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Abstract. The solution of hyperbolic systems with stiff source terms is of
great importance in areas such as atmospheric dispersion. The finite-volume
approach used here for such problems employs Godunov-type methods,
a sophisticated splitting approach for efficiency and adaptive tetrahedral
meshes to provide the necessary resolution for physically meaningful solu-
tions. This raises the issues of how to estimate the error for Godunov type
methods and what is an appropriate mesh for such applications. A new
mesh visualization and haptic-interface tool will be shown to help clarify
this and its use illustrated for a model problem in three space dimensions.

1. Introduction

Unstructured triangular and tetrahedral meshes are widely used in engi-
neering and scientific computing for solving problems via finite element
and finite volume methods. At the same time Godunov methods are widely
used in the solution of problems with hyperbolic parts (Godlewski and
Raviart, 1996; Kroner, 1997; Toro, 1999). The intention here is to consider
some of the issues that arise from combining these approaches when solving
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problems such as the 3D advection reaction problem, taken from a model of
atmospheric dispersion from a power station plume - a concentrated source
of NOx emissions, (Tomlin, 1999). The photo-chemical reaction of this NOx
with polluted air leads to the generation of ozone at large distances down-
wind from the source. An accurate description of the distribution of pollu-
tant concentrations is needed over large spatial regions in order to compare
with field measurement calculations. The complex chemical kinetics in the
atmospheric model gives rise to sudden changes in the concentration of the
chemical species in both space and time. These changes must be matched by
changes in the spatial mesh and the timesteps if high resolution is required,
(Tomlin, 1999). The effects of the plume interestingly causes levels of ozone
to rise above the background levels at quite large distances downwind from
the source of NOx. This application is modelled by the atmospheric diffu-
sion equation in three space dimensions given by:
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where c; is the concentration of the s’th compound, u,v and w, are wind
velocities and k; is the sum of the wet and dry deposition velocities. E;
describes the distribution of emission sources for the s’th compound and
R; is the chemical reaction term which may contain nonlinear terms in c;.
D is the diffusion term. For n chemical species a set of n coupled partial
differential equations (p.d.e’s) is formed.

The solution techniques employed consist of time integration methods
specially designed for explicit convection and implicit source terms handled
by using a very efficient Gauss-Seidel iteration. Finite volume cell-vertex
and cell-centred Godunov-type schemes (Godunov, 1959; Van Leer, 1984)
are both used for space discretization. For this atmospheric diffusion model,
the meshes and means of obtaining them are described in (Johnson, 1998;
Speares, 1997). The advantage of the Godunov-type methods based on
upwinding and approximate Riemann problems is that it is possible to pre-
serve positivity of the solution - a key requirement for reacting flow prob-
lems. Mesh adaptation using h refinement, even based on simple gradient
information gives dramatically improved solutions, see (Tomlin, 1999) but
raises the issue of whether or not the mesh is appropriate for all the species.

The only sure way of knowing whether or not the mesh is appropriate
is to use error indicators and to understand how the error depends on both
the solution and on element shape, preferably by visualization. It is hard to
visualize all the mesh elements in a full 3D mesh display and it is difficult
to comprehend fully the myriad of element shapes and sizes, see Figure
1. The combined haptic and visual interface of (Durbeck, 1999) has been
designed to overcome the daunting task of finding "bad” tetrahedra in a
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visually complex mesh. In the remainder of this paper an error indication
approach will be outlined and used in combination with the visual interface
to find bad tetrahedra in a 3D adaptive unstructured mesh.

2. Adaptive Numerical Solution Techniques.

In order to illustrate the approaches consider the simple 3D advection equa-
tion
Ui +aUz +bUy +cU, =0 (2)

The numerical method employed is a first order accurate, conservative cell-
centred finite volume scheme. The numerical solution in element ¢ at time
t,, is denoted by u}', and is an approximation to the exact element averaged
volume integral of the solution, (Speares, 1997), over V; the volume of
element 7, and is usually regarded as being valued at the element centroid
for cell centred schemes. The numerical solution at the next time level t**!
may be written as:

13
u;H-l =uj — 6tF;(tn,u) where F;(ty,U) = Vo Z AyFrn, (3)
1 k=0

and where the sum is over the k faces of the element i. The nj are the
outward face unit normal vectors and Ay the face areas. The fluxes Fy
represent the numerical flux function for each element face, termed the
element face fluxes, and are determined by the scheme. In the case of the
Godunov scheme these element face numerical fluxes are constructed from
the solution of the local element Riemann Problem (RP) at each element
face, see (Godunov, 1959; Speares, 1997). In the calculations described here
both first and second order schemes are used, (Van Leer, 1984).

A standard method for choosing the timestep in the numerical solution
of p.d.e.s is to use a CFL condition. Although such a condition may ensure
stability it may be imprecise as an accuracy control, particularly when
complex chemistry source terms are present in the p.d.e. problem. It is
important to use an error control which reflects the spatial and temporal
contributions to the error incurred.

The global error in the numerical solution can be expressed as the sum
of the spatial discretization error, and the global time error, Efficient time
integration requires that the spatial and temporal are roughly the same
order of magnitude. The need for spatial error estimates to be unpolluted
by temporal error requires the spatial error to be the larger of the two
errors. One approach for achieving this is described by, (Berzins, 1995),
who balances the spatial and temporal errors by controlling the local time
error to be a fraction of the local growth in the spatial discretization error.
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The local-in-time spatial error, é(t,+1), for the timestep from ¢, to t,41
is defined as the spatial error at time ¢,,1 given the assumption that the
spatial error, e(t,), is zero. The error é(t,1) is estimated by the difference
between the computed solution and the first-order solution which satisfies
an o.d.e. system given by

Upt1 (1) = En(t0n44(2)), (4)

function ®(.) in the spatial discretization method, (zero for a first order
scheme), to be that for a second order scheme. The local-in-time space
error is estimated by

where v, 1(t,) = V(t,) and where F’\(.,.) is obtained by using the limiter

é(tny1) = V(tng1) — Qn+1(tn+1) (5)

and is computed by applying, say, the forward Euler method method to
equation (4), thus giving (with one evaluation of Fy(.,.) per timestep):

E(tnt1) = Ot[E N (tn, V(tn)) — EN(tn, V(tn))]- (6)

While reliable error estimators for finite volume unstructured mesh solvers
exist for simple problems, e.g. (Kroner, 2000), there are no such estimators
for problems with complex source terms. Consequently, we are forced to
rely instead on local error indicators such as those described above. For
problems without source terms the estimate of Kroner and Ohlberger may
be adapted to estimate this local in time space error. Let é(t) be the local
in time spatial error computed on a timestep then combining the estimates
of Corollary(2.14) of (Kroner, 2000) and the ideas of (Berzins, 1995) gives

///Vé(tn+1)dr =a bt h> Q+2y/bcédth?Q (7)

where a,b, ¢ are constants, see (Kroner, 2000) and for an evenly spaced
mesh with spacing h and timestep dt the value of @ is given by

Q= > hlu™ —uP[+L > (5t+h)u] —u}l
JjeNT EeNT

where L is a constant, u} is the solution value associated with the jth
tetrahedron out of a mesh of NT tetrahedra with edges EeNT at time
t,. The important feature of this error estimator is that, apart from the
constants, the only solution information used consists of solution jumps
across faces ie. u7 — uj' and solution changes in time u™t — u” on a

particular tetrahedron. However the estimate does not reflect the fact that
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Figure 1. (a) Wire frame mesh and (b) visualization of poor elements

face orientation in flow problems is critical as error may not be convected
through faces aligned with the flow.

2.1. A SIMPLE 1D ADVECTION EQUATION EXAMPLE

Consider the advection of a simple one-dimensional discontinuity moving
from left to right in a 3D channel, as defined by equation (2) with a =
1,b = ¢ = 0. A typical example of a 3D unstructured mesh with 16,000
elements. is shown in Figure la. The mesh is shown in wire frame, with
all the nodes and their attachments shown, and has been refined about the
disconitinuity.

It is of interest to evaluate the error estimation approaches on a sim-
ilar simple 1D version of Problem 4 (linear advection) in (Berzins, 1995).
The local in time error being measured about halfway across the domain.
Figure 2 shows the spatial distribution of the error é(¢) with the solid line
being the true error and the values * showing the error estimate defined by
equation (6) and the values + showing the time local error. The peaks in
the error graph occur where the scheme smooths the top and bottom of the
discontinuity. The figure shows that the error estimator does a good job
of estimating the structure and the magnitude of the local-in-time spatial
error, particularly as the cfl number is reduced, (Berzins, 1995). of array
Table 1 shows the values of the error indicators for different values of the
CFL number. The results show that both error estimators do a good job
of estimating the L1 norm of the error growth over a single timestep.

3. Visual Mesh Quality Analysis

Error indicators for the simple advection equation example were investi-
gated visually with a user interface developed by (Durbeck, 1999). Durbeck’s
interface both serves as a visual debugger for the advection mesh and
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Figure 2. Graphs of local space and time errors
TABLE 1. Comparison of L1 error norm for error indicators
CFL Number 0.96 0.48 0.24 0.12 0.06 0.03
True é 1.17e-2  3.35e-2 1.46e-3 6.12e-4 2.8le-4 1.33e-4

Berzins eqn(6) 4.53e-2  4.18e-2 1.42e-3 6.23e-4 2.73e-4 1.26e-4
Kroner eqn(7) 1.15e-1 8.13e-2  2.56e-3  8.42e-4 2.85e-4  9.90e-5

presents analytic information about the mesh geometry and error indicators
so that the user can deduce the potential causes for poor quality elements.
A view of the mesh, reduced via the debugger to its poorest elements, is
shown in Figure 1b. The elements are displayed as solids, with lighting and
shading effects. The color assigned to each tetrahedron corresponds with
its relative error indicator value. Comparison of Figure la with 1b indi-
cates that the the poorest elements are roughly aligned and occur near the
leading edge of the area refined to represent the discontinuity.

The visual debugger also provides closeups used for analysis of a spe-
cific error indicator. The worst element depicted in Figure 1b is shown
in closeup view in Figure 3, along with all neighbouring elements which
may contribute to its error value. The information presented in this view
is intended to correspond closely with the error indicator: in our case, an
element’s poor quality can be a combination of its shape, orientation and
precise vertex locations within the mesh. The same inquiry continues out-
ward to its neighbours and, to a lesser extent, the next level outward as
well, as they contribute to the element in question. The worst element and
its direct neighbours are displayed as shaded solids and the (less impor-
tant) next level outward in wire frame. Graphical representations of each
element are annotated with the element number, error indicator value, and
solution value. Color also provides relative error indicator values. As shown
in Figure 3b and 3c, the closeup can be rotated about, and exploded out-
ward from, the central element in order to better view all the tetrahedra.
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a0

Figure 3. (a) In place (b) exploded (c) rotated closeup
views of worst element and its neighbours

As seen in Figure 3, The two main contributors to the central element’s
high error value appear to be its orientation, which causes two faces to be
close to perpendicular to the flux, and the wedge shape of the element,
which causes these two faces to be relatively wide. Thus the user has been
able to easily identify the cause of poor mesh quality in a complex three
dimensional meshes of the type described in Section 1.
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