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SUMMARY

Modifications to the standard finite element mass matrix are considered with the aim of preserving the positivity

of the discrete solution. The approach is used in connection with calculating the initial time derivative values
for parabolic equations and in connection with nonlinear Petrov-Galerkin schemes for hyperbolic equations in
one space dimension. The extension of the ideas to unstructured meshes in two and three space dimensions is
indicated. Copyrigh©) 2000 John Wiley & Sons, Ltd.
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1. Introduction

There are many situations in the numerical solution of partial differential equations in which the
computed solution values should, on physical grounds, remain non-negative. One the simplest
examples is that of the simple advection equation with non-negative initial data while other cases
are those of concentrations of chemical compounds in reacting flow calculations. In the latter case
preserving positivity is essential to avoid the numerical calculation becoming meaningless. Consider
the solution of the advection equation with appropriate initial and boundary condition by using
the standard Galerkin method with linear basis (hat) functipiig) on a uniformly spaced mesh
X,i=1,...,Ntoget

%s1 dU % dU :
/M W(q(x) dx_/>91 _W(H(X) dx,i=1,...,N, (1)

where the approximate solution to this p.d.e. as definddifayt) = N, @ (x)U, (t) whereg (X)) =&
Evaluating the integrals gives rise to the numerical scheme defined by

1. o _1
6 U +4U,+U,,,] = ﬁ((uwl_uifl) 2
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2 M. BERZINS

wheredx is the uniform mesh spacing in this case and er& %. Defining the time-dependent
vectorU byU = [U,, ...,UN]T allows this system of equations to be rewritten in the form

AU(t) =F(U(1)) ©)

where the matriA is referred to as the mass matrix.

It is well-known that this scheme is unsatisfactory in a very similar way to that of linear central
difference schemes, [8]. Many modified Galerkin methods have been proposed to remedy this situation.
A survey of such methods is given in [8] and includes Streamline Upwind Petrov-Galerkin (SUPG)
methods [7] in which the test functions are modified to improve the behaviour of the method and
Discontinuous Galerkin (DG) methods [4, 7] in which discontinuous basis functions are used. There
are many other approaches such as the modified Petrov-Galerkin method of Cardle [3] in which the test
function is modified differently for the spatial and temporal terms. In this case the numerical scheme
that results is given by

. 1 . . . -1 a
U+g1-8) Ui -2+ ] = 25y Yir1 ~Yis) + 55 [Ui_1— 20 +U; 4] (4)

wheref anda are the constants multiplying the Petrov-Galerkin additional polynomials in time (cubic
polynomial) and space (quadratic polynomial), see [3].

In the case of many of these methods it is clear that the magnitude of unphysical values is not as large
as with the standard Galerkin method and in the case of DG methods the mass matrix is the identity
matrix; this makes it much easier to prove properties such as positivity preservation. The definition
used here for a positivity preserving scheme for the advection equation is one (see [1]) for which the
numerical solution at timg,, , may be written in terms of the numerical solution at tithén the form

Uity 1) = zajuj(tn) where Zaj =1, anda; >0. (5)
] ]

The key observation with regard to preserving positivity is due to Godunov [6] who proved that
any scheme of better than first order which preserves positivity for the advection equation must be
nonlinear. That is the coefficiengs in (5) above must depend on the numerical solution to the p.d.e.
This means thatr andf in (4) must also depend on the solution.

In investigating positivity preserving mass matrices and Galerkin finite element methods for transient
problems the starting point will be to rewrite the mass matrix as a positivity preserving matrix. This will
be applied to the solution of a parabolic equation. The same idea will then be applied to hyperbolic
equations and linked to the work of Cardle, [3] and to work on nonlinear finite difference schemes
. Finally the extension of the approach to unstructured triangular and tetrahedral meshes will be
considered.

2. Modified Mass Matrices and the Initialisation of Parabolic Equations

In trying to solve parabolic equations using a Galerkin method-of-lines approach Skeel and Berzins
[9] showed that the initial time derivatives may have the wrong sign. This is because the inverse of
the mass matriXdA may have have negative entries. Suppose that the parabolic equation is discretised
in space to get a system of equations of the form of (3) Wit~ 0. The initial values of the time
derivatives are given by solving the equations (3) for the initial values of the time derivaj(,@)s

In computational experiments time derivatives with the wrong sign slow down the the integration and
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MODIFIED MASS MATRICES AND POSITIVITY PRESERVATION FOR PDES 3

may give physically misleading solution values. For these reasons Skeel and Berzins devised a scheme
that may be viewed as a lumped finite element scheme in which the mass matrix is replaced by the
identity matrix.

The issue of when a matrix may have an inverse consisting of positive entries is considered in a
large body of work on M matrices. See, for example, [2] who show thatsfa diagonally dominant
M matrix with negative off diagonal entries then its invesse! has only positive entries. The task is
thus to modify the mass matrix so that it has negative off-diagonal entries.

2.1. Derivation of Modifed Mass Matrix

For simplicity consider the case when linear basis functions are used on a uniform spatial mesh as in
equations (1). Theth row of the mass matrix is then given by

U, ((pj’(pj) +Uj (‘Pjv‘l’m) +Uj (‘Pja‘l’j—l) =F ®)
Using the identity that ofx; _;,X; 4] ¢+ ¢,_; + ¢, = 1 gives:
Ui (0.2) + (U3:1-9;) (9.010) + (U5 1-9) (01.0.4) = F; ()

- . U, ,-U, . . .
Defining the ratics; = U%_J allows the jth row of the mass matrix to be rewritten as

Y-t
. . . ((pj ) (0]_1)
Ui (‘Pj’l) + (Uj —Uj+1) s (‘Pj"l’m) = F (®)
This matrix is an M matrix if|...] is positive (on a uniform mesh this requiresG; < 1) as then the
matrix is diagonally dominant with negative off-diagonal entries. In the case wpenl on a uniform
mesh the jth row is written as

Ui ((p,-,l) + (UJ —Uj—l) [(%‘Pm) S — ((pj,cvj,l)] =F ©)
which again is a row of an M matrix &s..] is positive. In the case whesnj < 0 there appears

no alternative but to diagonalise (lump) the matrixtéjs[((pj,(pj) + ((pj,(pj_l) + (({)j,(pj+1)]. The
modified matrix may also be written as (with appropriate modifications # 0) :

F.
= 1 (10)

. (sitlsl)

U_,—2U.+U
AV 0j1 =20+
In solving the equations (8) and (9) for the initial values of the time derivatives it is thus necessary
to iteratively solve nonlinear equations. Lkéf‘ and§j“ be the values calculated at iteration The
equations solved in the case wI1}§’h> 1 are then given by

. : : F; sh—1
umt +y(ujm+1—uj"11) = 6—;(, where y = { 16 ] (11)
In the case when & s’j“ < 1 the iteration is defined by
. ) . F. 1/sh-1
umt 4y (U{““—Uﬂl) = 5—;(, where y = { JG ] . (12)
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4 M. BERZINS

In order to illustrate that this procedure produces initial values of the time derivatives with the right
sign the following example is used. Skeel and Berzins [9] consider test examples such as the case when
the right side of equation (3) is given By ~ Ui (x;,0) = Wiu) whereC =0.1if x<0andC =1.0

otherwise. For a uniform mesh of 11 and 21 points across the infertal] Figure 1 shows that the

Mass matrix solve n= 11

Mass matrix solve n= 21
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Figure 1. Mass Matrix Calculation for Time Derivatives - is true * is new, — is original

method does result in time derivatives of the correct sign without the overshoots and undershoots of
a standard Galerkin approach. The issue of preserving positivity for the diffusion equation has been
considered in very recent work by Farago and Horvath [5]. They show thatifdimaensional problem

using thef time integration method, it is necessary to restrict the choice of the paraéhatat the

timestepdt by s_de < % < Wl—ey whered = 1,2 Their results also extends to three space dimensions.

3. Modified Mass Matrices and Hyperbolic Equations

In general the time derivatives may not have constant sign and it is the non-negativity of the solution
that must be considered. In the case of the advection equation it is possible to rewrite equation (4) as a

simple explicit method for hyperbolic equations:
Ag(tn+1) = Ag(tn) + ot E(Q(tn))

In using the modified mass matrix approach as part of a method for hyperbolic equations it is instructive
to note other similar approaches. The approximatiod pby a standard Galerkin method is identical
to that of central finite differences. A nonlinear central difference method for hyperbolic equations is

given by Swanson and Turkel [10] as :

(13)

. -1 1
U; = E(Uprl_uj—l) Ry [Lj+1(uj+1_uj) —L; (U, _Ujfl):l (14)
whereLj = |11+_—|:J: andr‘j = ULJJ*_;UUJT The right side of this may also be interpreted as a nonlinear
i iTi- R
Petrov-Galerkin method in which the test functiongéx) where
de(x) (15)

@(X) = @(X) + Ox L*W
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MODIFIED MASS MATRICES AND POSITIVITY PRESERVATION FOR PDES 5

whereL” = L; if x;_; <X <X, andL" =L;,, otherwise. Although this scheme is positivity
preserving it is quite diffuse. A less diffuse scheme is one in whitcts defined byL* = 1—V(rj)/rj

. . . Tl U Y,
if Xj 0 >X>X;andL =1-V(rj_,)/rj_q if X; >x>x;_; whereV(r;) = 1J+—|rJJ| andr; = U}—Uj,Jl'
Routine manipulation shows that this definition gives the well-known van Leer scheme, e.g [1]:

1+V(2rj) _Vz(:j 1)] .

Uy (1) = 5B,V (0) ~Uj (1), where f, =

(16)

j—1

An alternative view of this scheme is thus as a nonlinear Petrov-Galerkin method. Requiring positivity
for forward Euler timestepping requires the CFL type restncueﬁlﬂ, < 5X . The nonlinear extension

of the type of Petrov-Galerkin method given by (3) is thus given by equatlon (10)FvY|ﬂtef|ned by

the right side of (16). An outline proof that, when combined with forward Euler timestepping, this is
positivity preserving follows from a modified version of (11). (The proof for the case in (12) being
similar). The iteration from (11) may be written as:

. F,
UPie) = = W0 + 5

]

, m=0,1,...
=1

wherey is defined as in equation (11) and so depends”@)and wher €5y, Is defined by the righthand
side of equation (16). Hence this equation may also be written as

B

Ujm”(t) = Yoy (t) — 6x( i(t) — Ujl(t))]: m=0,1,.. a7

1+V

The predicted values]})_l(tnﬂ), are given by equation(16). An outline of the approach used to define
solution positivity in terms of equation (5) may now be given. The initial guesses for the time drivatives
are given by equation (16):

Ujo—l(tn+1) = —5—1)( [Uj—l(tn)—uj_z(tn)] Bi_1 (18)

Wherijfl is also defined as in (16). Substituting ftiltf’_l in (17) and applying forward Euler
timestepping gives:

ot
Uiltyy2) =U,(t0) = 55 B (U300 = U0 VB3 Uy () =V o) (19)
whereU}'(t,,) is the first iteration estimate faf, (t,,, ;). This may be rewritten as
Uity,,) = (1- BiE)U;(tn) + (Bj — YB_)E Uj_4(tn) + (VB_1)E Uj_5(tn) (20)
ot 1

In proving positivity of this consider the worst case in equation (19) and supposg fiiaf(t,) —

U;_4(ta)) has a different sign t@; _; (U;_;(tn) —U;_,(tn)). It then follows thatr;_, is negative and
( V(ri_,)

hence thaB; = [1+ } andB;_, = { - Zr;,z ] Hence

V(r ) V(r- )

i i-2

,BJ-—yBj_l _1+T—y+y 2"],2
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6 M. BERZINS

and in order to guarantee a positive solution at the end of the first iteration we need to impose the
conditiony < 1.0. Thus, from equations (11) and (12), the iterative method is only applied if

1

? < Sﬂn <7
The same approach can then be used inductively to prove positivity for second and subsequent
iterations. Figure 2 shows the numerical results obtained when the method is applied to the advection
of a square pulse function fromn= 0.2 to 0.7 using a spatial mesh of 51 equally spaced points. The
figure compares the solution obtained with the van Leer method with the new approach and shows the

effect of using a mass matrix is to give a still positive but more skewed profile than that obtained from
the van Leer method.
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Figure 2. Numerical solution of advected squase/e

4. Extension to Triangular and Tetrahedral Meshes

In the case of triangular mesh examples it is possible to use the same idea as in one space dimension.
In this case, for example, the mass matrix for a mesh fragment consisting of three triangles with node
i in common and a perimeter consisting of nodes j, k and | is given by:

U @D+ (9;-0) (9@)+U=0) (4o@)+(0-0) (4.9) (21)

where ((g,(pj) = liz [Aijk+Aij|}, ((pj,(pj) = %2 [Aijk+Aij| +Ai|k} and whereA;;, is the area of
triangle with nodes,j andk. As the contribution of elemeinik to the mass matrix is
Ak T .- : .
- 40+ (- 20, -4, )| (22)
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MODIFIED MASS MATRICES AND POSITIVITY PRESERVATION FOR PDES 7

The same ideas as in one space dimension may be used to I‘é\fvﬁté Ui + Uk by using the same
approach as in Section 2.1. Consider ithek triangle and IetU( be midpoint solution value on
jk edge. The decomposition given by

+Kk)/2

U; =20, +U = [0, =20 o + U +2[0; 0,0 ~ U] (23)
allows the terms on the right side of this equation to be viewed as second order approximations to
second and first space derivatives. Hence in discarding these terms we introduce second order errors as
in one space dimension.
The same idea extends to tetrahedral mesh examples. Consider a single tetrahedron with its four
nodes labelled asj, k,| and associated linear basis functiamgpj ,@ andq. The mass matrix integral
associated with this tetrahedron is

Vi [Ui (‘H,‘H)+Uj ((Pj:Q) +U (¢.@) +Y, (%W)]- (24)
Evaluating the volume integral gives:
%[5Ui+(Uj_Ui)+(Uk_Ui)+(UI_Ui)] (25)

which may be rewritten as three terms of the forg§ [gui +3 (Uj -2V, —Uk)} and same ideas
applied as in one and two space dimensions.

5. Summary

In this paper a novel approach to preserving positivity has been taken. The approach relies on using
a nonlinear form of the mass matrix in conjunction with nonlinear Petrov-Galerkin type terms. The
approach has applications in one,two and three space dimensional cases, but further work is clearly
needed to assess its usefulness.
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