ensure that the corrections satisfy the 
constraints defined by equations (2) and (3) and give a final correction defined by 

                                      )( ββ −−=∆ new
ijij ST                                                           (47) 

where ijS  is defined by equations (5.152) and (5.153) of Sen and Smith with k=1. Th
e corrections are then required to satisfy the cost constraint of equation (4):

                                  
0)( =−∆+∑ CTTc ijij

ijij
.                                               (48)

This results in an improved value of θ ( β− in our notation) as given by
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where   ∑=
ij

ijij cSQ and so from the definitions in Sen and Smith
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It is worth remarking that if the same derivation as in Sen and Smith is conducted with 
Wilson’s original notation of  β−  being used in place of θ  then the sign of some of the 
terms in equation (60) changes. Although there are some similarities in the forms of Q 
and q  the detailied expressions  are somewhat different.

6. Concluding comments.

In this paper we have considered the relationship between the method of Wilson and the 
approach of Sen and Smith and others in terms of the underlying probability models. 
This provides the basis for introducing Fisher Information into spatial interaction 
modelling. The insights thus gained have made it possible to describe a simple modified 
approach to the procedure for calibrating the standard interaction model which allows 
the iterations for β and ijT to be coupled together and in a form which involves an 
approximation to the Fisher Information.

References



P-A Anderson (1981) On the Convergence of Iterative Methods for the Distribution 
Balancing Problem,  Transpn Res B., Vol. 15B, 173-201.

M.Batty (1976) Urban Modelling,  Cambridge University Press, Cambridge.

F.Cesario (1975) Least Squares Estimation of Trip Distribution Parameters, Transpn Res, 
Vol. 9, pp13-18.

R.S.Dembo, S.C. Eistenstat and T. Steihaug (1982) Inexact Newton Methods, Siam 
Journal on Numerical Analysis, 19, 2, 400-408.

S.Erlander and N.F.Stewart (1990)  The Gravity Model in Transportation Analysis-  
Theory and Extensions, VSP, Utrecht, The Netherlands.

B.R.Frieden and B.H. Soffer (1995) Lagrangians of physics and the game of Fisher-
information transfer,  Physical Review E, 52, 3, 2274-2286.

B.R.Frieden (1998) Physics from Fisher Information: a Unification, Cambridge 
University Press, Cambridge.

P.H.Garthwaite, I.T.Jollife and B. Jones (1995) Statistical Inference, Prentice Hall, 
London, New York.

D.E.A. Giles and P.Hampton (1981) Interval Estimation in the calibration of certain trip 
distribution models, Transpn Res, Vol. 15B, pp 203-219.

G.Golub, J.M. Ortega (1993) Scientific Computation -An  Introduction with Parallel  
Computing, Academic Press.

Hardy Cross (1936) Analysis of Flows in Networks of Conduits or Conductors, Bulletin  
no. 286, University of Illinois, Urbana, Illinois, USA.
 
G.M. Hyman (1969) The calibration of trip distribution models. Environment and 
Planning, Vol. 1, pp 105-112. 

E.T.Jaynes (1968) Prior Probabilities,  IEEE Trans. on Sys. Sci. and Cybernetics, Vol.  
SSCC-4, 3, pp. 227-248.

E.T.Jayne (1994) Probability Theory: The Logic of Science.Fragmentary Edition of June 
1994 <http://omega.albany.edu:8008/JaynesBook.html>

J.Kruithof  (1937)  Calculation of Telephone Traffic, Translation No 2663, Post Office 
Research Department Library, London.

J.Ortega and W.Rheinboldt (1970)  Iterative solution of Nonlinear equations in Several 
Variables, Academic Press, New York and London.



C.R.Rao (1973) Linear Statistical Inferencing and Its Applications, John Wiley, New 
York.

P.Robillard and N.F. Stewart (1974) Iterative Numerical Methods for Trip Distribution 
Methods, Transpn Res., Vol 8, pp575-582.

G.M.Robinson (1998) Methods and Techniques in Human Geography,
John Wiley and Sons, Chichester.

L.L.Scharf  (1990) Statistical Signal Processing, Addison-Wesley Publishing, Reading 
Massachussetts.

F. Snickars and J.W. Weibull (1977) A Minimum Information Principle, Regional  
Science and Urban Economics, Vol. 7, pp.137-168.

A.Sen and S. Soot  (1981) Procedures for Calibrating the Generalized Gravity Model. 
Proceedings of the Regional Science Association, Vol. 48, pp. 165-176.

A.Sen (1986) Maximum Likelihood Estimation of Gravity Model Parameters, Journal  of  
Regional Science, Vol. 26, pp. 461-473.

A. Sen and T.E.Smith (1995) Gravity Models of Spatial Interaction Behaviour, Springer, 
New York.

H.L. Van Trees (1968) Detection Estimates and Modulation Theory – Vol. 1, John Wiley 
and Sons, New York.

A.G.Wilson (1967) A statistical theory of spatial distribution models, Transportation 
Research, Vol. 1, pp. 253-269.

A.G.Wilson (1970) Entropy in Urban and Regional Modelling, Pion, London.

A.G.Wilson (2000) Complex Spatial Systems: the modelling foundations of regional and 
urban analysis, Prentice Hall.

A.G.Wilson and R.J. Bennett (1985) Mathematical Methods in Human Geography and 
Planning, John Wiley, Chichester .

Appendix A: Form of the Jacobian Matrix 

The Jacobian matrix, J,  matrix obtained by forming the partial derivatives of equations 
(20) with respect to the  variables ji BA , and β  is given by [Erlander and Stuart (1990)], 
P.61 as
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where AD is the diagonal matrix whose entries are 
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and all other entries are also based on the approximate values .ijT  

Appendix B: Derivation of the New Iteration Method 

As stated in Section 1 the standard iteration as defined by equations (11) may be 
interpreted as using a Jacobi- Newton method. Such iterations are discussed by Robillard 
and Stewart (1974) without characterising the standard iteration as a modified Newton 
iteration in the way that will be done here. This connection may be seen by considering 
the iteration defined by equations (29) but using only  the diagonal of the of the Jacobian 
iteration matrix as defined by equation (23).  In this case the iteration may be written as
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where the diagonal matrix DV has the diagonal entries of 1V The first I equations of these 
equations may be written as
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Multiplying both sides by iA and adding iA to both sides gives

O
i

iinew
i S

OA
A =  (B3)

which is just the top equation in equation (11). A similar process for jB leads to the 

bottom equation in (11).  Adopting this approach gives the iteration for β as
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This  iteration does not really couple together the iteration for 
the coefficients iA and jβ with that for β in a way that reflects the rightmost
column and bottom row of the matrix given by equation (25).  One way of partially 
achieving this coupling without going to the expense of using the full Jacobian matrix is 
to replace the matrix 1V with one with the same leading diagonal but with zero elements 
elsewhere and to keep the rest of the Jacobian matrix as it is. In this case it is possible to 
make use of the fact that the inverse matrix 1

1
−V has a particularly simple form in 

working with the inverse Jacobian defined by equation (30). Hence we can write down 
the Newton iteration corresponding to this case and this is what we proceed to do.  The 
approach that we adopt is similar to that used in domain decomposition methods in that 
we use an inexpensive method over most of the equations and then couple this to the 
equation for cost.

We start by defining the two quantities M
j

M
i FE , by taking the mean of the quantities 

defined in equations (28) and (29) above. They may be thought of as the negative mean 
costs at the nodes iO and jD
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This means that both these quantities are bounded by the maximum costs entering or 
leaving a point.

( )ijj
M
i cE max≥−  and ( )iji

M
j cF max≥− (B6)

The inverse matrix 1−
DV is just the zero matrix with the non-zero diagonal given by
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Define the matrix M by
1

22
1 −−= D

T
D VVVVM (B9)

which may be written as
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From equation (41) it is clear that these entries are bounded by the squares of the 
maximum costs.  The full Newton iteration modified only by replacing the matrix 1V  by 

the diagonal matrix DV  is then given by 
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where 2
1

23 VVVVq D
T −−= . This may be written out as the three equations:

            ( ) −−−





−−=− ∑∑

=
k

O
k

I

lk

M
k

M
i

j
iijO

ii

i
new
i OSE

q

E
OT

SA

AA 1

          ( ) 





−+− ∑∑

−

=

CTc
q

E
DSF

q

E
ij

ij
ij

M
i

J

k
k

D
k

M
k

M
i

1

1
_ (B12)

             ( )−−−




 −−=

− ∑∑
=

k
O
k

I

k

M
k

M
j

i
jijD

jj

j
new
j OSE

q

F
DT

SB

BB

1

1

                                      ( ) 





−+− ∑∑

−

=
CTc

q

F
DSF

q

F
ij

ij
ij

M
j

k
D
k

J

k

M
k

M
j

1

1

  (B13)

( ) ( ) ( ) 





−−−+−=− ∑∑∑

−

==

CTcDSFOSEq ij
ij

ijj
D
j

J

j

M
ji

O
i

I

i

M
i

new
1

11

ββ (B14)

These equations may be simplified by defining the quantity Z* by

( ) ( ) 





−−−+−= ∑∑∑

−

==

CTcDSFOSEZ ij
ij

ijk
D
k

J

k

M
kk

O
k

I

k

M
k

1

11

* . (B15)

This expression may be interpreted as the sum of the costs at the origin and destination 
nodes and the cost in the constraint due to the origin, destination and cost constraints not 
being satisfied. Furthermore this definition may be used to rewrite equations (48), (49) 
and (50) as
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Thus giving a novel iteration method that explicitly brings in a term similar to the Fisher 
information term q above.  In this case as DV  is a diagonal matrix the term q  is easy to 
calculate as evaluating it using the expression  in equation (47) gives:
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Substituting in the values of the various parameters shows that for positive costs and 
numbers of trips this value is always negative. An  interpretation of this term is that as 
this is an approximation to the term q it may, following equation (31),  be interpreted as 
some kind of approximation to Fisher Information for β . It is also important to add that 
the DSF type approach may also be used in this iteration. In other words that the most 
recently calculated values of the coefficients are used as soon as possible. The 
significance of this result is that we now have a method which updates all the 
coefficients simultaneously, but does not preclude the more traditional approach of 
solving equations (1) and (2) before updating β . While we have not attempted to tune 
this iteration and to as yet compare it with existing methods, as a theoretical approach it 
opens the way to the development of many other algorithms and places the iterations 
used in spatial interaction models within a numerical linear algebra paradigm that may 
complement the results of Sen and Smith.
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