
UNSTRUCTUREDMESH SOLVERS FOR HYPERBOLIC PDESWITH SOURCE TERMS: ERROR ESTIMATES AND MESHQUALITY
M. BERZINSSchool of Computer Studies,University of Leeds,Leeds LS2 9JT, U.K.Email: martin@scs.leeds.ac.ukANDL.J.K. DURBECKDepartment of Computer Science,University of Utah, USA.Email: ldurbeck@cs.utah.eduAbstract. The solution of hyperbolic systems with sti� source terms is ofgreat importance in areas such as atmospheric dispersion. The �nite-volumeapproach used here for such problems employs Godunov-type methods,a sophisticated splitting approach for e�ciency and adaptive tetrahedralmeshes to provide the necessary resolution for physically meaningful solu-tions. This raises the issues of how to estimate the error for Godunov typemethods and what is an appropriate mesh for such applications. A newmesh visualization and haptic-interface tool will be shown to help clarifythis and its use illustrated for a model problem in three space dimensions.1. IntroductionUnstructured triangular and tetrahedral meshes are widely used in engi-neering and scienti�c computing for solving problems via �nite elementand �nite volume methods. At the same time Godunov methods are widelyused in the solution of problems with hyperbolic parts (Godlewski andRaviart, 1996; Kr�oner, 1997; Toro, 1999). The intention here is to considersome of the issues that arise from combining these approaches when solving



2 M. BERZINS AND L.J.K. DURBECKproblems such as the 3D advection reaction problem, taken from a model ofatmospheric dispersion from a power station plume - a concentrated sourceof NOx emissions, (Tomlin, 1999). The photo-chemical reaction of this NOxwith polluted air leads to the generation of ozone at large distances down-wind from the source. An accurate description of the distribution of pollu-tant concentrations is needed over large spatial regions in order to comparewith �eld measurement calculations. The complex chemical kinetics in theatmospheric model gives rise to sudden changes in the concentration of thechemical species in both space and time. These changes must be matched bychanges in the spatial mesh and the timesteps if high resolution is required,(Tomlin, 1999). The e�ects of the plume interestingly causes levels of ozoneto rise above the background levels at quite large distances downwind fromthe source of NOx. This application is modelled by the atmospheric di�u-sion equation in three space dimensions given by:@cs@t + @ucs@x + @vcs@y + @wcs@z = D +Rs +Es � �scs; (1)where cs is the concentration of the s'th compound, u,v and w, are windvelocities and �s is the sum of the wet and dry deposition velocities. Esdescribes the distribution of emission sources for the s'th compound andRs is the chemical reaction term which may contain nonlinear terms in cs.D is the di�usion term. For n chemical species a set of n coupled partialdi�erential equations (p.d.e's) is formed.The solution techniques employed consist of time integration methodsspecially designed for explicit convection and implicit source terms handledby using a very e�cient Gauss-Seidel iteration. Finite volume cell-vertexand cell-centred Godunov-type schemes (Godunov, 1959; Van Leer, 1984)are both used for space discretization. For this atmospheric di�usion model,the meshes and means of obtaining them are described in (Johnson, 1998;Speares, 1997). The advantage of the Godunov-type methods based onupwinding and approximate Riemann problems is that it is possible to pre-serve positivity of the solution - a key requirement for reacting 
ow prob-lems. Mesh adaptation using h re�nement, even based on simple gradientinformation gives dramatically improved solutions, see (Tomlin, 1999) butraises the issue of whether or not the mesh is appropriate for all the species.The only sure way of knowing whether or not the mesh is appropriateis to use error indicators and to understand how the error depends on boththe solution and on element shape, preferably by visualization. It is hard tovisualize all the mesh elements in a full 3D mesh display and it is di�cultto comprehend fully the myriad of element shapes and sizes, see Figure1. The combined haptic and visual interface of (Durbeck, 1999) has beendesigned to overcome the daunting task of �nding "bad" tetrahedra in a



UNSTRUCTURED MESH SOLVERS FOR HYPERBOLIC PDES 3visually complex mesh. In the remainder of this paper an error indicationapproach will be outlined and used in combination with the visual interfaceto �nd bad tetrahedra in a 3D adaptive unstructured mesh.2. Adaptive Numerical Solution Techniques.In order to illustrate the approaches consider the simple 3D advection equa-tion Ut + aUx + bUy + cUz = 0 (2)The numerical method employed is a �rst order accurate, conservative cell-centred �nite volume scheme. The numerical solution in element i at timetn is denoted by uni , and is an approximation to the exact element averagedvolume integral of the solution, (Speares, 1997), over Vi the volume ofelement i, and is usually regarded as being valued at the element centroidfor cell centred schemes. The numerical solution at the next time level tn+1may be written as:un+1i = uni � �tFi(tn; u) where Fi(tn;U) = 1Vi ; 3Xk=0AkFk:nk (3)and where the sum is over the k faces of the element i. The nk are theoutward face unit normal vectors and Ak the face areas. The 
uxes Fkrepresent the numerical 
ux function for each element face, termed theelement face 
uxes, and are determined by the scheme. In the case of theGodunov scheme these element face numerical 
uxes are constructed fromthe solution of the local element Riemann Problem (RP) at each elementface, see (Godunov, 1959; Speares, 1997). In the calculations described hereboth �rst and second order schemes are used, (Van Leer, 1984).A standard method for choosing the timestep in the numerical solutionof p.d.e.s is to use a CFL condition. Although such a condition may ensurestability it may be imprecise as an accuracy control, particularly whencomplex chemistry source terms are present in the p.d.e. problem. It isimportant to use an error control which re
ects the spatial and temporalcontributions to the error incurred.The global error in the numerical solution can be expressed as the sumof the spatial discretization error, and the global time error, E�cient timeintegration requires that the spatial and temporal are roughly the sameorder of magnitude. The need for spatial error estimates to be unpollutedby temporal error requires the spatial error to be the larger of the twoerrors. One approach for achieving this is described by, (Berzins, 1995),who balances the spatial and temporal errors by controlling the local timeerror to be a fraction of the local growth in the spatial discretization error.



4 M. BERZINS AND L.J.K. DURBECKThe local-in-time spatial error, ê(tn+1), for the timestep from tn to tn+1is de�ned as the spatial error at time tn+1 given the assumption that thespatial error, e(tn), is zero. The error ê(tn+1) is estimated by the di�erencebetween the computed solution and the �rst-order solution which satis�esan o.d.e. system given by_vn+1 (t) = F �N (t; vn+1(t)); (4)where vn+1(tn) = V (tn) and where F �N (:; :) is obtained by using the limiterfunction �(:) in the spatial discretization method, (zero for a �rst orderscheme), to be that for a second order scheme. The local-in-time spaceerror is estimated by ê(tn+1) = V (tn+1)� vn+1(tn+1) (5)and is computed by applying, say, the forward Euler method method toequation (4), thus giving (with one evaluation of F �N (:; :) per timestep):ê(tn+1) = �t[FN (tn; V (tn))� F �N (tn; V (tn))]: (6)While reliable error estimators for �nite volume unstructured mesh solversexist for simple problems, e.g. (Kroner, 2000), there are no such estimatorsfor problems with complex source terms. Consequently, we are forced torely instead on local error indicators such as those described above. Forproblems without source terms the estimate of Kroner and Ohlberger maybe adapted to estimate this local in time space error. Let ê(t) be the localin time spatial error computed on a timestep then combining the estimatesof Corollary(2.14) of (Kroner, 2000) and the ideas of (Berzins, 1995) givesZ Z Z V ê(tn+1)d� = a �t h2 Q+ 2qb c �t h2 Q (7)where a; b; c are constants, see (Kroner, 2000) and for an evenly spacedmesh with spacing h and timestep �t the value of Q is given byQ = Xj�NT hjun+1j � unj j+ L XE�NT (�t+ h)junj � unl jwhere L is a constant, unj is the solution value associated with the jthtetrahedron out of a mesh of NT tetrahedra with edges E�NT at timetn. The important feature of this error estimator is that, apart from theconstants, the only solution information used consists of solution jumpsacross faces i.e. unj � unl and solution changes in time un+1j � unj on aparticular tetrahedron. However the estimate does not re
ect the fact that
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Figure 1. (a) Wire frame mesh and (b) visualization of poor elementsface orientation in 
ow problems is critical as error may not be convectedthrough faces aligned with the 
ow.2.1. A SIMPLE 1D ADVECTION EQUATION EXAMPLEConsider the advection of a simple one-dimensional discontinuity movingfrom left to right in a 3D channel, as de�ned by equation (2) with a =1; b = c = 0. A typical example of a 3D unstructured mesh with 16,000elements. is shown in Figure 1a. The mesh is shown in wire frame, withall the nodes and their attachments shown, and has been re�ned about thedisconitinuity.It is of interest to evaluate the error estimation approaches on a sim-ilar simple 1D version of Problem 4 (linear advection) in (Berzins, 1995).The local in time error being measured about halfway across the domain.Figure 2 shows the spatial distribution of the error ê(t) with the solid linebeing the true error and the values * showing the error estimate de�ned byequation (6) and the values + showing the time local error. The peaks inthe error graph occur where the scheme smooths the top and bottom of thediscontinuity. The �gure shows that the error estimator does a good jobof estimating the structure and the magnitude of the local-in-time spatialerror, particularly as the c
 number is reduced, (Berzins, 1995). of arrayTable 1 shows the values of the error indicators for di�erent values of theCFL number. The results show that both error estimators do a good jobof estimating the L1 norm of the error growth over a single timestep.3. Visual Mesh Quality AnalysisError indicators for the simple advection equation example were investi-gated visually with a user interface developed by (Durbeck, 1999). Durbeck'sinterface both serves as a visual debugger for the advection mesh and
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Figure 2. Graphs of local space and time errorsTABLE 1. Comparison of L1 error norm for error indicatorsCFL Number 0.96 0.48 0.24 0.12 0.06 0.03True ê 1.17e-2 3.35e-2 1.46e-3 6.12e-4 2.81e-4 1.33e-4Berzins eqn(6) 4.53e-2 4.18e-2 1.42e-3 6.23e-4 2.73e-4 1.26e-4Kroner eqn(7) 1.15e-1 8.13e-2 2.55e-3 8.42e-4 2.85e-4 9.90e-5presents analytic information about the mesh geometry and error indicatorsso that the user can deduce the potential causes for poor quality elements.A view of the mesh, reduced via the debugger to its poorest elements, isshown in Figure 1b. The elements are displayed as solids, with lighting andshading e�ects. The color assigned to each tetrahedron corresponds withits relative error indicator value. Comparison of Figure 1a with 1b indi-cates that the the poorest elements are roughly aligned and occur near theleading edge of the area re�ned to represent the discontinuity.The visual debugger also provides closeups used for analysis of a spe-ci�c error indicator. The worst element depicted in Figure 1b is shownin closeup view in Figure 3, along with all neighbouring elements whichmay contribute to its error value. The information presented in this viewis intended to correspond closely with the error indicator: in our case, anelement's poor quality can be a combination of its shape, orientation andprecise vertex locations within the mesh. The same inquiry continues out-ward to its neighbours and, to a lesser extent, the next level outward aswell, as they contribute to the element in question. The worst element andits direct neighbours are displayed as shaded solids and the (less impor-tant) next level outward in wire frame. Graphical representations of eachelement are annotated with the element number, error indicator value, andsolution value. Color also provides relative error indicator values. As shownin Figure 3b and 3c, the closeup can be rotated about, and exploded out-ward from, the central element in order to better view all the tetrahedra.
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Figure 3. (a) In place (b) exploded (c) rotated closeupviews of worst element and its neighboursAs seen in Figure 3, The two main contributors to the central element'shigh error value appear to be its orientation, which causes two faces to beclose to perpendicular to the 
ux, and the wedge shape of the element,which causes these two faces to be relatively wide. Thus the user has beenable to easily identify the cause of poor mesh quality in a complex threedimensional meshes of the type described in Section 1.ReferencesBerzins M (1995) Temporal Error Control in the Method of Lines for Convection Domi-nated Equations. SIAM J. on Sci. Comput. 16, pp.558-580.Durbeck L J K (1999) Contrast Displays: A Haptic and Visual Interface Designed Specif-ically for Mesh Quality Analysis. M.Sc. Thesis Univ. of Utah.Godunov S K (1959). A Finite Di�erence Method for the Computation of DiscontinuousSolutions of the Equations of Fluid Dynamics. Mat. Sb. 47, pp 357-393.Godlewski E and Raviart P A (1996). Numerical Approximation of Hyperbolic Systemsof Conservation Laws. Springer.Johnson C R, Berzins M, Zhukov L, and Co�ey R (1998) SCIRun: Applications to Atmo-spheric Di�usion Using UnstructuredMeshes. Numerical Methods for Fluid DynamicsVI. Editor M. J. Baines. ICFD, Oxford Univ. pp111-122.Kr�oner D (1997). Numerical Schemes for Conservation Laws. Wiley Teubner.Kroner D and Ohlberger M (2000) A posteriori error estimates for upwind �nite vol-ume schemes for nonlinear conservation laws in multi-dimensions." Mathematics ofComputation, 69, pp25-39.Speares W and Berzins M (1997) A 3D Unstructured Mesh Adaptation Algorithm forTime-Dependent Shock-dominated Problems. International Journal for NumericalMethods in Fluids 25 pp81-104.Tomlin A S, Ghorai S, Hart G and Berzins M (1999) 3-D Adaptive Unstructured Meshesfor Air Pollution Modelling. Environmental Management and Health 10/4 267-274.Toro E F (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics. SecondEdition, Springer-Verlag.van Leer B (1984). On the Relation Between the Upwind-Di�erencing Schemes of Go-dunov, Enguist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5, pp 1-20.


