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1 Introduction

In this chapter the method of lines is applied to computatiomodels of reacting flow
arising from atmospheric applications. These computatiorodels describe the chem-
ical transformations and transport of species in the trppese and have an essential
role in understanding the complex processes which leadcetéottmation of pollutants
such as greenhouse gases, acid rain and photochemicahtsxittaorder to make good
comparisons with the limited experimental data availabie important to have a high
degree of computational resolution, but at the same timeoiatemissions from many
different sources and over large physical domains. Thipthras thus concerned with
how to achieve this by using the method of lines combined gp#tial mesh adaptation
techniques.

Achieving high resolution in air pollution models is a difiit challenge because
of the large number of species present in the atmospherendméer of chemical rate
equations which need to be solved rises with the number afepeand for high resolu-
tion 3-dimensional calculations, detailed chemical sob®ran become prohibitively
large. The range of reaction time-scales often leads tb stiftems of differential
equations which require more expensive implicit numerscdvers. Previous work has
shown (Talat, [31], Tomlin et al., [32, 33, 12] Hart et al3[Lthat coarse horizontal
resolution can have the effect of increasing horizontdldibn to values many times
greater than that described by models, resulting in the snteaf pollutant profiles
and an underestimation of maximum concentration levelse\Aew paper by Peters
et al. [22] highlights the importance of developing morecidiint grid systems for the
next generation of air pollution models in order to “captimgortant smaller scale
atmospheric phenomena”.

In general the effects of mesh resolution have been welldioyethe atmospheric
modelling community and attempts have been made to impr@ghmresolution at the
same time as trying to avoid excessive extra computatiooedd Wl he usual approachis
to use nested or telescopic grids, where the mesh is refirmsdtain regions of the hor-
izontal domain which are considered of interest (Jacobk,di&], Rajaona et al.,[24],
Sunderam et al., [30], Sillman et al.,[26]). This may in@udr example regions of
high emissions such as urban areas, or close to regions wig@iécant monitoring is
taking place. Previous work has shown however (Tomlin §2]) that such telescopic
grids often cannot resolve plume structures occurringidetsf the nested regions and
that adaptive refinement in the horizontal domain can pevidher accuracy with-
out entailing large extra computational costs. The printagson is that away from



concentrated sources such models use large grids of up tddfdtres. Since dis-
persion can carry species distances of hundreds of kil@adtom the source, such
predescribed telescopic gridding models could still leathticcurate downwind pro-
files as the plumes travel into those areas with larger giitis is a particular problem
when modelling species such as ozone, where the chemicaktime of pollutant for-
mation is such that the main pollution episodes occur at @y distances downwind
of the sources of photochemical precursors. The regionteepsspatial gradients of
species such as ozone will move with time according to thelviield present and the
spatial distribution of emissions. A reliable solution aarly be obtained if the mesh
can be refined accordingly. The fine scale grids used in ptesgional scale models
are of the order of 10-20km. For a power plant plume with a Wialt approximately
20km, it is impossible to resolve the fine structure withia flume using grids of this
size. Furthermore, to refine the mesh a priori, accordingegtath of the plume, would
be an impossible task since the plume position is a complicfatnction of many fac-
tors, including reaction, deposition and transport. Theeeneed for the application of
methods which can refine the grid according to where theispluequires it i.e. time-
dependent adaptive algorithms. While there have been sppiEations of adaptive
grids for environmental modelling, e.g Skamarock et al,[2% yet these methods have
not been implemented in standard air quality models.

This chapter is based on the work done by the authors in appadaptive gridding
technigues, which automatically refine the mesh in regidmsgh spatial error, and il-
lustrates the benefits this can bring over the telescopitoggh in which mesh refine-
ment is only used close to a pollution source. The first pattisfchapter (Sections 2 to
4) describes the algorithms used and present results fdDHhe/perbolic conservation
law with a nonlinear source term, of Leveque and Yee [18].sTdgceptively simple
problem may be used to show that spurious numerical solyginomena, such as
incorrect wave speeds may occur when insufficient spatétamporal resolution are
used. Sections 5 to 10 of the chapter will provide a summaithefresults for more
complex two dimensional atmospheric problems (see [32]jenthree dimensional
problems (see [33, 12]) are considered in Sections 10 to id g€neral approach used
here is to employ positivity-preserving spatial discratian schemes in the method of
lines to reduce the PDE to a system of ordinary differentjglaions (ODES) in time.
For reacting flow problems the numerical results will showtthpatial mesh points
should be chosen with great care to reflect the true solutidtheoPDE and to avoid
generating significant but spurious numerical solutionifess. This is achieved here
by using adaptive mesh algorithms, [3], to control the spatiscretisation error by
refining and coarsening the mesh.

As reacting flow problems require the use of implicit methtmisesolve the fast
transients associated with some chemistry species, thetasing implicit methods
may be high unless great care is taken with numerical linkpgabaa. In the present
work this is done by making use of an approach developed fosgpheric chemistry
solvers, [35, 2]. This approach uses a Gauss-Seidel erapplied to the source terms
alone. The advective terms are effectively treated explibut without introducing a
splitting error. In three dimensions because of the needdsguve positivity of the
solution and to be more concerned about efficiency we havaiaksd a more traditional
operator splitting approach. In particular the overall dosion to be drawn from the



computational evidence for one, two and three dimensior@lpms is that having
good mesh resolution in certain parts of the solution donsaof critical importance
with regard to obtaining a meaningful solution.

2 Spatial Discretisation and Time Integration

The 1D Leveque and Yee problem [18], is given by
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and is the linear advection with a source term that is "sfiff’large 1. The initial and
boundary values (at= 0) are defined by
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wherex, = 0.1 or 0.3 in the cases considered here. The infinite domain will atso b
truncated td0, 1] for the cases considered here, as this is sufficient to detnad@she
behaviour of the methods employed. A simple outflow boundangition is then used
atx = 1. The solution of equation (1) is a discontinuity movingwitonstant speed
and has a potentially large source term that only becoméseaat the discontinuity,
[18].

Defining a spatial mesh & x; < ... < Xy = 1 and the vector of valued with
component$); (t) ~ u(x,,t) whereu(x,t) is the exact solution to the p.d.e. We define
U, (t) as the exact solution to the 0.d.e. system derived by spsatmi-discretization of
the p.d.e. and given by

U = Ey(tU(), U(0) given (2)
This true solution[U (tn)]P_, is approximated byV (t,)]?_, at set of discrete time
0 = t; <t; <..<tp=te by the time integrator. The form of the o.d.e. system
given by equation (2) at timeis given by

En(tn,U(th) = Ef (tn,U (tn)) + ES (tn, U (tn)). ©)

where the superscriptsands denote the flow and source term parts of the funckon
as defined below. The functidif\l(tn,g(tn)) is the second-order limited discretisation
of the advective terms in equation (1) whose componentsiaea §y

(B(rj,1)  B(rj_1,1) | (Uj(t) —U;_4(1))
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The function B is a limiter such as that of van Leer: (see [3])

B(r,1) = UL andr, = 17 T17 (5)
1+r, "N T U m-u L0

j?



The vectorER (t,U (t)) represents the approximate spatial integration of thecsour
term which is defined byl— fx”? Y(U(xt))dxand is evaluated by using the midpoint

guadrature rule so that ifsh component is:

FR(tU; (1) = w(U;). (6)

The time integration method used here (mostly for simplioftanalysis) is the Back-
ward Euler method defined by

V(th 1) = V(ta) + En(th V(4 1))- (7

In the case when a modified Newton method is used to solve thinear equations
at each timestep, this constitutes the major computatitasl of a method of lines
calculation. In cases where large o.d.e. systems resuit fne@ discretization of flow
problems with many chemical species the c.p.u. times max&essive unless special
iterative methods are used.

The approach of [4] is used to neglect the advectlve te}r,ms av , and to concen-

trate on the Jacobian of the source tefns- av * when forming the Newton iteration
matrix. This approach, in the case when no source terms asept, corresponds to us-
ing functional iteration for the advective calculationed@, 4]. The matrid — AtyJs

is the Newton iteration matrix of that part of the o.d.e. systcorresponding to the
discretization of the time derivatives and the source testoge. This matrix is thus
block-diagonal with as many blocks as there are spatial @dsnand with each block
having as many rows and columns as there are p.d.e.s. Théhfdc single block
relates only to the chemistry within one cell means that ddatk’s equations may be
solved independently by using a Gauss-Seidel iteratioiis dproach has been used
with great success for atmospheric chemistry problemg, [B%e nonlinear equations
iteration employed here may thus be written as

[l —AtJ] [V 1( n+1) AL n+1)] [(tn+l) (8)

wherer (t7.,) = —V™(t,.q) +V(ta) + AtE(t, 1, V™(t,, ). Providing that the
iteration converges, this approximation has no adversaatgn accuracy. In order for
this iteration to converge with a rate of convergengci is necessary, [2], that

I —At T ALY || =r1c  whererg< 1. (9)

Using the identity| ab||<|[ a[||| b||, and definingl; asJ; = (Ax)J; gives:

At
IEAIEN I BN} (10)

Hence the convergence restriction may be interpretetedCGis atype condition. For
example in the case of the p.d.e. in ()i AtJg is a diagonal matrix with entries

1+ At 5 9% where
oy

N p(V) (11)



and wherg(V) = 3V2—3V 4 0.5 gives a CFL type condition that allows larger timesteps
as increases. The functiop(V) is bounded between the value$ @nd—0.25 for
solution values in the rand8, 1].

3 Space-Time Error Balancing Control.

Hyperbolic p.d.e.s are often solved by using a CFL conditmselect the timestep.
The topic of choosing a stable stepsize for such problembéas considered in detail
by Berzins and Ware [6]. Although a CFL condition indicatelsern the underlying
flow without reactions is stable, it is still necessary tothetrequired accuracy for the
chemistry terms. In most time dependent p.d.e. codes aitlétl stability control is
employed or a standard o.d.e. solver is used which contreléocal errod, ,(t,,, 1)
with respect to a user supplied accuracy tolerance. Effi¢iere integration requires
that the spatial and temporal errors are roughly the samer ofdnagnitude. The need
for spatial error estimates unpolluted by temporal erreguires that the spatial error
is the larger of the two. One alternative approach develdgyeBerzins [3, 4] is to use
a local error per unit step control in which the time localoerf denoted bye(t)) is
controlled so as to be smaller than the local growth in théiglerror over the timestep
(denoted byestt)). In the case of the Backward Euler method the standard &vcait
estimate at,_ , is defined age(t,, ;) and is estimated in standard ODE codes by

At

lg(tn-g-l) = 7 [EN (tn+17\l(tn+1)) - EN (tm\_/(tn)] .
At?..
X T\l(tml) (12)
where the functiorr is defined by equation (2). The error control of [3] is defingd b
l[len 1 (th) | < €l estt, q) |l (13)

where 0< & < 1 is a balancing factor arebtt, . ,) represents the local growth in time

of the spatial discretisation error frotq to t,, ;, assuming that the error is zero at
th. Once the primary solution has been computed using the meih&ection 2, a
secondary solution is estimated at same time step with aimnapseheme of different
order and a different quadrature rule for source term irgégn. The difference of
these two computed solution is then taken as an estimate ¢dd¢hal growth in time of

the spatial discretization error in the same way as in [3f phmary solutiotV(t,,, ;)
starting fromV (t,) is computed in the standard way as described in Section 2. The
secondary solutiow/(t,, ;) is computed by solving

W(t) = G (t,W() + G°(tLW(1), W(th)=V(tn). (14)

with initial valueV,,, wheres' andGS are the first order advective term and the source
terms which are evaluated using a linear approximation oh gderval and the trapezio-
dalrule i.e.
W(t) —W,_4(t)
f . ( i j—1
GitW() = ———Fx



Gi(t,W(t) = %(W(\Nj—l(t)) +20(W (1)) + YW (1) (15)

Estimatinged(t,,, ;) by applying the Backward Euler Method to (14) subtractednfro
(7) with one iteration of the modified Newton iteration of thesvious section, as in
[4], gives
[I - At‘JS] [e_itrﬂ»l)] = At [Ef (tn+l:\l(tn+l)) - gf (tn+1:\l(tn+1)) (16)
+ Es(tn+l7\_/(tn+l)) - gs(tn+17\_/(tn+l)) ]

whereegt, ;) ~ V(t, 1) —W(t,, ).

4 Fixed and Adaptive Mesh Solutions

In the case of the problem defined by equation (1) comparisens made between the
standard local error control approach in which absoluteratfative tolerances RTOL
and ATOL are defined, (see Pennington and Berzins, [21]) ta@eew approach de-
fined by (13). The choice of the parameteis an important factor in the performance
of the second approach. In selecting this parameter thédoowaith in the spatial dis-
cretization error should dominate the temporal error aredvitork needed should not
be excessive. Obviously the larger the value dtie fewer ODE time steps there will
be, and the smaller the value afthe more steps there will be. A good compromise
between efficiency and accuracy is to wsé the range 0.1 to 0.3. The numerical
experiments described by Ahmad [1] confirm the results okBer[3], although it is
noted that for some combustion problerasnay have to be reduced to belowl0

An important feature of solving the problem defined by equai(l) is that the
numerical solution may move with an incorrect wave speedvefjae and Yee [18]
showed that the step size and the mesh size should ﬁﬁi @ avoid spurious solutions
being generated. In order to illustrate these results we kekenx, = 0.3 in equation
(1), Ax =0.02 and used a fixed time stépt= 0.015. The product of time stefat
and the reaction ratg determines the stiffness of the system. Figure(1) shows the
comparison of the computed solution and exact solution-a0.3 for u =100, and
1000 Atu= 1.5 and 15) respectively. It is evident from Figure (1) tfatsmaller
Atu the strategy works well and good results are obtained. Whem = 15, the
discontinuity has stopped at x = 0.3 and when a trapezoidaligure rule was used for
the source term, a large undershoot and overshoot occuritheé inumerical solution.
Leveque and Yees [18] pointed out that the source of difficidtthe discontinuity
in the solution and that a much finer grid is needed there agdesied deploying a
method that is capable of increasing the spatial resolutéar the discontinuity rather
than excessive refinement of the overall grid.

For this purpose a monitor function was used here to guiddeiesion as to where
to refine or coarsen the mesh. A commonly used monitor fundsithe second spatial
derivative which however tends to infinity around a shocK [@4 the mesh is refined.
In order to overcome this we have introduced a new monitoction based upon the
local growth in time spatial errastas defined by equation (13). This leads to the use
of local grid refinement, and with the help of the error balag@pproach described in
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Figure 1. Comparison between true solution(line) and nizaksolution(dots) using
local error control with 0.01 relative tolerance ang 10~° absolute tolerance.

Section 3 it is possible to create a new refined grid directlyminding the location of
the source. For this purpose we have modified the approachiled by Pennington
and Berzins [21]. The remesh routine bisects the mesh céleifmonitor function
is too large or combines two cells into one if the monitor flime is well below the
required value. In the experiments here the remeshingrreusi called on every sec-
ond time step. The adaptive mesh initially starts with 2enpoiand when the error
was larger that specified limit then the corresponding eefliibdivided into two with
a 75 maximum points being allowed for the case shown in Figuiehich shows the
front moving correctly. The conclusion from these experitsds that for problems
combining reaction type terms and advection operators skeofladaptive mesh tech-
nigues within a method of lines framework may be a criticaltda is ensuring that
a good numerical solution is obtained. The remainder of ¢chizpter will show that
this conclusion also applies to atmospheric modelling |enmis in two and three space
dimensions.

5 Atmospheric Modelling Problem

In order to illustrate the application of the method of linesatmospheric modelling
problems, the model problem considered here involves tieedntion of a power plant
plume with background emissions. Such a power plant pluragighly concentrated
source of NOx (NO and Ng) emissions which can be carried through the atmosphere
for hundreds of kilometres, and so provides a stringentdesthether adaptive grid-
ding methods can lead to more reliable results for complekiracale models. The
test conducted here involves considering the interactidheoplume with its surround-
ings, and in the model we look at background scenarios of tledm and polluted air
(Tomlin et al, [32]). The test case model covers a region &:8600 km. To keep the
model simple, and therefore reveal particular issueseaditt the mesh, we have used a
reduced chemical scheme with idealised dispersion camditiThe domain is approxi-
mated by an unstructured triangular mesh in two space diimesnand by a tetrahedral
mesh in three space dimensions. In both cases the mesh cebpetlaelapted to higher
and higher levels of refinement according to errors in sotutomponents. The so-
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Figure 2: True Solution (lines) vs Adaptive Mesh Solutiont]}, t=0.6.

lution technique is based on the spatial discretisation sétaof advection/diffusion
equations on the unstructured mesh using a finite volumelifiited scheme.
The atmospheric diffusion equation in three space dimess®ogiven by:

des _ d(ucs) d(wes) d(ves) 0 dcs\ |, 0 dcs
ot~ ox dy gz Tax \(ax ) tay Mgy

7] Jcs
+0_z (KZE> +Rs(Cy,Cy, ..., Cq) + Es— (Kyg+ Kog)Cs, a7

where g is the concentration of the s'th compound, u,w, are horizbwind veloci-
ties, K¢ and K are turbulent diffusivity coefficients arkh andk,, are dry and wet
deposition velocities respectivelys Bescribes the distribution of emission sources for
the s'th compound anddRs the chemical reaction term which may contain nonlinear
terms in ¢. Fornpdechemical species ampdedimensional set of p.d.e.s is formed
describing the rates of change of species concentratiartiove and space, where each
is coupled through the nonlinear chemical reaction terms.

In the first instance the restriction to two space dimensiassthe advantage that
it is possible to concentrate on showing that standard adaptmerical methods have
the potential to reveal detail not previously observed impd models. The extension
to three dimensions will then show that the same conclustansbe drawn but that
there are additional benefits from using mesh refinemenitcedist

The simplified chemical mechanism used is shown in Table Dboflih et al. [32]
and contains only 10 species. Despite its simplicity it espnts the main features of
a tropospheric mechanism, namely the competition of thieefasilibrating inorganic
reactions:



0O,
NO,+hv — O3+NO

NO+0O;, — NO,+0,

with the chemistry of volatile organic compounds (voc’shigh occurs on a much
slower time-scale. This separation in time-scales geesrstiffness in the resulting
equations. The voc reactions are represented by reactieansirmgle species, formalde-
hyde. This is unrealistic in terms of the actual emissionsegated in the environment,
but the investigation of fully speciated voc’s is not the gse of the present study.
We therefore wished to include the minimum number of reastiwhich would lead to
the generation of ozone at large distances from the NOx sollreposition processes
have not been included in the first instance.

In the work of Tomlin et al [32] the model was used to represhrte separate
scenarios of a plume of concentrated NOx emissions beinmedied through a back-
ground of clean and polluted air. Only one set of these result shown here. This
case represents a clean air situation where the backgreueld for NOx and voc’s are
low. Initial conditions for background concentrations &®,: 1.00 x108 (molecule
cm3), NO : 1.00x10® (molecule cmi®), O5: 5.00 x 10 (molecule cm®), HCHO
: 1.00 x 10 (molecule cm3). Concentrations in the background change diurnally as
the chemical transformations take place according to pysitorates, temperature and
concentration changes.

The power station was taken to be a separate source of NOxhansdurce was
represented in a slightly different way. In this case theratay region is treated as a
subdomain and the concentration in the chimney set as amahtsoundary condition.
In terms of the mesh generation this ensures that the irgtidl will contain more
elements close to the concentrated emission source. Tsiigilsr in methodology to
the telescopic approach. The concentration in the chimaegsponds to an emission
rate of NOx of 400kg hrl. We have considered only 10% of the NOx to be emitted as
NO.,.

i\constant wind speed of 5m&in the x-direction was used and the eddy diffusion
parameter&, andKy was set at 300 As ! for all species.

6 Triangular Finite Volume Space Discretization Method.

The basis of the numerical method is the spatial discrétisaif the p.d.e.s in equation
(17) on unstructured triangular meshes as used in the seftBRRINT2D (Berzins et
al. [7]). The Method of Lines approach then leads to a systemde.s in time can
then be solved as an initial value problem, and a variety wigrtul software tools exist
for this purpose (Berzins et al, [5] ). For advection dom@agproblems it is important
to choose a discretisation scheme which preserves thegalhyange of the solution.
Unstructured triangular meshes are popular with finite re{element practition-
ers because of their ability to deal with general two-dini@mal geometries. In terms
of application to multi-scale atmospheric problems, weraredealing with complex
physical geometries, but unstructured meshes provide a guethod of resolving



the complex structures formed by the interaction of chemiahd flow in the atmo-
sphere and by the varying types of emission sources. Theurstnuctured represents
the fact that each node in the mesh may be surrounded by anperuh triangles
whereas in a structured mesh this number would be fixed. Tweeatisation of advec-
tion/diffusion/reaction equations on unstructured msskil now be discussed.

For systems of equations such as (17) it is useful to consideadvective and
diffusive fluxes separately in terms of the discretisatibm.the present work, a flux
limited, cell-centered, finite volume discretization seteeof Berzins and Ware [6, 4]
was chosen. This method enables accurate solutions to &erdeed for both smooth
and discontinuous flows by making use of the local Riemanwesdlux techniques
(originally developed for the Euler equations) for the actixe parts of the fluxes, and
centered schemes for the diffusive part. The scheme usethdotreatment of the
advective terms is an extension to irregular triangularime®f the nonlinear scheme
described by Spekreijse [29] for regular Cartesian meshies.scheme of Berzins and
Ware has the desirable properties (see Chock [11]) of pragepositivity, eliminating
spurious oscillations and restricting the amount of diffasby the use of a nonlinear
limiter function. Recent surveys of methods for the adwetiquation ([34], [36])
have suggested the use of a very similar scheme to Spekfeijsegular Cartesian
meshes, preferring it to schemes such as Flux Correctedspoan

To illustrate this method, consider the advection-reactquation that extends
equation (1) to two space dimensions:

Z—tc = —%—%—V\)’f + R(c) ,t € (O,te), (xy) € Q (18)
with appropriate boundary and initial conditions. A finitelume type approach is
adopted in which the solution value at the centroid of trlang(x;,y;), is ¢; and the
solutions at the centroids of the triangles surroundirgngiei arec;, c andg,. In-
tegration of equation (18) on thth triangle, which has are&, use of the divergence
theorem, and the evaluation of the line integral along edge &y the midpoint quadra-
ture rule gives an o.d.e. in time:

dc 1
d_(t:I - A (UG AYg 1 — VG Ao 1 + UG;AY;

—VGjAXy 5+ UG AY, o — VG AX, o) + R(C)), (19)

wherelx; = Xx; — X, Ay;; =y, —Y;. The fluxesug; andvg; in thex andy directions
respectively are evaluated at the midpoint of the triangigesseparating the triangles
associated witlt; andc;. These fluxes are evaluated by taking account of the flow
directions with respect to the orientation of the trianglEhis is achieved by using
either theleft or right solution values depending on the direction of advectiontzowd
each edge is aligned. Thdsét andright solution values for each edge in a triangle are
defined as théeft solution value being that internal to tlid triangle, and theight
solution value being that external to triangleConsider for example the case shown
in Figure (3) wheru is positive andg < x;. This means that the component of the

advection s flowing from nodeto nodej, and sac;; = c}j . Similarly whenv is positive
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they component of the wind is blowing from no#t¢o nodei and soc;, = cj,. Hence,
equation (19) may be written as

dc 1
d_(t:I =- A (uq!kAyO,l — VG Xy 1 + uc'ijAyLz
*Vdij BXy 5+ ug Ay, — VG, Ay 0) +R(c), (20)

A simple first-order scheme usq'§: c, C{j = ¢; on the edge between triangieand.

This scheme is too diffusive and so Berzins and Ware [6] usamaptex interpolation
scheme to obtain tHeft andright values on each edge. The interpolants in this second
order scheme, use a constrained or limited form of the smiutbtained from the six
triangles surrounding an edge giving a ten triangle stdocithe discretization of the
convective terms on each triangle. For example, the VE”IJB constructed by forming

Cr

Cm
2 (X5.Y2)

® centroid solution values
O interpolated solution values
<> midpoints of edges

Figure 3: Interpolants used in irregular mesh flux calcolati

a linear interpolant using the solution valugs ¢, andc, at the three centroids. An
alternative interpretation is that linear extrapolatisfeing used based on the solution
valueg; and an intermediate solution value (itself calculated bgdir interpolationg;,
which lies on the line joining the centroids at whighandc, are defined (see Figure
3)i.e.

B 21

R TP 1)

)

dj=c+o(g;)d

where the argumer8is a ratio of solution gradients defined in a similar way to the
ratior; in equation (5), see [6] and the generic tenly, denotes the positive distance
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between pointa andb. For exampled;; ; denotes the positive distance between points
ij andi, see Figure (3), as defined by

djj; = \/(Xi_)(ij)2+(yi_yij)27 (22)

where(xij ,yij) are the co-ordinates cqj . In order to preserve positivity in the nu-
merical solution, the limiter functiom® is used and has to satis#y(S)/S< 1, see [6].
These conditions are satisfied, for example, by a modifiedean limiter defined by:

®(S) = (S+[S)/(1+Max(1,[5)) - (23)

The valuecj; is defined in a similar way using the centroid valeescs andc; . This
scheme is of second order accuracy, see [6]. The diffusionstare discretised using
a finite volume approach to reduce the integrals of secondaties to the evaluation
of first derivatives at the midpoints of edges. These firsivdéves are then evalu-
ated by differentiating a bilinear interpolant based onrfaiid-point values, see [7].
The boundary conditions are implemented by including therthé definitions of the
advective and diffusive fluxes at the boundary.

7 Time Integration.

A method of lines approach with the above spatial discrétimascheme results in
a system of o.d.e.s in time which are integrated using the &RRINT [5] with the
Theta or BDF options which are specially designed for thetsmh of stiff systems with
moderate accuracy and automatic control of the local errdginie. Once the p.d.e.s
have been discretised in space we are left with a large systeroupled o.d.e.s of
dimensiorN = mx npdewheremis the number of triangles in the mesh, arubethe
number of species. These equations may now be written iratine $orm as equation
(2) as
¢ = Ey (t,c(t)), c(0) given, (24)

where, in the case of a single species, the vectby, is defined by
ct) = [c(Xg, Y1), ., C(Xy, Y t) ]T . The pointx,y; is the centre of théth cell and
C(t) is defined as a numerical approximation to the exact solutiche p.d.e. evalu-
ated at the centroid i.€(x;, y;,t) . The method of lines approach is used to numerically
integrate equation (24) thus generating an approxima@r), to the vector of exact
p.d.e. solution values at the mesh poigts).

The Theta method (Berzins and Ware, [6]), which has been fmetthe experi-
ments described here, defines the numerical solutig at= t, + At, whereAt is the
time step size, as denoted 6t ,), by:

Ct,;1) = C(tn) + (1-6)At Q(tn) + 6 AtEy(t,,1,C(t, 1)), (25)
in which C(t,) andC(t,,) are the numerical solution and its time derivative at the pre

vious timet, and@ = 0.55 . This system of equations is solved by using the approach
described in Section 2. In this case the malkiis block-diagonal with as many block
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as there are triangles and with each block having as many ao@<olumns as there
are p.d.e.s. The fact that the blocks relate only to the cteyrplus source/sink terms
within each cell, the equations may be solved independersilyg LU decomposi-
tion, or even more efficiently by using Gauss Seidel iterstjsee Verwer [35]. This
approach may also be interpreted as approximating the flow fie- At6J;] by the

identity matrix, as is done when using functional iteratwith the Theta method ap-
plied to flow alone (Berzins, [3]). Since the spatial disization method connects

each triangle to as many as ten others it follows that theim%tr— AtO Jf} may
have a much more complex sparsity pattern than that of thekldeagonal matrix
[l — At@ Js]. Approximating the matrix{l — At Jf] by the identity matrix (Berzins

and Ware, [6]) thus eliminates a large number of the full B#oo entries. Moreover
the use of Gauss Seidel iteration makes it possible to sheaetproblems without any
matrices being stored. This approach is particularly usefthree space dimensional
problems.

The original approach of Berzins [3] was only extended torsederm problems
by Ahmad and Berzins [1]. As a consequence the calculatierfsfmed by Tomlin et
al., [32], used the standard local error approach given by:

| le(ty,) || < TOL (26)

wherele is the local error defined as in equations (12) and (13).

8 Mesh Generation and Adaptivity.

The initial unstructured meshes used in SPRINT2D are aldfaten a geometry de-
scription using the Geompack (Joe and Simpson, [16]) mesargeor. These meshes
are then refined and coarsened by the Triad adaptivity moghieh uses data struc-
tures to enable efficient mesh adaptation.

Since the initial mesh is unstructured we have to be veryfahie choosing a
data structure which provides the necessary informatiorrdtining and derefining
the mesh. When using a structured mesh it is possible to numbsh vertices or
elements explicitly. This is not possible for unstructuneglshes and therefore the data
structure must provide the necessary connectivity. Theoiapt factor is to maintain
the quality of the triangle as the mesh is refined and coadséertas is achieved using
a tree-like data structure with a method of refinement basati@regular subdivision
of triangles. These may later be coalesced into the paiangle when coarsening the
mesh. This process is called local h-refinement, since tkesof the original mesh
do not move and we are simply subdividing the original eletnemhree examples of
adaptive meshes for a single moving front at different tirass shown in Figure 4.
These meshes show how the adaptive mesh follows the frohtras/es in time across
the spatial domain. Similar procedures are extensiveld usth a wide range of both
finite element and volume methods for a very broad range o$ighi/problems. Once
a method of refinement and derefinement has been impleméntenhains to decide
on a suitable criterion for the application of the adapfivithe ideal situation would
be that the decision to refine or derefine would be made on g &uitomatic basis
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Figure 4: Sequence of Refined Meshes

with no user input necessary. In practice a combination afigomatic technique and
some knowledge of the physical properties of the systemad.ughe technique used
in this work is based on the calculation of spatial errormeates. Low and high order
solutions are obtained and the difference between thens ghe spatial error, as in
Section 3 and in [3] but without the extension to source témfit]. The algorithm can
then choose to refine in regions of high spatial error by camepa with a user defined
tolerance. For théh p.d.e. component on thjh triangle, a local error esumatg (t)

is calculated from the difference between the solutiongisirfirst order method and
that using a second order method. For time dependent pthie sstimate shows how
the spatial error grows locally over a time step. A refinemiedicator for thejth
triangle is defined by an average scaled erseri() measurement over allpdep.d.e.s
using supplied absolute and relative tolerances:

we ey
serr, = ’ ,
! i; atol/A; +rtol; x G ;

(27)

whereatol andrtol are the absolute and relative error tolerances. This faatiari for
the scaled error provides a flexible way to weight the refingnt@vards any p.d.e. er-
ror. An integer refinement level indicator is calculatedfirthis scaled error to give the
number of times the triangle should be refined or derefinatteSihe error estimate is
applied at the end of a time-step it is too late to make theeafant decision. Methods
are therefore used for the prediction of the growth of thetiaparror using linear or
quadratic interpolants. The decision about whether toeefitriangle is based on these
predictions, and the estimate made at the end of the tinpeeste be used to predict
errors at future time-steps. Generally it is found thatéasgatial errors coincide with
regions of steep spatial gradients. The spatial error eséiran also be used to indicate
when the solution is being solved too accurately and car@tdiwhich regions can be
coarsened.

For applications such as atmospheric modelling it is imgoarthat a maximum
level of refinement can be set, to prevent the code from aupdi too high a level
in regions with concentrated emissions. This is especiallyortant around point or
highly concentrated area sources. Here, because of theenaituhe source, steep
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Figure 5: The structure of the level 0 mesh. The length of thraain is 300km and the
width 200km. The smallest and largest mesh lengths are gjppately 5 and 60km
respectively for the level zero domain.

spatial gradients are likely to persist down to very highelevof refinement. This
would have the consequence that the number of elements a e p.d.e.s had to
be discretised would become prohibitively large. For thoWing test problems the
maximum level of refinment was therefore limited to level 3.

9 Single Source Pollution Plume Example

The example used here to illustrate the effectiveness oatlaptive mesh is that of
a single plume pollution source. In this case the initial wimensional mesh was
generated with only 100 elements. Itis difficult to relate $ize of unstructured meshes
directly to regular rectangular ones, but our original mests comparable to the size
of mesh generally used in regional scale atmospheric mathelargest grid cell being
approximately 60km along its longest edge. Close to the nhinthe mesh was refined
to elements of length 5km ensuring that it would be refined teasonable resolution
in this region of steep gradients. If we allow the mesh to eefimo levels then the
smallest possible mesh size close to the chimney will bekb2i length. Spatial
errors in the concentration of NO were chosen as the critefriom which to further
refine the mesh. Test runs showed that regions of high spatiat coincided with
steep spatial gradients. The mesh can therefore be coeditteadapt around steep NO
concentration gradients. Each run was carried out over mgef 48 hours starting
from midnight on day 1, so that the diurnal variations coutddibserved. We present
here only a selection of the results which illustrate themfaatures relating to the
mesh adaptation. Figures5 and 6 allow a comparison to be betdeen the structure
of the base mesh and a mesh that has been adapted up to level.2@bn day 2. In
these figures the sides of the polygons represent the destagteveen cell centres on
the triangular mesh. The main area of mesh refinement is dl@glume edges close
to the chimney, indicating that there is a high level of stmoe in these regions. On the
coarse mesh the plume is dispersed over a much larger areanhae fine mesh and
most of the plume structure is lost. Close to the stack the&atnation of Q is much
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Figure 6: The structure of the level 2 adaptive mesh.

lower than that in the background because of high NOx comagomns. The inorganic
chemistry is dominant in this region and the ozone is conslinyehe reaction: NO +
O3 — NO, + O,

In Figure 7 we present a cross plume profile of the,NOncentrations at a distance
of 10km downwind of the chimney stack for case A at the same ts1the previous
figure. The figure clearly shows the features at the edge gditivae which are revealed
by the adaptive solution. From the base mesh, where thendistaetween elements
along the y-axis close to the stack is 20km, it appears theattimcentration of N©
rises to a peak in the centre of the plume. If the mesh is refmbdyher levels then we
start to see the true structure of the plume emerging. Widlval I3 solution we can see
that the peak concentrations are actually found along thesdf the plume and that
the concentration of N©drops to very low levels at the plume centre. From the area
under these curves it is found that there is a 30% differeeteden the overall level
0 and the level 3 concentrations. This shows that not onlpéak concentrations, but
the total integrated concentrations are very differenttfer different levels of mesh
adaptation. It is clear therefore that using a very coarikigregions of steep spatial
gradients can lead to an over estimate of total pollutantentrations for systems with
nonlinear chemical schemes.

Figures 8, 9 show that in the case considered here the plumreiisdispersed in the
level 0 case and the spatial distribution of ozone is theegftaccurately represented.
For the clean air case, the levels of ozone drop considenalthe plume compared to
the background since the levels of NO are much higher therethié level O case these
lowered concentrations spread over very large distancésgoiw the over-dispersion
of the plume. The location of reduced/raised concentratwiti therefore be incorrect
for the level O results in all three cases. For each scenaitevel O solution leads to a
smoothing out of the ozone profiles so that the true structaused by the interaction
of the plume with background air is missed.

The striking result is that the adaptive solution reveatgudess such as peak levels
of NO, and Q, which could not be detected using a coarse mesh. The chamgesin
refinement also resulted in a change in overall or integrateatentration levels. This
indicates that due to strongly nonlinear terms in the chahn@action rates, the source
terms in the p.d.e. will be mesh dependent. Without usingearfiesh over the whole
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Figure 7: Cross plume NOprofiles 10km from stack in molecules ci) showing how
the level 3 solution captures the structure of the plume.
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Figure 8: Ozone contours for case C, clean air, level O catmn.

domain so that the concentrations in neighbouring celfeddnly very little, the ef-
fects of this nonlinearity could be quite significant. Toued the effects it is important
to refine the mesh at least in regions of steep spatial gredighis has been partially
addressed by the telescopic methods presently used in aityqmodels. However,
the present test case has shown that steep gradients carabtamg distances down-
wind from the source, for example the change in ozone corations along the edges
of the plume. Adaptive algorithms seem to present a suagessthod of achieving
accuracy in such regions and can do so in an automatic way.nigie limitation of
the above approach is that only two space dimensions havedoesidered. The next
issue to be resolved is whether mesh adaptation is necdsstny vertical direction
and how appropriate a method of lines approach is in threeesgamensions. These
are the issues considered in the next five sections.
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Figure 9: Ozone contours for case C, clean air, level 2 catmris.

10 Three Space Dimensional Computations

The standard approach with three space dimensional atransplispersion problems
is that in the vertical domain usually a stretched mesh isluskacing more solution
points close to the ground. As in the horizontal domain, #eplution of the mesh
in the vertical direction affects the vertical mixing of pdghnt species. The use of
adaptive meshes in the vertical domain has so far receittedlditention.

In the work described here we have used two approaches fangahree space-
dimensional atmospheric dispersion problems. Both ampresuse a fully 3D un-
structured mesh based on tetrahedral elements. The firgtagipis described in [17]
and is the closer of the two approaches to the two dimenstasal described in Section
6 above in that a cell-centred finite volume scheme is useithéospatial discretization.
In this case a conventional method of lines approach is uasddon a modified ver-
sion of the SPRINT time integration package. The linearladig@pproach of Section
7 is used with a simple first order spatial discretizationrapph. The disadvantage of
this approach is that it requires a much larger number of ankirs for a given mesh
than if a cell-vertex approach is used with the solution wvkns being positioned at
the nodes of the mesh. The price that is paid for this redndtiche number of un-
knowns is an increase in the complexity of the discretizatiethod. There is also the
well-known difficulty that the cell-vertex discretizationay not preserve the positivity
of the solution on certain meshes due to the discretizafidimeodiffusion operator [9].
Although it may be possible to address this issue within ehoeof lines framework,
the need to preserve positivity and the different timescaleeded for advection and
chemistry have led us to employ an operator splitting apghroa

The next section describes the 3-D unstructured mesh tizatien method and
the flow integration scheme which advances the solutiomie tiSection 12 contains
the mesh adaptation strategy which changes the conngdtivite data structure of the
mesh in response to changes in the solutions. Section 18ieghe implicit-explicit
method used to solve the transport equation. is describedtio® 14 contains the
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test examples which have been designed to determine thetamge of mesh struc-
ture on both horizontal and vertical mixing for typical metelogical conditions. The
test problem describes the dispersion of pollutants frommgles source due to typical
boundary layer wind profiles. Finally, we draw conclusiom&ection 15 regarding the
importance of adaptive mesh method in solving 3-D atmosplfilew problems.

11 Three Space Dimensional Discretization

The atmospheric diffusion equation is discretized ovecEdeolumes that form the
dual mesh. The dual mesh is formed by constructing non-appihg volumes, re-
ferred to as dual cells, around each node. The dual mesh &ranedral grid is con-
structed by dividing each tetrahedron into four hexehedragmal volumes, by con-
necting the mid-edge points, face-centroids and the cehtriothe tetrahedron. The
control volume around a node 0 is thus formed by a polyhedrhi¥hich is the union
of all such hexahedra that share that node. The quadrildtems that constitute the
dual mesh may not all be planer. Each component of the diffusguations (17) is
discretized using same method. Hence, for simplicitygadtof treating the vectar,
we choose one of its componeasay, and describe its discretization.

11.1 Flux evaluation using edge-based operation

The evaluation of flux around a dual cell can be cast in an é&dged operation. Let
us discretize the divergence term

of dg oh

ox oy 0z
over the control volum&, enclosing the node 0. This divergence form is converted to
flux form using Gauss divergence theorem:

of dg oh B
/Qo(ﬁerjLE)dQ = /{}Qo(fnx+gny+hnz)d5

Z(f5x+95y+h5z)-, (28)

where the summation is over all the dual mesh faces that fherbbundary of the
control volume around the node 0 and the ar8a$§, S, are projections of the dual
quadrilateral face.

Consider edge i, formed by nodes 0 and N(i). The quadrilafacegs of the dual
mesh that are connected to the edge at its mid-point P arersimofigure 10. The
number of such quadrilateral faces attached to an edge departhe number of tetra-
hedra neighbours to that edge. There are four tetrahedringhthe edge i in Figure
10. The projected aredy;, associated with the edge i is calculated in terms of the
quadrilateral face areas, ,a,,a,,3,, as

4 4
(A)x = Zl(aj))(’ Ay = Zl(aj)w (A)z (29)
1= I=

Il
M-
L
N
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N(i)

Figure 10: Dual mesh faces attached to an edge.

The projections are computed so that the area vector poirtgand from the control
volume surface associated with a node. The boundary of thealovolume around
the node 0 is formed by the union of all such aréaassociated with each edge i that
share the node 0. The contribution of the edge i to the fluxessadhe faces of the
control volume surrounding the node 0 is given by

fp (A)x+9p(A)y + hp(A)z.
Hence equation (28) is replaced by

L& +§_3+%>d9 =3 (Fp (At Gp(A)y+hp(A)),  (30)

0 1

where the sum is over the edges that share the node 0. The #txdsus calculated
on an edge-wise basis and conservation is enforced by praglagositive flux con-
tribution to one node and an equally opposite contributiothe other node that forms
the edge.

11.2 Adjustments of wind field

In an atmospheric pollution model, we often use observediwdiata which are not
mass conservative. Even mass conserving wind data mighienotass conservative
in the numerical sense when interpolated onto an unstredtgrid. Thus we want
to adjust the wind data in such a way that the observed datmamienally changed
while still satisfying the mass conservative property ntioadly. If u,v,w are the wind
velocities, then they must satisfy

Jdu oJv oJw
0x+ 0y+ 57 0 (31)
Here we enforce mass conservation using the variationalied technique of Mathur
and Peters [20]. The technique attempts to adjust the witatiye in a manner such
that the interpolated data are minimally changed in a leqsti® sense, and at the
same time, the adjusted values satisfy the mass consercatnstraint. The details are
provided by Ghorai et al. [12].
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We have adjusted one dimensional stable, neutral and uestabndary layer wind
velocities which are a function & The wind velocity is mass conservative analyti-
cally. The wind velocity remains mass conservative in thenerical sense in the base
mesh since the unstructured base mesh is regular. But titefigld is not numerically
mass conservative once the grid is refined (derefined). Aessmtative one dimen-
sional neutral boundary layer velocity is shown in Figurél)1 The velocity field is
adjusted in the refinement region but away from the refinemagibn, the velocity
almost remains unchanged.

(a) (b) (c)
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Figure 11: A representative variation of wind with height (a) stable, b) neutral and
(c) unstable boundary layers.

The base grid spacings along the vertical increases upwahis the grid quality
near the ground is worse due to large aspect ratio of thendran. The velocity cor-
rections decrease upwards as the refine region moves upv&argpose we have a re-
fine region at 150 meters height. The maximum correctiond 2yé4 and 06 cms !
respectively for thel,v andw components. For a refine region at 600 meters height the
corresponding components are 11, 11 afi8cms ™. And finally, the corresponding
corrections decreases t030 0.2 and 00002 cns 1 i at 1.8 km height. The neutral
boundary layer velocity increases from 0 to 9 Th sz increases from 0 to 3 km and
so the velocity corrections are small.

11.3 Advection scheme

The discretization of the term

d(uc) d(ve) I(wce)
/Q ox + oy + 0z

} dQ = / 0.FdQ,
'QO

0

where o
F = (u+vj+wk)c.
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is done by using an algorithm used is based on that of Bartlesersen [8] and uses
equation (30), to rewrite the equation above as an edge leaseputation.

> [Up (A)x+Vp(A)y +Wp (A)z] (¢)p = (Ep-A) (C)p, (32)

whereA, is called the edge-normal associated with the edge i andutineiss over alll
the edges sharing the node 0 with control volufye Evaluation of this expression
is by using the upwind limited approach of Barth and Jespe{8h The values of
limiter functions and gradient at the nodes are not caledlain a node by node basis
(which is CPU intensive), instead they are calculated indgeebased operation, [8, 9].
The time step for the advection scheme is chosen so thatsfisatthe CFL condition
(Wierse), [37]. The minimum of the time steps over all thetioess constitute the time
step for the advection scheme. Again this computation casabeinto an edge-based
operation.

11.4 Diffusion scheme

The diffusion term is discretized using the standard linfazsite element method or
the equivalent cell-vertex method described by Barth. Aghe key feature is that
the calculation of the diffusion terms is reordered so thahvolves edge gradient
terms, see Barth [9]. The disadvantage of the standard appns that it does not
preserve positivity of the solution for certain meshes,Bagh [9]. Very recent work
has provided methods that begin to address this issue, [23].

12 Mesh Adaptation

The cell-vertex scheme approach is hierarchical in natili@, 28], and is applica-
ble to meshes constructed from tetrahedral shaped elemEngsbasic mesh objects
of nodes edges facesand elementswvhich together form the computational domain
map onto the data objects within the adaptation algorittee tfata structure. The
data objects contains all flow and connectivity informasaifficient to adapt the mesh
structure and flow solution by either loa&finementr derefinemenprocedures. The
mesh adaptation strategy assumes that there exists a “gadit/ginitial unstructured
mesh covering the computational domain. The refinementgsadds nodes to this
base level mesh by edge, face and element subdivision, atith éhange to the mesh
being tracked within the code data structure by the constmiof a data hierarchy.
The derefinement is the inverse of refinement, where nodessfand elements are
removed from the mesh by working back through the local mefhament hierarchy.
The main adaptation is driven by refining and derefining el@redges. Thus, if an
edge is refined by the addition of a node along its length, dikethe elements which
share the (parent) edge under refinement must be refinede keate of derefinement
all the elements which share the node being removed mustrbéirdsd. Numerical cri-
teria derived from the flow field will mark an edge to either nefi derefine or remain
unchanged. It is necessary to make sure the edges targetedfif@ment and dere-
finement pass various conditions prior to their adaptafidrese conditions effectively
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decouple the regions of mesh refinement from those of dereéing meaning that, for
example, an element is not both derefined and refined in the adaptation step.

For reasons of both tetrahedral quality control and algarisimplicity only two
types of element subdivisions are used (Speares and Bgf28]s The first type of
subdivision is calledegular subdivisionwhere a new node bisects each edge of the
parent element resulting in eight new elements. The seggeldf dissectiongreen
subdivision introduces an extra node into parent tetrahedron, whiculsequently
connected to all the parent vertices and any additional :i@dech bisect the parent
edges. The green refinement removes inconsistently cagthect“hanging” nodes
without the introduction of additional edge refinement. Treen elements may be
of poorer quality in terms of aspect ratio and so the greemetd may not be further
refined. Fig. 12 demonstrates regular and green refinemeattiirahedron. The five

= /)
L

Figure 12: &) Regular refinement based on the subdivision of tetrahdalyalissection
of interior diagonal (1:8) andb) “green” refinement by addition of an interior node
(1:6).

possible refinement possibilities (if all the edges are efieed then the parent element
is regularly refined) give rise to between 6 and 14 child grelements.

The choice of adaptation criteria is very important sinagit produce either large
or small number of nodes depending on the condition useddaftdge for the adap-
tation. Also, when there are a large number of species, tbizetof a given criteria
might result in high resolution for some species but low hetson for the other species.
Let 0 andi be the nodes for a given edgg®, ). We calculateolg andtolc by

‘(C)o* (C)i| (C)o+ (C);
tolg = dist and tolc= > ,
where dist is the length of the edg€),i). We refine the edge(0,i) if tolg andtolc
exceed some tolerances, otherwise it is derefined. Also @nmuax level of refinement
is specified at the beginning so that if a edge is targetedefimement but it is in the
maximum level, then it is kept unchanged.

Suppose we have two edges witilg = 100 and 200. If we take the tolerance pa-
rameter,Tg say, fortolg equal to 150, then only the second edge is refined to maximum
level. On the other hand, Ty = 50, then both edges are refined to maximum level. We
expect that the solution error for edge wiiblg = 200 is greater than the error in the
edge withtolg = 100. It might be advantageous to use two set$;of 50 and 150.

If tolg > 150, than we refine an edge to maximum level and ik5lg < 150, then
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we refine an edge to the level just lower than the maximum $eviethus the idea is to
refine to the maximum level in the steepest gradient regiomsdolower levels in the
regions of less steep gradients.

13 Time Integration for 3D Problems

Although in two space dimensional calculations we have smghisticated space-
time error control techniques (Berzins et al.[7], Tomliragf32]), the need to preserve
positivity, to reduce computational cost and the need te tato account the different
timescales needed for the integration of advection and tgmhas led us to use
an operator splitting technique. In this approach, the dkeynis decoupled from the
transport. The main reason for the use of this is that it ismaasier to ensure positivity
of the solution components. The nonlinear chemistry paegrise to stiff ordinary
differential equations. We solve the chemistry part ushigg$PRINT time integration
methods (Berzins et al.,[7]) and also using Gauss-Seigation of Verwer [35]. The
transport step is considered first.df denotes the species concentration at time level
n, then the species concentration at the next time step i iye

"l ="+ Atg(c) + Atf(c) +S (33)

whereAt is the time step and(c) is the advection operator arfdc) is the diffusion
operator. In a fully explicit schemd, andg are evaluated using values at the time
level n. However, the time restriction for stability due to vertictiffusion is severe
since the grid spacings along the vertical can be small. &levee use an implicit-
explicit formulation for equation (33), where the adventie evaluated explicitly and
the diffusion is calculated implicitly. Again let us consithode i and let N(i) be the set
of nodes sharing the node i. The discretized form of the attwediffusion equation
for c at the node is given by

1
(A A= % 3 (™) + Q! (34)
jeN(1), j#i
where i is varied over all the nodes and

Qi:

c" My
AL +g(c )+_L.
The time step/\t is chosen to equal to the time step due to advection only. @hev
of time step mainly depends on the wind speed and the vertieah spacings near the
source. For the base mesh (described in the next sectiod)imgbe test examples,
At is = 35 s for the stable atmospheric boundary layer but decreased 8 s for the
unstable atmospheric boundary layer. Thus the time stemaler for higher wind
speed and vice versa. The system of equations given by equa#) is solved using
the Gauss-Seidel iteration technique with over-relaxasind the iteration is stopped
when the relative error is less than some prescribed toberamhe advantage of this
method is its computational efficiency. The disadvantagledswe are introducing an
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Figure 13: A representative mesh for the 3D atmosphericedgspn problem.

extra time integration and splitting error which is not éaguantified. In future work
we will revisit this issue of a standard method of lines apgioversus the operator
splitting approach used here.

14 Three Dimensional Test Examples

The advection scheme has been tested by advecting a puff @irdidhd a horizontal
circle without any diffusion [33]. The results showed tha peak almost remains con-
stant suggesting that very little artificial diffusion haken place for refined meshes.
Here we consider the solution of the combined advectiofusiibn problem with a
source term which relates to the long-range transport ofaipa species from an ele-
vated point source.

The background concentration of NO i$% 10'° molecules/cra The horizontal
dimensions of the domain are 96 km and 48 km alongcttuedy axis respectively. The
vertical height of the domain is 3 km. We consider a point sewat(6,24,0.24) km
location with a NO emission rate ofd8 x 10?4 molecules st. For simplicity, we con-
sider constant wind direction along tle-axis. We consider three different wind ve-
locity and vertical diffusion profiles which are represdiviaof stable, neutral and un-
stable boundary layers. The corresponding velocities antial diffusions are shown
in Figure 11 and Figure 14 from Seinfeld, [25].

The horizontal diffusion coefficient&x and Ky are kept constant and equal to
50 n?s L. The initial tetrahedral mesh is generated by dividing tle region into
cuboids and then subdividing a cuboid into 6 tetrahedrahelgs. The cuboids are
4 km and 4 km along thr andy axis respectively. The vertical height is divided into
nine layers and the layers are placed at.208, 0460, 0767, 113, 154, 20, 245 and
3 km heights respectively.
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Figure 14: A representative variation of vertical diffusiwith height for ) stable, b)
neutral and €) unstable boundary layers.

We compute the solutions on the adaptive grid and also clirecdcuracy against
a reference solution. The reference solution is obtainea fixed grid generated from
the base mesh by refining all the edges (to level 3) which B&aa box lying along
the x-axis through the source. We also compute the solutioa elescopic grid with
refinement around the source and compare the solution vathdaptive and reference
solution. The vertical turbulent diffusivity coefficierg small and confined very near
to the ground level for the stable boundary layer. Thus theceatration does not
mix much above the source height. The height of the referboseis 1/2 km and
the width is 10 km for the stable boundary layer. On the otteard the pollutant
becomes well mixed above the source height for the neuticluaistable boundary
layers. Thus a box of width 10 km and height 1 km is chosen ferrthutral and
unstable boundary layers. The total number of nodes in tleeeace grid is 114705
for the stable layer and 14247 for the neutral and unstable boundary layers. The
initial grid for the adaptive solution is generated by raimia region around the point
source. The refinement region lies horizontally within a 3 &intcle with the point
source as the centre and it lies vertically within 300 metiens the source. The initial
number of nodes is,842 for all the three boundary layers. The number of nodethtor
telescopic method remains®12 throughout the simulation period. On the other hand,
the adaptive grid is refined/derefined as the solution acdd&anthe time stegh\t for
the implicit-explicit scheme is small (usually less than ihate) due to small vertical
spacings near the ground level which effect the CFL conlititnstead of carrying
out the adaptation after every time step (which is CPU inte)sthe adaptation is
carried out approximately every 20 minutes. This preveartyd amount computational
effort being used to perhaps refine very few tetrahedra dawvh $tep and does not
significantly affect solution accuracy.
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14.1 Grid adaptation

Three sets of tolerance parameters are chosen for the eelgpiil method for each
boundary layer profile as described below. Te&dLgbe the maximum values oblg
outside the source region. The refinement criteria of thesdge

(a) Refine edges to level 3tiblc > 9 x 10'% andtolg > 0.002x TOLg
(b) Refine edges to level 2tiblc > 9 x 10'° andtolg > 0.00002x TOLg
(c) Refine edges to level 1tiblc > 9 x 10'° andtolg > 0.000001x TOLg

for the stable boundary layer.
The corresponding criteria for the neutral and unstablendavy layers are

(a) Refine edges to level 3tiblc > 10 andtolg > 0.01 x TOLg
(b) Refine edges to level 2tiblc > 10 andtolg > 0.0005x TOLg
(c) Refine edges to level 1tiblc > 10 andtolg > 0.00005x TOLg

The total number of nodes generated by the adaptive grid odegine 60000,
51,000 and 52000 for the stable, neutral and unstable boundary layepentively.
The adaptive grid refinement in the vertical plane downwiloth@ the plume centre-
line is shown in Fig. 15. The concentration is confined neargfound level due to
small vertical diffusion for the stable case. This produtigh spatial gradients within
this region and grid refinement is highest near the grounaceSihe vertical diffusion
for the other two cases is larger compared to the stable kaoyrdyer, the grid re-
finement extends to almost 1 km from the ground level. It is @&deresting to note
that at large distances downwind from the source, the adafchnique places more
mesh points at the top of the boundary layer domain. Thisa&sflihe steep gradients
found here due to a significant drop in the vertical diffustofficientk,. This result
may have significance for models attempting to represemdaiy layer transport and
mixing since the usual approach to vertical meshing is teeka greater number of
mesh points close to the ground and not the top of the bouralgey. For the unstable
boundary layer (see Fig. 18}, the concentration becomes uniformly mixed below the
inversion layer but very little diffusion is taking place@fe the inversion layer. The
gradientis high near the inversion layer compared to thdigra near the ground. Thus
the edges near the inversion layer refine to higher level thardges near the ground
level.

The adaptive grid refinement at three different locatiorth@ncross-wind direction
is shown by Ghorai et al.[12]. The concentration gradieatsain high for the stable
case but low for the neutral and unstable cases far downwiand the source. Thus
the edges for the stable stable boundary layer, far downthiedource, are refined to
higher level than for the neutral and unstable cases. Thdiemts are high near the
source for all the three cases and the edges are refined toatkiemom level for all of
them.
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Figure 15: Grid refinementin the vertical plane through therse along the downwind
direction for the &) stable, b) neutral and €) unstable boundary layers.

14.2 Downwind concentration

The solutions downwind along the plume centre-line in theugd level are shown
in Fig. 16. The maximum relative errors with respect to refae solutions are 16%,
20% and 20% approximately for the stable, neutral and ufestadundary layers re-
spectively. The maximum errors for the neutral and unsteades occur far downwind
the source where the magnitude of the concentrations ark. sfie solution on the

telescopic grid is accurate near the source region only dtieet refinement in this re-
gion. Far downwind from the source, the solution on the talpg grid differs widely

from the reference solution. The programs have been rualsesin a Origin2000 com-
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Figure 16: Comparison of the solution along the plume celirtesin the ground level
for the @) stable, b) neutral and €) unstable boundary layers. The solid, dotted and
dashed lines correspond the solutions in the referenesdapic and adaptive grids.

puter. For the neutral boundary layer, the total CPU timesaproximately 1, 7 and
25 hours for the telescopic, adaptive and reference grgpseively. Thus the adaptive
method is efficient compared to the other methods and achgeater accuracy in a
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reasonable time.

15 Discussions and conclusions

In this paper we have described a method of lines approadtetsdiution of transient
reacting flow problems. In particular, the atmosphericudifbn equation was solved
by using unstructured, adaptive meshes with the methode$ lin both two and three
space dimensions. However because of effieciency and\ptysitbnsiderations, the
three space dimensional case was solved by using operditingp The single most
important conclusion is that there are key features of plahsracteristics which can-
not be represented by the coarse meshes generally useddnakscale models.

The test cases have demonstrated that adaptive method$s/eamurh improved
accuracy when compared to telescopic refinement methodisdarly at large dis-
tances from the source. The adaptive mesh methods may &dessamesh points than
using fixed refined meshes since they are able to place mests pdiere the solution
requires them rather than in pre-defined locations whengeriey not be necessary for
solution accuracy. However, there is an extra cost with teptive codes, that of pe-
riodically refining/coarsening the mesh. In particulag thst cases have demonstrated
some important consequences of vertical mesh resolutidodiendary layer pollutant
dispersion.

It is usual in tropospheric dispersion models to stretchntilesh in the vertical do-
main and place more solution points near to the ground. Ggeound level sources
this often makes sense since it gives a better resolutioheirtitial stages of ver-
tical mixing and of deposition to the ground. However, ag&adistance from their
sources pollutants can become well mixed close to the granddhe important fea-
ture is their escape from the boundary layer to higher levélkhe troposphere. The
results here demonstrate that for neutral it unstable bagrdyers solution accuracy
requires refined meshes not close to the ground but close fotkrsion height where
steep gradients can occur. The use of coarse meshes inglis ould have a signif-
icant affect on the prediction of pollutants mixing out oéthoundary layer for these
conditions and may be a source of error in regional scalaupoti dispersion models.
In a realistic boundary layer model vertical mixing profiledl change during the di-
urnal cycle making the a priori choice of vertical mesh stonve difficult. Adaptive
refinement would seem to be the simplest method for resobiilegp phenomena since
the choice of mesh is made naturally according to the salginucture resulting from
different stability conditions.

Our general conclusion is that the adaptive method of lipgsa@ach works well for
two space dimensional problems and in those cases it islp@s$siuse standard codes
providing that it is possible to make use of sophisticateddr algebra methods which
are tailored to the problem. In the case of three dimensjoreddlems however it seems
more necessary to use tailor-made codes either based oretheadrof lines as in [17]
or using the operator splitting approach described herey kécent work by Verwer
and others has suggested that the approach we used in twasions should also be
used in three space dimensions rather than introducing aratup splitting error. The
challenge is now to implement this in a sufficiently efficiergty to make the method
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of lines competitive with operator splitting in terms of eféncy.
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