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1 Introduction

In this chapter the method of lines is applied to computational models of reacting flow
arising from atmospheric applications. These computational models describe the chem-
ical transformations and transport of species in the troposphere and have an essential
role in understanding the complex processes which lead to the formation of pollutants
such as greenhouse gases, acid rain and photochemical oxidants. In order to make good
comparisons with the limited experimental data available it is important to have a high
degree of computational resolution, but at the same time to model emissions from many
different sources and over large physical domains. This chapter is thus concerned with
how to achieve this by using the method of lines combined withspatial mesh adaptation
techniques.

Achieving high resolution in air pollution models is a difficult challenge because
of the large number of species present in the atmosphere. Thenumber of chemical rate
equations which need to be solved rises with the number of species, and for high resolu-
tion 3-dimensional calculations, detailed chemical schemes can become prohibitively
large. The range of reaction time-scales often leads to stiff systems of differential
equations which require more expensive implicit numericalsolvers. Previous work has
shown (Talat, [31], Tomlin et al., [32, 33, 12] Hart et al.,[13]) that coarse horizontal
resolution can have the effect of increasing horizontal diffusion to values many times
greater than that described by models, resulting in the smearing of pollutant profiles
and an underestimation of maximum concentration levels. A review paper by Peters
et al. [22] highlights the importance of developing more efficient grid systems for the
next generation of air pollution models in order to “captureimportant smaller scale
atmospheric phenomena”.

In general the effects of mesh resolution have been well noted by the atmospheric
modelling community and attempts have been made to improve mesh resolution at the
same time as trying to avoid excessive extra computational work. The usual approach is
to use nested or telescopic grids, where the mesh is refined incertain regions of the hor-
izontal domain which are considered of interest (Jacobs et al., [15], Rajaona et al.,[24],
Sunderam et al., [30], Sillman et al.,[26]). This may include for example regions of
high emissions such as urban areas, or close to regions wheresignificant monitoring is
taking place. Previous work has shown however (Tomlin et al.[32]) that such telescopic
grids often cannot resolve plume structures occurring outside of the nested regions and
that adaptive refinement in the horizontal domain can provide higher accuracy with-
out entailing large extra computational costs. The primaryreason is that away from
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concentrated sources such models use large grids of up to 50 kilometres. Since dis-
persion can carry species distances of hundreds of kilometres from the source, such
predescribed telescopic gridding models could still lead to inaccurate downwind pro-
files as the plumes travel into those areas with larger grids.This is a particular problem
when modelling species such as ozone, where the chemical time-scale of pollutant for-
mation is such that the main pollution episodes occur at verylong distances downwind
of the sources of photochemical precursors. The regions of steep spatial gradients of
species such as ozone will move with time according to the wind-field present and the
spatial distribution of emissions. A reliable solution canonly be obtained if the mesh
can be refined accordingly. The fine scale grids used in present regional scale models
are of the order of 10-20km. For a power plant plume with a width of approximately
20km, it is impossible to resolve the fine structure within the plume using grids of this
size. Furthermore, to refine the mesh a priori, according to the path of the plume, would
be an impossible task since the plume position is a complicated function of many fac-
tors, including reaction, deposition and transport. Thereis a need for the application of
methods which can refine the grid according to where the solution requires it i.e. time-
dependent adaptive algorithms. While there have been some applications of adaptive
grids for environmental modelling, e.g Skamarock et al.[27], as yet these methods have
not been implemented in standard air quality models.

This chapter is based on the work done by the authors in applying adaptive gridding
techniques, which automatically refine the mesh in regions of high spatial error, and il-
lustrates the benefits this can bring over the telescopic approach in which mesh refine-
ment is only used close to a pollution source. The first part ofthis chapter (Sections 2 to
4) describes the algorithms used and present results for the1D hyperbolic conservation
law with a nonlinear source term, of Leveque and Yee [18]. This deceptively simple
problem may be used to show that spurious numerical solutionphenomena, such as
incorrect wave speeds may occur when insufficient spatial and temporal resolution are
used. Sections 5 to 10 of the chapter will provide a summary ofthe results for more
complex two dimensional atmospheric problems (see [32]) while three dimensional
problems (see [33, 12]) are considered in Sections 10 to 14. The general approach used
here is to employ positivity-preserving spatial discretization schemes in the method of
lines to reduce the PDE to a system of ordinary differential equations (ODEs) in time.
For reacting flow problems the numerical results will show that spatial mesh points
should be chosen with great care to reflect the true solution of the PDE and to avoid
generating significant but spurious numerical solution features. This is achieved here
by using adaptive mesh algorithms, [3], to control the spatial discretisation error by
refining and coarsening the mesh.

As reacting flow problems require the use of implicit methodsto resolve the fast
transients associated with some chemistry species, the cost of using implicit methods
may be high unless great care is taken with numerical linear algebra. In the present
work this is done by making use of an approach developed for atmospheric chemistry
solvers, [35, 2]. This approach uses a Gauss-Seidel iteration applied to the source terms
alone. The advective terms are effectively treated explicitly but without introducing a
splitting error. In three dimensions because of the need to preserve positivity of the
solution and to be more concerned about efficiency we have also used a more traditional
operator splitting approach. In particular the overall conclusion to be drawn from the
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computational evidence for one, two and three dimensional problems is that having
good mesh resolution in certain parts of the solution domainis of critical importance
with regard to obtaining a meaningful solution.

2 Spatial Discretisation and Time Integration

The 1D Leveque and Yee problem [18], is given by

∂u
∂ t

+ ∂u
∂x

=�ψ(u) x2 [0;∞℄; ψ(u) = µu(u�1)(u�0:5) (1)

and is the linear advection with a source term that is ”stiff”for largeµ . The initial and
boundary values (atx= 0) are defined by

u(x;0) = u0(x) = uL = 1;x� xd; uR = 0; x > xd

wherexd = 0:1 or 0:3 in the cases considered here. The infinite domain will also be
truncated to[0;1℄ for the cases considered here, as this is sufficient to demonstrate the
behaviour of the methods employed. A simple outflow boundarycondition is then used
at x = 1. The solution of equation (1) is a discontinuity moving with constant speed
and has a potentially large source term that only becomes active at the discontinuity,
[18].

Defining a spatial mesh 0= x1 < ::: < xN = 1 and the vector of valuesU with
componentsUi(t) � u(xi ; t) whereu(x; t) is the exact solution to the p.d.e. We define
Ui(t) as the exact solution to the o.d.e. system derived by spatialsemi-discretization of
the p.d.e. and given by

U̇ = FN(t;U(t)); U(0) given: (2)

This true solution[U(tn)℄pn=0
is approximated by[V(tn)℄pn=0

at set of discrete time
0 = t0 < t1 < ::: < tp = te by the time integrator. The form of the o.d.e. system
given by equation (2) at timet is given by

FN(tn;U(tn)) = F f
N(tn;U(tn))+Fs

N(tn;U(tn)): (3)

where the superscriptsf ands denote the flow and source term parts of the functionF
as defined below. The functionF f

N
(tn;U(tn)) is the second-order limited discretisation

of the advective terms in equation (1) whose components are given by

F f
j (t;U(t)) = �"

1+ (B(r j ;1)
2

� B(r j�1;1)
2r j�1

# (U j(t)�U j�1(t))4x
: (4)

The function B is a limiter such as that of van Leer: (see [3])

B(r j ;1) = r j + j r j j
1 + r j

; andr j = U j+1(t)�U j(t)
U j(t)�U j�1(t) : (5)
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The vectorFs
N(t;U(t)) represents the approximate spatial integration of the source

term which is defined by14x

R x
j+ 1

2
x

j� 1
2

ψ(U(x; t))dxand is evaluated by using the midpoint

quadrature rule so that itsjth component is:

Fs
j (t;U j(t)) = ψ(U j(t)): (6)

The time integration method used here (mostly for simplicity of analysis) is the Back-
ward Euler method defined by

V(tn+1) = V(tn) + FN(tn+1;V(tn+1)): (7)

In the case when a modified Newton method is used to solve the nonlinear equations
at each timestep, this constitutes the major computationaltask of a method of lines
calculation. In cases where large o.d.e. systems result from the discretization of flow
problems with many chemical species the c.p.u. times may be excessive unless special
iterative methods are used.

The approach of [4] is used to neglect the advective termsJf = ∂F f

∂V , and to concen-

trate on the Jacobian of the source termsJs = ∂ Fs

∂V when forming the Newton iteration
matrix. This approach, in the case when no source terms are present, corresponds to us-
ing functional iteration for the advective calculation, see [2, 4]. The matrixI �4tγJs

is the Newton iteration matrix of that part of the o.d.e. system corresponding to the
discretization of the time derivatives and the source termsalone. This matrix is thus
block-diagonal with as many blocks as there are spatial elements and with each block
having as many rows and columns as there are p.d.e.s. The factthat a single block
relates only to the chemistry within one cell means that eachblock’s equations may be
solved independently by using a Gauss-Seidel iteration. This approach has been used
with great success for atmospheric chemistry problems, [35]. The nonlinear equations
iteration employed here may thus be written as[I �4t Js℄ [Vm+1(tn+1)�Vm(tn+1)℄ = r

�
tm
n+1

�
(8)

wherer
�
tm
n+1

� = �Vm(tn+1) +V(tn) +4tFN(tn+1;Vm(tn+1)). Providing that the
iteration converges, this approximation has no adverse impact on accuracy. In order for
this iteration to converge with a rate of convergencerc it is necessary, [2], thatjj [I �4tJs℄�1 4t Jf jj = rc where rc < 1: (9)

Using the identityk abk�k a kk b k, and definingJ�f asJ�f = (4x)Jf gives:4t4x
jj J�f jj � rc jj [I �4tJs℄ jj : (10)

Hence the convergence restriction may be interpreteted as aCFL type condition. For
example in the case of the p.d.e. in (1),[I �4tJs℄ is a diagonal matrix with entries
1+4tµ ∂ψ

∂V where
∂ψ
∂V

= p(V) (11)
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and wherep(V)= 3V2�3V+0:5 gives a CFL type condition that allows larger timesteps
asµ increases. The functionp(V) is bounded between the values 0:5 and�0:25 for
solution values in the range[0;1℄.
3 Space-Time Error Balancing Control.

Hyperbolic p.d.e.s are often solved by using a CFL conditionto select the timestep.
The topic of choosing a stable stepsize for such problems hasbeen considered in detail
by Berzins and Ware [6]. Although a CFL condition indicates when the underlying
flow without reactions is stable, it is still necessary to getthe required accuracy for the
chemistry terms. In most time dependent p.d.e. codes eithera CFL stability control is
employed or a standard o.d.e. solver is used which controls the local errorln+1(tn+1)
with respect to a user supplied accuracy tolerance. Efficient time integration requires
that the spatial and temporal errors are roughly the same order of magnitude. The need
for spatial error estimates unpolluted by temporal error, requires that the spatial error
is the larger of the two. One alternative approach developedby Berzins [3, 4] is to use
a local error per unit step control in which the time local error ( denoted byle(t)) is
controlled so as to be smaller than the local growth in the spatial error over the timestep
(denoted byest(t)). In the case of the Backward Euler method the standard localerror
estimate attn+1 is defined asle(tn+1) and is estimated in standard ODE codes by

le(tn+1) = 4t
2

�
FN(tn+1;V(tn+1))�FN(tn;V(tn)� :� 4t2

2
V̈(tn+1) (12)

where the functionF is defined by equation (2). The error control of [3] is defined byk len+1(tn+1) k � ε k est(tn+1) k (13)

where 0< ε < 1 is a balancing factor andest(tn+1) represents the local growth in time
of the spatial discretisation error fromtn to tn+1, assuming that the error is zero at
tn. Once the primary solution has been computed using the method of Section 2, a
secondary solution is estimated at same time step with an upwind scheme of different
order and a different quadrature rule for source term integration. The difference of
these two computed solution is then taken as an estimate of the local growth in time of
the spatial discretization error in the same way as in [3]. The primary solutionV(tn+1)
starting fromV(tn) is computed in the standard way as described in Section 2. The
secondary solutionW(tn+1) is computed by solving

Ẇ(t) = Gf (t;W(t)) + Gs (t;W(t)); W(tn) =V(tn): (14)

with initial valueVn, whereGf andGs are the first order advective term and the source
terms which are evaluated using a linear approximation on each interval and the trapezio-
dal rule i.e.

Gf
j (t;Wj(t)) = � (Wj(t)�Wj�1(t)4x

;
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Gs
j(t;Wj(t)) = 1

4
(ψ(Wj�1(t))+2ψ(Wj(t))+ψ(Wj+1(t)): (15)

Estimatinges(tn+1) by applying the Backward Euler Method to (14) subtracted from
(7) with one iteration of the modified Newton iteration of theprevious section, as in
[4], gives[I �4tJs℄[es(tn+1)℄ = 4t [F f (tn+1;V(tn+1))�Gf (tn+1;V(tn+1)) (16)+ Fs(tn+1;V(tn+1))�Gs(tn+1;V(tn+1)) ℄
wherees(tn+1)�V(tn+1)�W(tn+1).
4 Fixed and Adaptive Mesh Solutions

In the case of the problem defined by equation (1) comparisonswere made between the
standard local error control approach in which absolute andrelative tolerances RTOL
and ATOL are defined, (see Pennington and Berzins, [21]), andthe new approach de-
fined by (13). The choice of the parameterε is an important factor in the performance
of the second approach. In selecting this parameter the local growth in the spatial dis-
cretization error should dominate the temporal error and the work needed should not
be excessive. Obviously the larger the value ofε the fewer ODE time steps there will
be, and the smaller the value ofε the more steps there will be. A good compromise
between efficiency and accuracy is to useε in the range 0.1 to 0.3. The numerical
experiments described by Ahmad [1] confirm the results of Berzins [3], although it is
noted that for some combustion problems,ε may have to be reduced to below 0:1.

An important feature of solving the problem defined by equation (1) is that the
numerical solution may move with an incorrect wave speed. Leveque and Yee [18]
showed that the step size and the mesh size should be O( 1

µ ), to avoid spurious solutions
being generated. In order to illustrate these results we have takenxd = 0:3 in equation
(1), 4x =0.02 and used a fixed time step4t= 0.015. The product of time step4t
and the reaction rateµ determines the stiffness of the system. Figure(1) shows the
comparison of the computed solution and exact solution att = 0:3 for µ =100, and
1000 (4tµ= 1.5 and 15) respectively. It is evident from Figure (1) thatfor smaller4tµ the strategy works well and good results are obtained. When4tµ = 15, the
discontinuity has stopped at x = 0.3 and when a trapezoidal quadrature rule was used for
the source term, a large undershoot and overshoot occurred in the numerical solution.
Leveque and Yees [18] pointed out that the source of difficulty is the discontinuity
in the solution and that a much finer grid is needed there and suggested deploying a
method that is capable of increasing the spatial resolutionnear the discontinuity rather
than excessive refinement of the overall grid.

For this purpose a monitor function was used here to guide thedecision as to where
to refine or coarsen the mesh. A commonly used monitor function is the second spatial
derivative which however tends to infinity around a shock [21] as the mesh is refined.
In order to overcome this we have introduced a new monitor function based upon the
local growth in time spatial errorestas defined by equation (13). This leads to the use
of local grid refinement, and with the help of the error balancing approach described in
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Figure 1: Comparison between true solution(line) and numerical solution(dots) using
local error control with 0.01 relative tolerance and 1�10�5 absolute tolerance.

Section 3 it is possible to create a new refined grid directly surrounding the location of
the source. For this purpose we have modified the approach described by Pennington
and Berzins [21]. The remesh routine bisects the mesh cell ifthe monitor function
is too large or combines two cells into one if the monitor function is well below the
required value. In the experiments here the remeshing routine is called on every sec-
ond time step. The adaptive mesh initially starts with 26 points and when the error
was larger that specified limit then the corresponding cell is subdivided into two with
a 75 maximum points being allowed for the case shown in Figure2, which shows the
front moving correctly. The conclusion from these experiments is that for problems
combining reaction type terms and advection operators the use of adaptive mesh tech-
niques within a method of lines framework may be a critical factor is ensuring that
a good numerical solution is obtained. The remainder of thischapter will show that
this conclusion also applies to atmospheric modelling problems in two and three space
dimensions.

5 Atmospheric Modelling Problem

In order to illustrate the application of the method of linesto atmospheric modelling
problems, the model problem considered here involves the interaction of a power plant
plume with background emissions. Such a power plant plume isa highly concentrated
source of NOx (NO and NO2) emissions which can be carried through the atmosphere
for hundreds of kilometres, and so provides a stringent testof whether adaptive grid-
ding methods can lead to more reliable results for complex multi-scale models. The
test conducted here involves considering the interaction of the plume with its surround-
ings, and in the model we look at background scenarios of bothclean and polluted air
(Tomlin et al, [32]). The test case model covers a region of 300 x 500 km. To keep the
model simple, and therefore reveal particular issues related to the mesh, we have used a
reduced chemical scheme with idealised dispersion conditions. The domain is approxi-
mated by an unstructured triangular mesh in two space dimensions and by a tetrahedral
mesh in three space dimensions. In both cases the mesh can then be adapted to higher
and higher levels of refinement according to errors in solution components. The so-

7



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n

x

Adaptive

True Solution

Figure 2: True Solution (lines) vs Adaptive Mesh Solution (dots), t=0.6.

lution technique is based on the spatial discretisation of aset of advection/diffusion
equations on the unstructured mesh using a finite volume, flux-limited scheme.

The atmospheric diffusion equation in three space dimensions is given by:

∂cs

∂ t
=�∂ (ucs)

∂x
� ∂ (wcs)

∂y
� ∂ (vcs)

∂z
+ ∂

∂x

�
Kx

∂cs

∂x

�+ ∂
∂y

�
Ky

∂cs

∂y

�+ ∂
∂z

�
Kz

∂cs

∂z

�+Rs(c1;c2; :::;cq)+Es� (κ1s+κ2s)cs; (17)

where cs is the concentration of the s’th compound, u,w, are horizontal wind veloci-
ties, Kx and Ky are turbulent diffusivity coefficients andκ1s andκ2s are dry and wet
deposition velocities respectively. Es describes the distribution of emission sources for
the s’th compound and Rs is the chemical reaction term which may contain nonlinear
terms in cs. For npdechemical species annpde-dimensional set of p.d.e.s is formed
describing the rates of change of species concentration over time and space, where each
is coupled through the nonlinear chemical reaction terms.

In the first instance the restriction to two space dimensionshas the advantage that
it is possible to concentrate on showing that standard adaptive numerical methods have
the potential to reveal detail not previously observed in plume models. The extension
to three dimensions will then show that the same conclusionscan be drawn but that
there are additional benefits from using mesh refinement vertically.

The simplified chemical mechanism used is shown in Table 1 of Tomlin et al. [32]
and contains only 10 species. Despite its simplicity it represents the main features of
a tropospheric mechanism, namely the competition of the fast equilibrating inorganic
reactions:

8



O2
NO2 + hν ! O3 + NO

NO + O3 ! NO2 + O2,

with the chemistry of volatile organic compounds (voc’s), which occurs on a much
slower time-scale. This separation in time-scales generates stiffness in the resulting
equations. The voc reactions are represented by reactions of a single species, formalde-
hyde. This is unrealistic in terms of the actual emissions generated in the environment,
but the investigation of fully speciated voc’s is not the purpose of the present study.
We therefore wished to include the minimum number of reactions which would lead to
the generation of ozone at large distances from the NOx source. Deposition processes
have not been included in the first instance.

In the work of Tomlin et al [32] the model was used to representthree separate
scenarios of a plume of concentrated NOx emissions being dispersed through a back-
ground of clean and polluted air. Only one set of these results are shown here. This
case represents a clean air situation where the background levels for NOx and voc’s are
low. Initial conditions for background concentrations areNO2: 1.00�108 (molecule
cm�3), NO : 1.00�108 (molecule cm�3), O3: 5.00�1011 (molecule cm�3), HCHO
: 1.00�1010 (molecule cm�3). Concentrations in the background change diurnally as
the chemical transformations take place according to photolysis rates, temperature and
concentration changes.

The power station was taken to be a separate source of NOx and this source was
represented in a slightly different way. In this case the chimney region is treated as a
subdomain and the concentration in the chimney set as an internal boundary condition.
In terms of the mesh generation this ensures that the initialgrid will contain more
elements close to the concentrated emission source. This issimilar in methodology to
the telescopic approach. The concentration in the chimney corresponds to an emission
rate of NOx of 400kg hr�1. We have considered only 10% of the NOx to be emitted as
NO2.

A constant wind speed of 5ms�1 in the x-direction was used and the eddy diffusion
parametersKx andKy was set at 300 m2s�1 for all species.

6 Triangular Finite Volume Space Discretization Method.

The basis of the numerical method is the spatial discretisation of the p.d.e.s in equation
(17) on unstructured triangular meshes as used in the software SPRINT2D (Berzins et
al. [7]). The Method of Lines approach then leads to a system of o.d.e.s in time can
then be solved as an initial value problem, and a variety of powerful software tools exist
for this purpose (Berzins et al, [5] ). For advection dominated problems it is important
to choose a discretisation scheme which preserves the physical range of the solution.

Unstructured triangular meshes are popular with finite volume/element practition-
ers because of their ability to deal with general two-dimensional geometries. In terms
of application to multi-scale atmospheric problems, we arenot dealing with complex
physical geometries, but unstructured meshes provide a good method of resolving
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the complex structures formed by the interaction of chemistry and flow in the atmo-
sphere and by the varying types of emission sources. The termunstructured represents
the fact that each node in the mesh may be surrounded by any number of triangles
whereas in a structured mesh this number would be fixed. The discretisation of advec-
tion/diffusion/reaction equations on unstructured meshes will now be discussed.

For systems of equations such as (17) it is useful to considerthe advective and
diffusive fluxes separately in terms of the discretisation.In the present work, a flux
limited, cell-centered, finite volume discretization scheme of Berzins and Ware [6, 4]
was chosen. This method enables accurate solutions to be determined for both smooth
and discontinuous flows by making use of the local Riemann solver flux techniques
(originally developed for the Euler equations) for the advective parts of the fluxes, and
centered schemes for the diffusive part. The scheme used forthe treatment of the
advective terms is an extension to irregular triangular meshes of the nonlinear scheme
described by Spekreijse [29] for regular Cartesian meshes.The scheme of Berzins and
Ware has the desirable properties (see Chock [11]) of preserving positivity, eliminating
spurious oscillations and restricting the amount of diffusion by the use of a nonlinear
limiter function. Recent surveys of methods for the advection equation ([34], [36])
have suggested the use of a very similar scheme to Spekreijsefor regular Cartesian
meshes, preferring it to schemes such as Flux Corrected Transport.

To illustrate this method, consider the advection-reaction equation that extends
equation (1) to two space dimensions:

∂c
∂ t

=�∂uc
∂x

� ∂wc
∂y

+ R(c) ; t 2 (0; te) ; (x;y) 2 Ω (18)

with appropriate boundary and initial conditions. A finite volume type approach is
adopted in which the solution value at the centroid of triangle i, (xi ;yi), is ci and the
solutions at the centroids of the triangles surrounding trianglei arecl , c j andck. In-
tegration of equation (18) on theith triangle, which has areaAi , use of the divergence
theorem, and the evaluation of the line integral along each edge by the midpoint quadra-
ture rule gives an o.d.e. in time:

dci

dt
=� 1

Ai
(ucik∆y0;1�vcik∆x0;1+uci j ∆y1;2�vci j ∆x1;2+ucil ∆y2;0�vcil ∆x2;0)+R(ci); (19)

where∆xi j = x j � xi, ∆yi j = y j � yi. The fluxesuci j andvci j in thex andy directions
respectively are evaluated at the midpoint of the triangle edge separating the triangles
associated withci andc j . These fluxes are evaluated by taking account of the flow
directions with respect to the orientation of the triangle.This is achieved by using
either theleft or right solution values depending on the direction of advection andhow
each edge is aligned. Theseleft andright solution values for each edge in a triangle are
defined as theleft solution value being that internal to theith triangle, and theright
solution value being that external to trianglei. Consider for example the case shown
in Figure (3) whenu is positive andxi < x j . This means that thex component of the

advection is flowing from nodei to nodej, and soci j = cl
i j . Similarly whenv is positive

10



they component of the wind is blowing from nodek to nodei and socik = cr
ik. Hence,

equation (19) may be written as

dci

dt
=� 1

Ai
(ucl

ik∆y0;1�vcr
ik∆x0;1+ucl

i j ∆y1;2�vcl
i j ∆x1;2+ucr

il ∆y2;0�vcl
il ∆x2;0)+R(ci); (20)

A simple first-order scheme usescl
i j = ci , cr

i j = c j on the edge between trianglesi and j.
This scheme is too diffusive and so Berzins and Ware [6] use a complex interpolation
scheme to obtain theleft andright values on each edge. The interpolants in this second
order scheme, use a constrained or limited form of the solution obtained from the six
triangles surrounding an edge giving a ten triangle stencilfor the discretization of the
convective terms on each triangle. For example, the valuecl

i j is constructed by forming

interpolated solution values

centroid solution values

midpoints of edges

q
pqc

c

cil

j

ij

c

pc

nc

mc

rsc

r

c

cmn
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ck

c

c

s

ik

c

ljc

kjc
lkc

ic

0(X  ,Y  )0

2(X  ,Y  )

1

2

(X  ,Y  )1

Figure 3: Interpolants used in irregular mesh flux calculation.

a linear interpolant using the solution valuesci ; ck andcl at the three centroids. An
alternative interpretation is that linear extrapolation is being used based on the solution
valueci and an intermediate solution value (itself calculated by linear interpolation)clk
which lies on the line joining the centroids at whichcl andck are defined (see Figure
3) i.e.

cl
i j = ci +Φ(Si j ) di j ;i ci�clk

di;lk ; (21)

where the argumentS is a ratio of solution gradients defined in a similar way to the
ratio r j in equation (5), see [6] and the generic termda;b denotes the positive distance
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between pointsa andb. For exampledi j ;i denotes the positive distance between points
i j andi, see Figure (3), as defined by

di;i j = q(xi �xi j )2+(yi�yi j )2 ; (22)

where(xi j ;yi j ) are the co-ordinates ofci j . In order to preserve positivity in the nu-
merical solution, the limiter functionΦ is used and has to satisfyΦ(S)=S� 1, see [6].
These conditions are satisfied, for example, by a modified vanLeer limiter defined by:

Φ(S) = (S+ jSj)=(1+Max(1; jSj)) : (23)

The valuecr
i j is defined in a similar way using the centroid valuesc j , cs andcr . This

scheme is of second order accuracy, see [6]. The diffusion terms are discretised using
a finite volume approach to reduce the integrals of second derivatives to the evaluation
of first derivatives at the midpoints of edges. These first derivatives are then evalu-
ated by differentiating a bilinear interpolant based on four mid-point values, see [7].
The boundary conditions are implemented by including them in the definitions of the
advective and diffusive fluxes at the boundary.

7 Time Integration.

A method of lines approach with the above spatial discretization scheme results in
a system of o.d.e.s in time which are integrated using the code SPRINT [5] with the
Theta or BDF options which are specially designed for the solution of stiff systems with
moderate accuracy and automatic control of the local error in time. Once the p.d.e.s
have been discretised in space we are left with a large systemof coupled o.d.e.s of
dimensionN = m�npdewherem is the number of triangles in the mesh, andnpdethe
number of species. These equations may now be written in the same form as equation
(2) as

ċ = FN ( t; c(t) ); c(0) given; (24)

where, in the case of a single species, the vector,c(t), is defined by
c(t) = �

c(x1;y1; t); :::;c(xN;yN; t) �T . The pointxi ;yi is the centre of thei th cell and
Ci(t) is defined as a numerical approximation to the exact solutionto the p.d.e. evalu-
ated at the centroid i.e.c(xi ;yi ; t) . The method of lines approach is used to numerically
integrate equation (24) thus generating an approximation,C(t), to the vector of exact
p.d.e. solution values at the mesh points,c(t).

The Theta method (Berzins and Ware, [6]), which has been usedfor the experi-
ments described here, defines the numerical solution attn+1 = tn+4t, where4t is the
time step size, as denoted byC(tn+1), by:

C(tn+1) = C(tn) + (1�θ )4t Ċ(tn)+θ 4t FN(tn+1;C(tn+1)); (25)

in whichC(tn) andĊ(tn) are the numerical solution and its time derivative at the pre-
vious timetn andθ = 0:55 . This system of equations is solved by using the approach
described in Section 2. In this case the matrixJs is block-diagonal with as many block
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as there are triangles and with each block having as many rowsand columns as there
are p.d.e.s. The fact that the blocks relate only to the chemistry plus source/sink terms
within each cell, the equations may be solved independentlyusing LU decomposi-
tion, or even more efficiently by using Gauss Seidel iterations, see Verwer [35]. This
approach may also be interpreted as approximating the flow term [I �4tθJf ℄ by the
identity matrix, as is done when using functional iterationwith the Theta method ap-
plied to flow alone (Berzins, [3]). Since the spatial discretization method connects

each triangle to as many as ten others it follows that the matrix
h
I �4tθ Jf

i
may

have a much more complex sparsity pattern than that of the block-diagonal matrix[I �4tθ Js ℄. Approximating the matrix
h
I �4tθ Jf

i
by the identity matrix (Berzins

and Ware, [6]) thus eliminates a large number of the full Jacobian entries. Moreover
the use of Gauss Seidel iteration makes it possible to solve these problems without any
matrices being stored. This approach is particularly useful in three space dimensional
problems.

The original approach of Berzins [3] was only extended to source-term problems
by Ahmad and Berzins [1]. As a consequence the calculations performed by Tomlin et
al., [32], used the standard local error approach given by:jj le(tn+1) jj < TOL: (26)

wherele is the local error defined as in equations (12) and (13).

8 Mesh Generation and Adaptivity.

The initial unstructured meshes used in SPRINT2D are created from a geometry de-
scription using the Geompack (Joe and Simpson, [16]) mesh generator. These meshes
are then refined and coarsened by the Triad adaptivity modulewhich uses data struc-
tures to enable efficient mesh adaptation.

Since the initial mesh is unstructured we have to be very careful in choosing a
data structure which provides the necessary information for refining and derefining
the mesh. When using a structured mesh it is possible to number mesh vertices or
elements explicitly. This is not possible for unstructuredmeshes and therefore the data
structure must provide the necessary connectivity. The important factor is to maintain
the quality of the triangle as the mesh is refined and coarsened. This is achieved using
a tree-like data structure with a method of refinement based on the regular subdivision
of triangles. These may later be coalesced into the parent triangle when coarsening the
mesh. This process is called local h-refinement, since the nodes of the original mesh
do not move and we are simply subdividing the original elements. Three examples of
adaptive meshes for a single moving front at different timesare shown in Figure 4.
These meshes show how the adaptive mesh follows the front as it moves in time across
the spatial domain. Similar procedures are extensively used with a wide range of both
finite element and volume methods for a very broad range of physical problems. Once
a method of refinement and derefinement has been implemented,it remains to decide
on a suitable criterion for the application of the adaptivity. The ideal situation would
be that the decision to refine or derefine would be made on a fully automatic basis
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Figure 4: Sequence of Refined Meshes

with no user input necessary. In practice a combination of anautomatic technique and
some knowledge of the physical properties of the system is used. The technique used
in this work is based on the calculation of spatial error estimates. Low and high order
solutions are obtained and the difference between them gives the spatial error, as in
Section 3 and in [3] but without the extension to source termsin [1]. The algorithm can
then choose to refine in regions of high spatial error by comparison with a user defined
tolerance. For theith p.d.e. component on thejth triangle, a local error estimateei; j(t)
is calculated from the difference between the solution using a first order method and
that using a second order method. For time dependent p.d.e.sthis estimate shows how
the spatial error grows locally over a time step. A refinementindicator for the jth
triangle is defined by an average scaled error (serrj ) measurement over allnpdep.d.e.s
using supplied absolute and relative tolerances:

serrj = npde

∑
i=1

ei; j(t)
atoli=A j + rtol i�Ci; j

; (27)

whereatol andrtol are the absolute and relative error tolerances. This formulation for
the scaled error provides a flexible way to weight the refinement towards any p.d.e. er-
ror. An integer refinement level indicator is calculated from this scaled error to give the
number of times the triangle should be refined or derefined. Since the error estimate is
applied at the end of a time-step it is too late to make the refinement decision. Methods
are therefore used for the prediction of the growth of the spatial error using linear or
quadratic interpolants. The decision about whether to refine a triangle is based on these
predictions, and the estimate made at the end of the time-step can be used to predict
errors at future time-steps. Generally it is found that large spatial errors coincide with
regions of steep spatial gradients. The spatial error estimate can also be used to indicate
when the solution is being solved too accurately and can indicate which regions can be
coarsened.

For applications such as atmospheric modelling it is important that a maximum
level of refinement can be set, to prevent the code from adapting to too high a level
in regions with concentrated emissions. This is especiallyimportant around point or
highly concentrated area sources. Here, because of the nature of the source, steep
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Figure 5: The structure of the level 0 mesh. The length of the domain is 300km and the
width 200km. The smallest and largest mesh lengths are approximately 5 and 60km
respectively for the level zero domain.

spatial gradients are likely to persist down to very high levels of refinement. This
would have the consequence that the number of elements on which the p.d.e.s had to
be discretised would become prohibitively large. For the following test problems the
maximum level of refinment was therefore limited to level 3.

9 Single Source Pollution Plume Example

The example used here to illustrate the effectiveness of theadaptive mesh is that of
a single plume pollution source. In this case the initial twodimensional mesh was
generated with only 100 elements. It is difficult to relate the size of unstructured meshes
directly to regular rectangular ones, but our original meshwas comparable to the size
of mesh generally used in regional scale atmospheric models, the largest grid cell being
approximately 60km along its longest edge. Close to the chimney the mesh was refined
to elements of length 5km ensuring that it would be refined to areasonable resolution
in this region of steep gradients. If we allow the mesh to refine two levels then the
smallest possible mesh size close to the chimney will be 1.25km in length. Spatial
errors in the concentration of NO were chosen as the criterion from which to further
refine the mesh. Test runs showed that regions of high spatialerror coincided with
steep spatial gradients. The mesh can therefore be considered to adapt around steep NO
concentration gradients. Each run was carried out over a period of 48 hours starting
from midnight on day 1, so that the diurnal variations could be observed. We present
here only a selection of the results which illustrate the main features relating to the
mesh adaptation. Figures 5 and 6 allow a comparison to be madebetween the structure
of the base mesh and a mesh that has been adapted up to level 2 at14.00 on day 2. In
these figures the sides of the polygons represent the distance between cell centres on
the triangular mesh. The main area of mesh refinement is alongthe plume edges close
to the chimney, indicating that there is a high level of structure in these regions. On the
coarse mesh the plume is dispersed over a much larger area than on the fine mesh and
most of the plume structure is lost. Close to the stack the concentration of O3 is much
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Figure 6: The structure of the level 2 adaptive mesh.

lower than that in the background because of high NOx concentrations. The inorganic
chemistry is dominant in this region and the ozone is consumed by the reaction: NO +
O3 ! NO2 + O2.

In Figure 7 we present a cross plume profile of the NO2 concentrations at a distance
of 10km downwind of the chimney stack for case A at the same time as the previous
figure. The figure clearly shows the features at the edge of theplume which are revealed
by the adaptive solution. From the base mesh, where the distance between elements
along the y-axis close to the stack is 20km, it appears that the concentration of NO2
rises to a peak in the centre of the plume. If the mesh is refinedto higher levels then we
start to see the true structure of the plume emerging. With a level 3 solution we can see
that the peak concentrations are actually found along the edges of the plume and that
the concentration of NO2 drops to very low levels at the plume centre. From the area
under these curves it is found that there is a 30% difference between the overall level
0 and the level 3 concentrations. This shows that not only thepeak concentrations, but
the total integrated concentrations are very different forthe different levels of mesh
adaptation. It is clear therefore that using a very coarse grid in regions of steep spatial
gradients can lead to an over estimate of total pollutant concentrations for systems with
nonlinear chemical schemes.

Figures 8, 9 show that in the case considered here the plume isover-dispersed in the
level 0 case and the spatial distribution of ozone is therefore inaccurately represented.
For the clean air case, the levels of ozone drop considerablyin the plume compared to
the background since the levels of NO are much higher there. For the level 0 case these
lowered concentrations spread over very large distances owing to the over-dispersion
of the plume. The location of reduced/raised concentrations will therefore be incorrect
for the level 0 results in all three cases. For each scenario the level 0 solution leads to a
smoothing out of the ozone profiles so that the true structurecaused by the interaction
of the plume with background air is missed.

The striking result is that the adaptive solution reveals features such as peak levels
of NO2 and O3 which could not be detected using a coarse mesh. The change inmesh
refinement also resulted in a change in overall or integratedconcentration levels. This
indicates that due to strongly nonlinear terms in the chemical reaction rates, the source
terms in the p.d.e. will be mesh dependent. Without using a fine mesh over the whole
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Figure 7: Cross plume NO2 profiles 10km from stack in molecules cm�3, showing how
the level 3 solution captures the structure of the plume.
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Figure 8: Ozone contours for case C, clean air, level 0 calculation.

domain so that the concentrations in neighbouring cells differ only very little, the ef-
fects of this nonlinearity could be quite significant. To reduce the effects it is important
to refine the mesh at least in regions of steep spatial gradients. This has been partially
addressed by the telescopic methods presently used in air quality models. However,
the present test case has shown that steep gradients can occur at long distances down-
wind from the source, for example the change in ozone concentrations along the edges
of the plume. Adaptive algorithms seem to present a successful method of achieving
accuracy in such regions and can do so in an automatic way. Themain limitation of
the above approach is that only two space dimensions have been considered. The next
issue to be resolved is whether mesh adaptation is necessaryin the vertical direction
and how appropriate a method of lines approach is in three space dimensions. These
are the issues considered in the next five sections.
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Figure 9: Ozone contours for case C, clean air, level 2 calculations.

10 Three Space Dimensional Computations

The standard approach with three space dimensional atmospheric dispersion problems
is that in the vertical domain usually a stretched mesh is used, placing more solution
points close to the ground. As in the horizontal domain, the resolution of the mesh
in the vertical direction affects the vertical mixing of pollutant species. The use of
adaptive meshes in the vertical domain has so far received little attention.

In the work described here we have used two approaches for solving three space-
dimensional atmospheric dispersion problems. Both approaches use a fully 3D un-
structured mesh based on tetrahedral elements. The first approach is described in [17]
and is the closer of the two approaches to the two dimensionalcase described in Section
6 above in that a cell-centred finite volume scheme is used forthe spatial discretization.
In this case a conventional method of lines approach is used based on a modified ver-
sion of the SPRINT time integration package. The linear algebra approach of Section
7 is used with a simple first order spatial discretization approach. The disadvantage of
this approach is that it requires a much larger number of unknowns for a given mesh
than if a cell-vertex approach is used with the solution unknowns being positioned at
the nodes of the mesh. The price that is paid for this reduction in the number of un-
knowns is an increase in the complexity of the discretization method. There is also the
well-known difficulty that the cell-vertex discretizationmay not preserve the positivity
of the solution on certain meshes due to the discretization of the diffusion operator [9].
Although it may be possible to address this issue within a method of lines framework,
the need to preserve positivity and the different timescales needed for advection and
chemistry have led us to employ an operator splitting approach.

The next section describes the 3-D unstructured mesh discretization method and
the flow integration scheme which advances the solution in time. Section 12 contains
the mesh adaptation strategy which changes the connectivity in the data structure of the
mesh in response to changes in the solutions. Section 13 explains the implicit-explicit
method used to solve the transport equation. is described. Section 14 contains the
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test examples which have been designed to determine the importance of mesh struc-
ture on both horizontal and vertical mixing for typical meteorological conditions. The
test problem describes the dispersion of pollutants from a single source due to typical
boundary layer wind profiles. Finally, we draw conclusions in Section 15 regarding the
importance of adaptive mesh method in solving 3-D atmospheric flow problems.

11 Three Space Dimensional Discretization

The atmospheric diffusion equation is discretized over special volumes that form the
dual mesh. The dual mesh is formed by constructing non-overlapping volumes, re-
ferred to as dual cells, around each node. The dual mesh for a tetrahedral grid is con-
structed by dividing each tetrahedron into four hexehedra of equal volumes, by con-
necting the mid-edge points, face-centroids and the centroid of the tetrahedron. The
control volume around a node 0 is thus formed by a polyhedral hull which is the union
of all such hexahedra that share that node. The quadrilateral faces that constitute the
dual mesh may not all be planer. Each component of the diffusion equations (17) is
discretized using same method. Hence, for simplicity, instead of treating the vectorc,
we choose one of its component,c say, and describe its discretization.

11.1 Flux evaluation using edge-based operation

The evaluation of flux around a dual cell can be cast in an edge-based operation. Let
us discretize the divergence term

∂ f
∂x

+ ∂g
∂y

+ ∂h
∂z

over the control volumeΩ0 enclosing the node 0. This divergence form is converted to
flux form using Gauss divergence theorem:Z

Ω0

(∂ f
∂x

+ ∂g
∂y

+ ∂h
∂z

)dΩ = Z
∂Ω0

( f nx+gny+hnz)dS= ∑
k

( f Sx+gSy+hSz); (28)

where the summation is over all the dual mesh faces that form the boundary of the
control volume around the node 0 and the areasSx;Sy;Sz are projections of the dual
quadrilateral face.

Consider edge i, formed by nodes 0 and N(i). The quadrilateral faces of the dual
mesh that are connected to the edge at its mid-point P are shown in Figure 10. The
number of such quadrilateral faces attached to an edge depends on the number of tetra-
hedra neighbours to that edge. There are four tetrahedra sharing the edge i in Figure
10. The projected area,Ai , associated with the edge i is calculated in terms of the
quadrilateral face areas,a1,a2,a3,a4, as(Ai)x = 4

∑
j=1

(a j)x; (Ai)y = 4

∑
j=1

(a j)y; (Ai)z = 4

∑
j=1

(a j)z: (29)
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The projections are computed so that the area vector points outward from the control
volume surface associated with a node. The boundary of the control volume around
the node 0 is formed by the union of all such areasAi associated with each edge i that
share the node 0. The contribution of the edge i to the fluxes across the faces of the
control volume surrounding the node 0 is given by

fp (Ai)x+gp(Ai)y+hp(Ai)z:
Hence equation (28) is replaced byZ

Ω0

(∂ f
∂x

+ ∂g
∂y

+ ∂h
∂z

)dΩ = ∑
i
( fp (Ai)x+gp(Ai)y+hp(Ai)z); (30)

where the sum is over the edges that share the node 0. The fluxesare thus calculated
on an edge-wise basis and conservation is enforced by producing a positive flux con-
tribution to one node and an equally opposite contribution to the other node that forms
the edge.

11.2 Adjustments of wind field

In an atmospheric pollution model, we often use observed wind data which are not
mass conservative. Even mass conserving wind data might notbe mass conservative
in the numerical sense when interpolated onto an unstructured grid. Thus we want
to adjust the wind data in such a way that the observed data areminimally changed
while still satisfying the mass conservative property numerically. If u;v;w are the wind
velocities, then they must satisfy

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0: (31)

Here we enforce mass conservation using the variational calculus technique of Mathur
and Peters [20]. The technique attempts to adjust the wind velocity in a manner such
that the interpolated data are minimally changed in a least square sense, and at the
same time, the adjusted values satisfy the mass conservation constraint. The details are
provided by Ghorai et al. [12].
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We have adjusted one dimensional stable, neutral and unstable boundary layer wind
velocities which are a function ofz. The wind velocity is mass conservative analyti-
cally. The wind velocity remains mass conservative in the numerical sense in the base
mesh since the unstructured base mesh is regular. But the wind field is not numerically
mass conservative once the grid is refined (derefined). A representative one dimen-
sional neutral boundary layer velocity is shown in Figure 11(b). The velocity field is
adjusted in the refinement region but away from the refinementregion, the velocity
almost remains unchanged.

Figure 11: A representative variation of wind with height for (a) stable, (b) neutral and
(c) unstable boundary layers.

The base grid spacings along the vertical increases upwards. Thus the grid quality
near the ground is worse due to large aspect ratio of the tetrahedron. The velocity cor-
rections decrease upwards as the refine region moves upwards. Suppose we have a re-
fine region at 150 meters height. The maximum corrections are12, 14 and 0:06 cms�1

respectively for theu;v andw components. For a refine region at 600 meters height the
corresponding components are 11, 11 and 0:03 icms�1. And finally, the corresponding
corrections decreases to 0:3, 0:2 and 0:0002 cms�1 i at 1:8 km height. The neutral
boundary layer velocity increases from 0 to 9 ms�1 asz increases from 0 to 3 km and
so the velocity corrections are small.

11.3 Advection scheme

The discretization of the termZ
Ω0

�
∂ (uc)

∂x
+ ∂ (vc)

∂y
+ ∂ (wc)

∂z

�
dΩ� Z

Ω0

∇:F dΩ;
where

F = (uî+vĵ +wk̂)c:
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is done by using an algorithm used is based on that of Barth andJespersen [8] and uses
equation (30), to rewrite the equation above as an edge basedcomputation.

∑
i

[up(Ai)x+vp(Ai)y+wp (Ai)z℄ (c)p = ∑
i

(F p:Ai)(c)p; (32)

whereAi is called the edge-normal associated with the edge i and the sum is over all
the edges sharing the node 0 with control volumeΩ0. Evaluation of this expression
is by using the upwind limited approach of Barth and Jesperson [8]. The values of
limiter functions and gradient at the nodes are not calculated on a node by node basis
(which is CPU intensive), instead they are calculated in an edge-based operation, [8, 9].
The time step for the advection scheme is chosen so that it satisfies the CFL condition
(Wierse), [37]. The minimum of the time steps over all the vertices constitute the time
step for the advection scheme. Again this computation can becast into an edge-based
operation.

11.4 Diffusion scheme

The diffusion term is discretized using the standard linearfinite element method or
the equivalent cell-vertex method described by Barth. Again the key feature is that
the calculation of the diffusion terms is reordered so that it involves edge gradient
terms, see Barth [9]. The disadvantage of the standard approach is that it does not
preserve positivity of the solution for certain meshes, seeBarth [9]. Very recent work
has provided methods that begin to address this issue, [23].

12 Mesh Adaptation

The cell-vertex scheme approach is hierarchical in nature,[10, 28], and is applica-
ble to meshes constructed from tetrahedral shaped elements. The basic mesh objects
of nodes, edges, facesandelementswhich together form the computational domain
map onto the data objects within the adaptation algorithm tree data structure. The
data objects contains all flow and connectivity informationsufficient to adapt the mesh
structure and flow solution by either localrefinementor derefinementprocedures. The
mesh adaptation strategy assumes that there exists a “good quality” initial unstructured
mesh covering the computational domain. The refinement process adds nodes to this
base level mesh by edge, face and element subdivision, with each change to the mesh
being tracked within the code data structure by the construction of a data hierarchy.
The derefinement is the inverse of refinement, where nodes, faces and elements are
removed from the mesh by working back through the local mesh refinement hierarchy.

The main adaptation is driven by refining and derefining element edges. Thus, if an
edge is refined by the addition of a node along its length, thenall the elements which
share the (parent) edge under refinement must be refined. In the case of derefinement
all the elements which share the node being removed must be derefined. Numerical cri-
teria derived from the flow field will mark an edge to either refine, derefine or remain
unchanged. It is necessary to make sure the edges targeted for refinement and dere-
finement pass various conditions prior to their adaptation.These conditions effectively

22



decouple the regions of mesh refinement from those of derefinement, meaning that, for
example, an element is not both derefined and refined in the same adaptation step.

For reasons of both tetrahedral quality control and algorithm simplicity only two
types of element subdivisions are used (Speares and Berzins, [28]). The first type of
subdivision is calledregular subdivisionwhere a new node bisects each edge of the
parent element resulting in eight new elements. The second type of dissection,green
subdivision, introduces an extra node into parent tetrahedron, which issubsequently
connected to all the parent vertices and any additional nodes which bisect the parent
edges. The green refinement removes inconsistently connected or “hanging” nodes
without the introduction of additional edge refinement. Thegreen elements may be
of poorer quality in terms of aspect ratio and so the green element may not be further
refined. Fig. 12 demonstrates regular and green refinement for a tetrahedron. The five

(a)                                                              (b)

Figure 12: (a) Regular refinement based on the subdivision of tetrahedronby dissection
of interior diagonal (1:8) and (b) “green” refinement by addition of an interior node
(1:6).

possible refinement possibilities (if all the edges are are refined then the parent element
is regularly refined) give rise to between 6 and 14 child greenelements.

The choice of adaptation criteria is very important since itcan produce either large
or small number of nodes depending on the condition used to flag a edge for the adap-
tation. Also, when there are a large number of species, the choice of a given criteria
might result in high resolution for some species but low resolution for the other species.
Let 0 andi be the nodes for a given edgee(0; i). We calculatetolg andtolc by

tolg= ��(c)0� (c)i

��
dist

and tolc= (c)0+(c)i

2
;

where dist is the length of the edgee(0; i). We refine the edgee(0; i) if tolg andtolc
exceed some tolerances, otherwise it is derefined. Also a maximum level of refinement
is specified at the beginning so that if a edge is targeted for refinement but it is in the
maximum level, then it is kept unchanged.

Suppose we have two edges withtolg= 100 and 200. If we take the tolerance pa-
rameter,Tg say, fortolg equal to 150, then only the second edge is refined to maximum
level. On the other hand, ifTg = 50, then both edges are refined to maximum level. We
expect that the solution error for edge withtolg= 200 is greater than the error in the
edge withtolg = 100. It might be advantageous to use two sets ofTg = 50 and 150.
If tolg> 150, than we refine an edge to maximum level and if 50< tolg< 150, then
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we refine an edge to the level just lower than the maximum levels. Thus the idea is to
refine to the maximum level in the steepest gradient regions but to lower levels in the
regions of less steep gradients.

13 Time Integration for 3D Problems

Although in two space dimensional calculations we have usedsophisticated space-
time error control techniques (Berzins et al.[7], Tomlin etal.[32]), the need to preserve
positivity, to reduce computational cost and the need to take into account the different
timescales needed for the integration of advection and chemistry has led us to use
an operator splitting technique. In this approach, the chemistry is decoupled from the
transport. The main reason for the use of this is that it is much easier to ensure positivity
of the solution components. The nonlinear chemistry part gives rise to stiff ordinary
differential equations. We solve the chemistry part using the SPRINT time integration
methods (Berzins et al.,[7]) and also using Gauss-Seidel iteration of Verwer [35]. The
transport step is considered first. Ifcn denotes the species concentration at time level
n, then the species concentration at the next time step is given by

cn+1 = cn+4tg(c)+4t f (c)+S; (33)

where4t is the time step andg(c) is the advection operator andf (c) is the diffusion
operator. In a fully explicit scheme,f andg are evaluated using values at the time
level n. However, the time restriction for stability due to vertical diffusion is severe
since the grid spacings along the vertical can be small. Hence we use an implicit-
explicit formulation for equation (33), where the advection is evaluated explicitly and
the diffusion is calculated implicitly. Again let us consider node i and let N(i) be the set
of nodes sharing the node i. The discretized form of the advection-diffusion equation
for c at the nodei is given by( 14t

+ai)(cn+1)i = ∑
j2N(i); j 6=i

a j (cn+1) j +Qn
i ; (34)

where i is varied over all the nodes and

Qi = �
cn4t

+g(cn)+S

�
i
:

The time step4t is chosen to equal to the time step due to advection only. The value
of time step mainly depends on the wind speed and the verticalmesh spacings near the
source. For the base mesh (described in the next section) used in the test examples,4t is� 35 s for the stable atmospheric boundary layer but decreasesto� 18 s for the
unstable atmospheric boundary layer. Thus the time step is smaller for higher wind
speed and vice versa. The system of equations given by equation (34) is solved using
the Gauss-Seidel iteration technique with over-relaxation and the iteration is stopped
when the relative error is less than some prescribed tolerance. The advantage of this
method is its computational efficiency. The disadvantage isthat we are introducing an
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Figure 13: A representative mesh for the 3D atmospheric dispersion problem.

extra time integration and splitting error which is not easily quantified. In future work
we will revisit this issue of a standard method of lines approach versus the operator
splitting approach used here.

14 Three Dimensional Test Examples

The advection scheme has been tested by advecting a puff of NOaround a horizontal
circle without any diffusion [33]. The results showed that the peak almost remains con-
stant suggesting that very little artificial diffusion has taken place for refined meshes.
Here we consider the solution of the combined advection-diffusion problem with a
source term which relates to the long-range transport of a passive species from an ele-
vated point source.

The background concentration of NO is 7:5�1010 molecules/cm3. The horizontal
dimensions of the domain are 96 km and 48 km along thex andy axis respectively. The
vertical height of the domain is 3 km. We consider a point source at(6;24;0:24) km
location with a NO emission rate of 1:98�1024 molecules s�1. For simplicity, we con-
sider constant wind direction along thex�axis. We consider three different wind ve-
locity and vertical diffusion profiles which are representative of stable, neutral and un-
stable boundary layers. The corresponding velocities and vertical diffusions are shown
in Figure 11 and Figure 14 from Seinfeld, [25].

The horizontal diffusion coefficientsKx and Ky are kept constant and equal to
50 m2s�1. The initial tetrahedral mesh is generated by dividing the whole region into
cuboids and then subdividing a cuboid into 6 tetrahedral elements. The cuboids are
4 km and 4 km along thex andy axis respectively. The vertical height is divided into
nine layers and the layers are placed at 0, 0:206, 0:460, 0:767, 1:13, 1:54, 2:0, 2:45 and
3 km heights respectively.
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Figure 14: A representative variation of vertical diffusion with height for (a) stable, (b)
neutral and (c) unstable boundary layers.

We compute the solutions on the adaptive grid and also check the accuracy against
a reference solution. The reference solution is obtained ona fixed grid generated from
the base mesh by refining all the edges (to level 3) which lie inside a box lying along
the x-axis through the source. We also compute the solution on a telescopic grid with
refinement around the source and compare the solution with the adaptive and reference
solution. The vertical turbulent diffusivity coefficient is small and confined very near
to the ground level for the stable boundary layer. Thus the concentration does not
mix much above the source height. The height of the referencebox is 1=2 km and
the width is 10 km for the stable boundary layer. On the other hand, the pollutant
becomes well mixed above the source height for the neutral and unstable boundary
layers. Thus a box of width 10 km and height 1 km is chosen for the neutral and
unstable boundary layers. The total number of nodes in the reference grid is 114;705
for the stable layer and 142;247 for the neutral and unstable boundary layers. The
initial grid for the adaptive solution is generated by refining a region around the point
source. The refinement region lies horizontally within a 3 kmcircle with the point
source as the centre and it lies vertically within 300 metersfrom the source. The initial
number of nodes is 6;442 for all the three boundary layers. The number of nodes forthe
telescopic method remains 6;442 throughout the simulation period. On the other hand,
the adaptive grid is refined/derefined as the solution advances. The time step4t for
the implicit-explicit scheme is small (usually less than 1 minute) due to small vertical
spacings near the ground level which effect the CFL condition. Instead of carrying
out the adaptation after every time step (which is CPU intensive), the adaptation is
carried out approximately every 20 minutes. This prevents large amount computational
effort being used to perhaps refine very few tetrahedra each time step and does not
significantly affect solution accuracy.
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14.1 Grid adaptation

Three sets of tolerance parameters are chosen for the adaptive grid method for each
boundary layer profile as described below. LetTOLgbe the maximum values oftolg
outside the source region. The refinement criteria of the edges are

(a) Refine edges to level 3 iftolc> 9�1010 andtolg> 0:002�TOLg

(b) Refine edges to level 2 iftolc> 9�1010 andtolg> 0:00002�TOLg

(c) Refine edges to level 1 iftolc> 9�1010 andtolg> 0:000001�TOLg

for the stable boundary layer.
The corresponding criteria for the neutral and unstable boundary layers are

(a) Refine edges to level 3 iftolc> 1011 andtolg> 0:01�TOLg

(b) Refine edges to level 2 iftolc> 1011 andtolg> 0:0005�TOLg

(c) Refine edges to level 1 iftolc> 1011 andtolg> 0:00005�TOLg

The total number of nodes generated by the adaptive grid method are 60;000,
51;000 and 52;000 for the stable, neutral and unstable boundary layers respectively.
The adaptive grid refinement in the vertical plane downwind along the plume centre-
line is shown in Fig. 15. The concentration is confined near the ground level due to
small vertical diffusion for the stable case. This produceshigh spatial gradients within
this region and grid refinement is highest near the ground. Since the vertical diffusion
for the other two cases is larger compared to the stable boundary layer, the grid re-
finement extends to almost 1 km from the ground level. It is also interesting to note
that at large distances downwind from the source, the adaptive technique places more
mesh points at the top of the boundary layer domain. This reflects the steep gradients
found here due to a significant drop in the vertical diffusioncoefficientKz. This result
may have significance for models attempting to represent boundary layer transport and
mixing since the usual approach to vertical meshing is to place a greater number of
mesh points close to the ground and not the top of the boundarylayer. For the unstable
boundary layer (see Fig. 15(c)), the concentration becomes uniformly mixed below the
inversion layer but very little diffusion is taking place above the inversion layer. The
gradient is high near the inversion layer compared to the gradient near the ground. Thus
the edges near the inversion layer refine to higher level thanthe edges near the ground
level.

The adaptive grid refinement at three different locations inthe cross-wind direction
is shown by Ghorai et al.[12]. The concentration gradients remain high for the stable
case but low for the neutral and unstable cases far downwind from the source. Thus
the edges for the stable stable boundary layer, far downwindthe source, are refined to
higher level than for the neutral and unstable cases. The gradients are high near the
source for all the three cases and the edges are refined to the maximum level for all of
them.
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Figure 15: Grid refinement in the vertical plane through the source along the downwind
direction for the (a) stable, (b) neutral and (c) unstable boundary layers.

14.2 Downwind concentration

The solutions downwind along the plume centre-line in the ground level are shown
in Fig. 16. The maximum relative errors with respect to reference solutions are 16%,
20% and 20% approximately for the stable, neutral and unstable boundary layers re-
spectively. The maximum errors for the neutral and unstablecases occur far downwind
the source where the magnitude of the concentrations are small. The solution on the
telescopic grid is accurate near the source region only due to the refinement in this re-
gion. Far downwind from the source, the solution on the telescopic grid differs widely
from the reference solution. The programs have been run serially on a Origin2000 com-
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(a)

(b)

(c)

Figure 16: Comparison of the solution along the plume centre-line in the ground level
for the (a) stable, (b) neutral and (c) unstable boundary layers. The solid, dotted and
dashed lines correspond the solutions in the reference, telescopic and adaptive grids.

puter. For the neutral boundary layer, the total CPU times are approximately 1, 7 and
25 hours for the telescopic, adaptive and reference grids respectively. Thus the adaptive
method is efficient compared to the other methods and achieves greater accuracy in a
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reasonable time.

15 Discussions and conclusions

In this paper we have described a method of lines approach to the solution of transient
reacting flow problems. In particular, the atmospheric diffusion equation was solved
by using unstructured, adaptive meshes with the method of lines in both two and three
space dimensions. However because of effieciency and positivity considerations, the
three space dimensional case was solved by using operator splitting. The single most
important conclusion is that there are key features of plumecharacteristics which can-
not be represented by the coarse meshes generally used in regional scale models.

The test cases have demonstrated that adaptive methods can give much improved
accuracy when compared to telescopic refinement methods particularly at large dis-
tances from the source. The adaptive mesh methods may also use less mesh points than
using fixed refined meshes since they are able to place mesh points where the solution
requires them rather than in pre-defined locations where they may not be necessary for
solution accuracy. However, there is an extra cost with the adaptive codes, that of pe-
riodically refining/coarsening the mesh. In particular, the test cases have demonstrated
some important consequences of vertical mesh resolution for boundary layer pollutant
dispersion.

It is usual in tropospheric dispersion models to stretch themesh in the vertical do-
main and place more solution points near to the ground. Closeto ground level sources
this often makes sense since it gives a better resolution of the initial stages of ver-
tical mixing and of deposition to the ground. However, at large distance from their
sources pollutants can become well mixed close to the groundand the important fea-
ture is their escape from the boundary layer to higher levelsof the troposphere. The
results here demonstrate that for neutral it unstable boundary layers solution accuracy
requires refined meshes not close to the ground but close to the inversion height where
steep gradients can occur. The use of coarse meshes in this region could have a signif-
icant affect on the prediction of pollutants mixing out of the boundary layer for these
conditions and may be a source of error in regional scale pollution dispersion models.
In a realistic boundary layer model vertical mixing profileswill change during the di-
urnal cycle making the a priori choice of vertical mesh structure difficult. Adaptive
refinement would seem to be the simplest method for resolvingsuch phenomena since
the choice of mesh is made naturally according to the solution structure resulting from
different stability conditions.

Our general conclusion is that the adaptive method of lines approach works well for
two space dimensional problems and in those cases it is possible to use standard codes
providing that it is possible to make use of sophisticated linear algebra methods which
are tailored to the problem. In the case of three dimensionalproblems however it seems
more necessary to use tailor-made codes either based on the method of lines as in [17]
or using the operator splitting approach described here. Very recent work by Verwer
and others has suggested that the approach we used in two dimensions should also be
used in three space dimensions rather than introducing an operator splitting error. The
challenge is now to implement this in a sufficiently efficientway to make the method
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of lines competitive with operator splitting in terms of efficiency.
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