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A DATA-BOUNDED QUADRATIC INTERPOLANT ON TRIANGLES
AND TETRAHEDRA.

M. BERZINS*

Abstract. Many real world problems are successfully modelled by partial differential equations.
Many numerical solvers for these problems use triangular and tetrahedral meshes to accurately model
complex geometries. Such problems often involve shocks and discontinuities and it is important to
devise interpolation methods that can accurately approximate solutions containing such features.
These interpolants are required for the post—processing of the solution e.g. for visualization and
to recover solution values at arbitrary points over the numerical domain. This paper describes
a triangle—based quadratic interpolant that is "data bounded” and so will not create any values
outside of the range of the existing data points. The method is compared with the standard quadratic
interpolant and extended to the case of quadratic tetrahedral elements.
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1. Introduction. In scientific computing, the visualization of the solution to
real-world problems is an essential aid to the understanding of the physical problem
being modelled. Interpolation schemes that will respect the physical properties of
the underlying data are thus needed, one example being to preserve positivity. Many
data sets that require such interpolants result from the numerical solution of partial
differential equations (PDEs). Many of the methods used to solve such p.d.e. problems
compute solutions on rectangular or hexahedral meshes. A good survey of a number
of interpolants for such meshes which are appropriate for scientific visualization in
that they provide values that are bounded by the data values “data-bounded” and
possibly preserve the shape of data values is given by Brodlie and Mashwama [6].
These interpolants are piecewise linear bilinear and tri-linear and are piecewise cubic
and bi-cubic. One such interpolant is a bounded bi-cubic interpolant on a rectangular
mesh, [6].

In two and three spatial dimensions a number of general purpose PDE solvers
employ triangular and tetrahedral elements in conjunction with triangular and tetra-
hedral mesh generators to solve problems defined on complex domains. The best
example of this being the finite element method [12] . Alternatively, number of au-
thors use a cell-centered or cell-vertex finite volume spatial discretization schemes
to solve convection—-dominated PDEs, see [5] [7] and [11] for details. An important
feature of these problems is that initial smooth conditions may develop into steep
gradients or even shocks and discontinuities.

Standard quadratic interpolation techniques [8], [12] can be used to fit six shape
functions over each triangle to give an approximation to the surface. Section 2 below
and the paper of [10] both show that this method can easily produce interpolated
values outside the physical range of the data values. Similar problems arise with the
standard quadratic interpolant for tetrahedra, [12].

There have been many methods which have attempted to overcome some of the
problems associated with such interpolants. Some of the earliest work is that of
Barnhill et al. [2] [3]. This work will be described in outline form and used as a
starting point for the new triangular interpolant developed here. Two other important
interpolation methods in this area are those of Abgrall [1] and Barth [4]. Both these
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schemes have the common approach of using adaptive multi-triangle stencils to achieve
high order accuracy for problems which may have shocks and discontinuities. The
problem is that the number of possible combinations grows rapidly, the stencil used is
potentially large, and the points considered may be some distance from the original
node. Abgrall’s good results provide a more than adequate justification of the scheme
however.

A recent paper by Pratt and Berzins, [10], showed that by adopting a relatively
simple approach which involved sacrificing accuracy at the mid-points of edges it was
possible to achieve positivity for problems with steep gradients. The aim here is to
overcome this deficiency and to consider a simpler alternative to Abgrall’s scheme.
This will be done by decomposing a standard quadratic interpolant into a combination
of four one-dimensional quadratics. Replacing each of these one dimensional inter-
polants by ones which preserve data boundedness, possibly by replacing one quadratic
by two piecewise quadratics, enables a new data-bounded interpolant to be devised.
This interpolant is bounded by the minimum and maximum data values defining it
and so may therefore be utilised to preserve positivity. It can also be used for the
visualization of the solution and by the numerical solver to recover values over the nu-
merical domain. A novel feature of the new scheme is that the method is local to each
triangle or tetrahedral element. The price that is paid for this is that when the inter-
polant is modified to preserve data-boundedness the resulting piecewise polynomial
is only C? continuous rather than C' continuous.

The extension of the approach to tetrahedra proves to be straightforward by using
a combination of positivity preserving one dimensional and triangular interpolants.

2. The Standard Quadratic Triangular Interpolation Scheme. A 2D
quadratic triangular interpolant of an unknown function u(x, y) needs six data points:
these points are usually at the vertices of the triangle and the mid—points of the sides,
[12]. These can be mapped to area coordinates (L1, La, L3). Six shape functions can
be fitted to these points such that each is unity at one point and zero at the others.
These shape functions are shown in equation (1).

¢1 = (2L, — 1)Ly, ¢ = (2L —1)Ls
(1) ¢3 = (2L3 - 1)L3a ¢4 — 4L2L1
5 =4L3L,, ¢ = 4LiL3

The area co-ordinates of points, (L1, Lo, Ls) , 1 to 6 being (1,0,0), (0,1,0), (0,0, 1),
(%, %, 0), (0, %, %) and (%, 0, %) respectively. The interpolated value Uy is then defined

by

6
(2) Ur(Ly, L, L3) =Z¢i(L1,L2,L3)Ui

i=1

The position of the points U; is shown in Figure 1. U;,; ¢ = 1,2, 3 being the points at
which the corresponding L; = 1.

The problem with the standard interpolation formula is that the shape functions
associated with the three vertex values are negative over large parts of the triangle.
Thus it is possible that new and unphysical extrema may be introduced, [10]. Consider
for example the centroid of the triangle marked as Uz in Figure 1.In the case when
standard quadratic interpolation based on the values U;,i = 1,6 is used then
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Hence if all the values U;, 2 = 1,6 are positive but the values Uy, Uz and Us are in
some sense large compared to Uy, Us and Ug then Uz may be negative. More generally,
possible extrema of the standard quadratic interpolant polynomial U; defined by
equation (2) lie at the points at which (after replacing Ls with 1 — Ly — L2 ) (,?LUI =0
and (,?—LU2 = 0. Differentiating Ur and collecting terms together gives a pair of equations

for Ly, Lo, the critical points:

AL (U +Us —2Us) +4La(Us + Us = Us = Ug) = (Uy 4 3Us — 4Us),
4L1(U3—|—U4—U5—U6)+4L2(U3—|—U2—2U5) = (U2+3U3—4U5).

The standard multivariable calculus test for determining extrema is that I < 0 where
D= (gzgé - 6;5;1 6;;]21) . The case when D > 0 defines saddle points or if D = 0
the test fails and there may be no maximum or minimum or a line of critical points.
A lengthy but straightforward derivation shows that I has the same sign as —Det
where Det is the determinant of the preceeding pair of equations.

Although this test provides useful help in understanding why the standard inter-
polant may not be data-bounded it does not directly help to construct a data-bounded
interpolant. It is this problem, that of constructing a data-bounded quadratic inter-
polant that will be addressed in Sections 4 and 5 below. This will be achieved by
showing that the original polynomial may be interpreted as a combination of one-
dimensional quadratics. A geometrical outline of the approach is indicated by Figure
1 which indicates how a point on the line A B C is defined in terms of quadratics
using Us, Uy and U; to define a value at A, Us, U7 and U; to define a value at B and
using Us,Us and U; to define a value at C. A further quadratic interpolation using
A B,C then defines points on that line. The problems are thus reduced to that of
finding data-bounded quadratic polynomials in one space dimension and of finding a
suitable centroid value.

3. Two Data-Bounded Piecewise Quadratic Polynomials . In this sec-
tion two data-bounded one-dimensional piecewise quadratic polynomials are devised.
These polynomials will play an important role in the triangular interpolant in Section
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4 and in the tetrahedral interpolant in Section 8. The approach taken to ensure data
boundedness will be, when necessary, to decompose the original quadratic polynomial
into two piecewise polynomial quadratics.

3.1. Polynomial P;. Consider the case of the standard one dimensional quadratic
interpolant for the function u(z) defined on the interval [0, 2] mapped onto [0, 1] with
data points at 0, % and 1 given by Uy, U% and U;. Let this polynomial be defined by

(4) Q1(U0,U%,U1,L1)=U0¢31+U%¢§2+U1¢§3,
where

$1=(1—L1)(1—2L1), ¢2=4Li(1—Ly), ¢3=Li(2L; — 1)
and Ly + L, = 1 . Differentiating with respect to Ly gives

dql 1 Ul—Uo
—_— = t L1 = = h =
(5) i, 0at L 2—|—r where r 4(2U%—U1—U0)

and differentiating again with respect to Ly gives

dth
(6) m :4(—2U%—|—U1—|—U0),

which is also a second order difference approximation to hzj;—g@). This result shows
that the polynomial may have extrema at non-nodal points. If the second derivative
is zero then as ¢ is linear and hence takes its extrema at the ends of the interval.

In order to get a data bounded interpolant for which any extrema lie at data
points, the key observation in modifying the polynomial is that on the interval [0, %]
a completely different value of U; may be used from the original. Similarly, on the
interval [%, 1] a completely different value of Uy from the original may be used without
destroying C° but not C! continuity of the solution. Thus the original polynomial is
replaced by two piecewise quadratic polynomials.

Let these new values of Uy and U be denoted by Ug and Uj respectively. The
new piecewise polynomial is then defined by

(7) p1(Uo, Uy, Ur, Ly) = U0¢;1+U%¢;2+Uf¢;3, L <

(8)

0<
vl . . 1
Ugpr+Usp2+Uids, 5 <
These new values of U§ and U} will be defined by moving extrema to the closest nodal
point, denoted by L2:¥ by using equation (5). In the case when r < —% orr > %

then Uj = Uy and U; = U; and the original polynomial is unchanged

(9) LZ;;VU =Y _% <7°§—%, Uf :4U%_3U0’
1

(10) LQ;;U:§, —1<r<0, Uf="U,
1

(11) Lnew = 7 0<r<i, Us = Uy,

(12) Lt =1, 3<r<g, U;=4Us-30;.
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In all the above four cases Uy — U and Uy — U may be rewritten in a more convenient
form as

142
B) L =0, U =U1= AU =3Us—U, = (L+ r)4 U1 — Uy — Uy),
2 2 2
new 1 *
(14)L6xt = §a Ul - Ul = UO - Ul = —Tr 4 (QU% — UO - Ul),
hatf 1 .
(15)Lext = §a UO U= Ui = U = r 4 (QU% — Uy — Ul)a
1-2
16) Lig =1, Uy —Us = 4Us =30, =Uy = L=20) o, — 0o 1) .
2 2 2
From the last four equations and equation (6)
* d2Q1
(17) U, -Uy = a()m where — 1/2<r <0,
d*q
18 Up—U) = a(r) —= where 0<r<1/2
0 dr?
1

and where 0 < a(r) < 1/4 is the piecewise linear function defined as in equations
(13) to (16). Thus the algorithm adds a nonlinear multiple of the second derivative in
order to get a data-bounded interpolant. The extra term introduced by this approach
is given by

(19) (L) —pi( L) = (Ur —Up)és
(20) = (Ug - U0)¢;1

As a consequence of this, the error as defined on [
standard form on, [h/2, h], given by

%, 1] is no longer defined by the

(21) u(a:)—ql(Uo,U%,Ul,Ll) =ux(x—h/2)(x — h) é;l ——(&1), &1€[0, A]

where u(z) is defined at the start of this section, but by

U(l‘)—pl(Uo,U%,Ul,Ll) = l‘(l‘—h/?)(l‘— ) é;l 3(€1)
(22) 2 (Uy = Ug)(x — h/2) (& — h).

n?
Substituting from equations (15) and (16) for U — Uy gives
U(l‘) - pl(UO, Ul, Ul, Ll) =

4(—2U%—|—U0—|—U1) x d>u
2 h? 6 de(&)

(23) (x—=h/2)(x—=h) | 4a(r)

Thus in the same way as limiter schemes in the solution of hyperbolic partial differen-
tial equations vary the order of the method to preserve positivity, see [5], the function
a(r) varies the order between second |a(r)| = 1/4 and third order o = 0 to preserve
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data boundedness. The case a(r) = 1/4 only occurs if Uy = U% orU; = U% and then
the use of a linear polynomial is unavoidable.

In contrast when linear interpolation is used, e.g. on the subinterval [h/2, h], to
substitute for the polynomial ¢; the approximation polynomial is

(24) W(Us, Uy, Ly) = Us2(1 — Ly) + Uy(2L1 — 1)

and the modified form of the error may, for comparison purposes, be written as
w(z) — L) = ulx) — q1(.) — (L(.) — @1(.)). After some manipulation this may be
written as

u(x) - ll(U%, Ul, Ll) =

20 T am @)

(25) (x —h/2)(x = h)

A comparison between equations (23) and (25) shows that when the term ji—@f(fl)
vanishes then the ratio of the two errors is 4« (r) : 1. This is not generally the case. In
the examples below, for example, the ratios of the errors in the two cases are obtained
by comparing the bracketted terms [ ]in equations (23) and (25). Furthermore, if the
original polynomial ¢1(.) violates the positivity of the data values, then in order for
the modified polynomial to be data-bounded there must be a significant cancellation
in the two terms in [ ] in equation (23) and (25). This is also shown in the examples
below.

3.1.1. Numerical Examples. In this section the cases Uy = 100, U% = 0.3 and
Uy =0.1.and Uy = 1.0, U% = 0.3 and U; = 0.1 are considered as data points for the

function u(x) defined by:
(26) u(z) = Uy e1=)"
where
a=log(Up/U1), ¢=1log(Uy/U1) and b= (log(a) —log(c))/log(2).

In the first case Uy = 100 and the new and original polynomials are identical in [0, 0.5].
Table 1 shows the values of the interpolants at points in (0.5, 1.0) and Table 2 shows
the errors in the interpolants. In particular the original quadratic polynomial has a
minimum of about -12 whereas the new polynomial remains positive. In this case the
new value of UJ is 0.9 , Uf — Up = —99.1 a(r) = 0.246 and the change to the original
polynomial has to be substantial to achieve data-boundedness. Also shown are the
results from the linear polynomial [; defined by equation (24).

Now consider the case when the value of Uy is changed to Uy = 1, U% = 0.3 and
Uy = 0.1 . The new and original polynomials are identical in [0,0.5]. Table 1 shows
the differences at points in (0.5,1.0). In particular the original quadratic polynomial
g1has a minimum of about 0.0975 whereas the new polynomial p; remains within the
range of the data . In this case the new value of Uj 1s 0.9 , Uy — Uy = —0.1 and
a(r) = 0.05. Thus the change to the original polynomial is quite small to ensure that
the data values stay within the range of the data. It should be noted that the new
polynomial is the same for both values of Uy as the value of 7 in both cases defines the
same value of Uy . Also shown are the results from the linear polynomial /; defined
by equation (24).
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Uy Is 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
100.0 u(x) 0.3 0.230 0.184 0.153 0.133 0.119 0.110 0.105 0.102 0.100
100.0 p 0.3 0.262 0.228 0.198 0.172 0.150 0.132 0.118 0.108 0.102
100.0 [ 0.3 0.280 0.260 0.240 0.220 0.200 0.180 0.160 0.140 0.120
100.0 q1 0.3 -4.197 -7.700 -10.21 -11.72 -12.24 -11.76 -10.29 -7.820 -4.357
1.0 u(x) 0.3 0.267 0.238 0.212 0.189 0.169 0.151 0.136 0.122 0.110
1.0 P1 0.3 0.262 0.228 0.198 0.172 0.150 0.132 0.118 0.108 0.102
1.0 1 0.3 0.280 0.260 0.240 0.220 0.200 0.180 0.160 0.140 0.120
1.0 q1 0.3  0.257 0.220 0.178 0.160 0.137 0.120 0.107 0.100 0.098
TaBLE 1
Results for the standard, modified quadratic and linear interpolants
Uy Is 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

100.0  p; —u(®) 0.032 0.044 0.045 0.039 0.031 0.022 0.013 0.006 0.002
100.0 [} — u(x) 0.050 0.076 0.087 0.087 0.081 0.070 0.055 0.038 0.020
1000 g1 —u(zw) -4.42 -7.880 -10.36 -11.85 -12.35 -11.87 -10.39 -7.920 -4.458

1.0 P — u(x) -0.005 -0.010 -0.014 -0.017 -0.019 -0.019 -0.018 -0.014 -0.008

1.0 I — u(x) 0.013 0.022 0.028 0.031 0.031 0.029 0.024 0.018 0.010

1.0 q1 — u(x) -0.009 -0.018 -0.024 -0.029 -0.031 -0.031 -0.028 -0.022 -0.012
TABLE 2

Errors in the standard, modified quadratic and linear interpolants

3.2. Polynomial P;. Consider now the case of the one dimensional quadratic
interpolant to the function u(x) on [0, 1] with data points at 0, % and 1 given by Uy, Us
and Uy defined by

(27) Q2(U0,U§,U1,L1)=U0¢;1+U§¢32+U1¢;3
where

- _ - 1

é1 =1 —=L1)(1—=3Ly), ¢2=45L1(1—L1), ¢3= §L1(3L1 -1
and L, + Lo = 1 differentiating with respect to Ly gives

dqs 1 Ui - U

28 — =0atL; == h = .
(28) L, ~ Mt =g s whees 3(3U; — U, — 2U,)

Differentiating again with respect to Ly gives

d2Q2

2 __ =
(29) 11}

=3(=3Uy + Ur + 2U0).

As above, this polynomial may have extrema at non-nodal points which may be re-
moved by modifying the polynomial on the interval [0, %] by using a completely differ-
ent value of U; from the original or on the interval [%, 1] by using a completely different
value of Uy from the original. This approach preserves C° but not C continuity of
the solution. The new polynomial is defined by

_ . . 1
(30) p2(Uo, UL, Us, L1) = Uné1r+Urdz + Ul ¢s, 0§L1§§
_ . 1
(31) = Uior+Us¢o + Uigs, 3 < L <1

Define the values of U5 and U{ by moving extrema to the closest nodal point, denoted
by L22Y. In the case when s < —% or s > % then Uj = Uy and U7 = Uy and the

ext
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original polynomial is unchanged. Define the values of U3 and U} by again moving
extrema to the closest nodal point:

(32) L =0, —3<s<-—3, Uf=9Us—8U,
1
(33) Ll =3, —5<s<—§, Ul =4Uy—3U4,
1
(34) Lt =3 —§<s<5 Ui=U+3Un/M,
(35) Ly =1, §<s<g3, Uj=(9Us—5U:)/4.

The extra error introduced by this approach is given by

(36) g2(cos L) = po(c L) = (U1 =Uf)ps, 0< Ly < %,

(37) = (Uo—Ug)er , §<L1§1,

where
LY =0, U7 =Up = 9U%—8U0—U1 = (14 2s) 3(3U%—U1—2U0),
Ly = % Uf —Ur= AU =3U,-U1 = —(% +25) 3(3U, — Uy — 2U),
=L U vo= ieaua- s = (4 D) 860y - 1) - 20)

1
LI =1, U =Up = (OUy =5U0)/4=Us = (5 - %) 3(3Us — Uy —2U0).

From the last four equations and equation (5) Uy — U7 = f(s) CZ‘E where 0 < 3(s) <

1/3 and similarly for Uy — Uj. Hence similar arguments as put forward by equations
(21) to (25) in Section 3.1 apply.

4. A Data-Bounded Two Dimensional Quadratic Interpolant . In ex-
tending the ideas behind the one-dimensional schemes above to two dimensions there
are a number of possible ways to proceed. A direct two dimensional analogy with the
previous section would be to notice that the value of U; could be changed to Uy for
values of L1 < % and similarly for Uy and Us. Although this approach can be made
to work for a single triangle there is a problem in enforcing continuity of the solution
along exterior edges in a mesh of triangles. For a positive interpolant in a mesh of
triangles it is thus important for the scheme to treat edges independently.

The starting point for the two-dimensional quadratic scheme is the observation
that the ordinary quadratic interpolant may be written as a combination of four one-
dimensional quadratic interpolants; two along exterior edges, one through the centroid
and the final one across the other three. There are three such interpolants which will
be denoted by Ur;,j = 1,2,3; the subscript I being used to avoid confusion with
data points. For example, referring to Figure 1, let

Usr = q(Us,Us,Uy, Ly),
Us = ¢2(Us, Uz, Ur, L),
Ue = q(Us,Us,Ur, L),
L
(38) UI,l = ql(UAa UBa UCa > )
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where Ls/(La + L3) represents the position along the line ABC in that Ly = 0 at
A and Lo = 0 at C. As each polynomial is exact for a quadratic this interpolant
will reproduce a quadratic function. This approach has some similarities with that of
Barnhill et al. [2] [3] except that they use three combinations of two quadratics along
edges only with linear interpolation between them and subtracted a multiple of linear
interpolation using the values Uy, U; and Us. The main differences here are the use
of the centroid value Uz and the use throughout of quadratic polynomials. The two
other ways of writing the interpolant are:

Up = ¢1(Us,Us,Us, L3),
Ur = ¢q2(Us,Ur,Us, Ls),
Ur = q(U1,Us,Us, La),
Ly
39 U, = Up,Ug,U
(39) 1,2 @1(Up,Ug, F’L2+L1)
Us = q(U1,U4,Us, L),
Un = q2(Us,Ur,Us, Lo),
Uk = q(Us,Us,Us, L),
L3
40 U, = Ua,Ug,U
(40) 1,3 (Ug,Un, K’L1+L3)

In the case of the standard quadratic interpolant the centroid value, U7 is computed
using equation (3). This value will, as has already been shown in Section 2, not
preserve data boundedness.

Using the notation of Section 2 it is now straightforward to describe the bounded
positive quadratic interpolant. Let U4 be the value corresponding to U4 above but re-
placing the polynomial ¢; with p; and let the values UB, Uc, UD, UE, UF, Ug, UH, Uk
be similarly defined using the data-bounded polynomials p; and ps, and using a cen-
troid value U; that is itself bounded by the data values U;,j = 1,...,6. The method
used to compute this centroid value will be given in the next section.

Define the polynomials [717]' ,j=1,3by

) Iy

41 U, = Upg,Ug, Uy —————

(41) 1 p1(Ua,Us, C,L2+L3),
) A

42 U, = Up, U, Up, ——

(42) 1,2 p1(Up,Ug, F,L2+L1),

(43) Urs = pu(Uc, Ug, Ug, —22
13 = PN Gy VH, K’L1+L3 .

each of these polynomials being data-bounded and piecewise quadratic. The effect of
using the different combinations of bounded quadratics means that the polynomials
are no longer identical and may be directionally biased. For these reasons the bounded
positive interpolant used is U where

~ 1 - ~ ~
(44) Ur(L1, Lo, L3) = g(Um + Urs 4+ Urs).
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5. Choosing the Centroid Value, U7. In the case of the cell-centred finite
volume schemes [5] , [7] values at the centroids of triangles are the primary ones
generated by the method. In this case interpolation techniques are used to compute
the values at the mid-points of edges ,[5], and at the nodes [10]. In the case of
triangular quadratic finite element based schemes | [12], however the centroid values
are not available and must be computed.

The primary requirement is that the centroid value is itself data bounded and
that any error introduced 1s comparable to other errors already present. In the case
when the standard quadratic value Uz defined by equation (3) is data bounded then
this value is used unchanged.

Let Upae and Upyin be the maximum and minimum of the values Uy, ..., Us. In
the case when U7 lies outside of the range of these values then U; is set to either
Umaz OF Unin using the following procedure. For convenience, consider the case when
Uz > Unaz, the other case follows without difficulty. Let the (data bounded) linear
interpolant value at the centroid be denoted by UF and defined by

1
(45) Ul = g(U1 + Us + Us)

then from equation(3)

2
(46) U; = U7L — § [(Ul — 2U4 + Uz) + (Uz —2Us + U3) + (U3 —2Us + Ul)]

Let hq, hs and hs be the lengths of the three edges connecting Uy and Us, Us and U,
and Us and U; respectively, then

, 02U

4 -2 — p2 =L
(47) Uy Uy + Us 152

where z; is the local co-ordinate along the ith edge with length ;. A similar inter-
pretation of the other terms in equation (46) gives:

5, 02U
2 022

, 02U
3 022 |

2[,,0°Us

4 _ UL =

+h +h

As the linear value Uf is data-bounded and the quadratic one is not it follows that
we can find a constant 0 <y < 1 such that

Umax - U7L

49 =
(49) 2] s — U7

and hence in replacing U7 by Upq, an extra source of error is introduced, which will
be denoted by ez, where er = U7 — Upae, and note that

2

o2y L%
) )

AUy
+h 072 3

33,2?2) '

h2

(50) c7 = (1 — 1 &zf

+h

6. Error and Continuity Analysis. The interpolation error of the standard
quadratic triangular interpolant is given by Johnson [9], for example. In order to
estimate the value of the extra error incurred by using the one-dimensional data-
bounded polynomials consider the case of the interpolant defined by equation (38).
The values UA, UB, Uc each have an error of the type considered in Sections 3.1 and
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3.2 . Let these errors be denoted by eUy4,elUp and elc respectively. In addition
there is a possible extra error due to the use of the approximate centroid value. From
equation (27) this can be written as 67(/;2(L1). Hence the additional error due to
preserving data-boundedness in [71,1 which is denoted by eULl is given by

~ L3
Uy = Ua, U, Uc, —3
elrq n(Ua,Us, C,L2+L3)
. . _ . L
(51) — p1(Ua+eUs, Up + eUp + e7¢5(L1), Uc + eUc:, ——>—).
Lo+ L3

Adding and subtracting the term ¢1 (U4 +elUs, Ug+eUg +erda(Ly), Uc+ele, ﬁ)
and simplifying using the results in Section 3.1 gives

L3

- = _|_
Lo +L3)

eULl = - ql(eﬁA,eUB + e7q;2(L1),eUc,

(52) q/)l(ﬁ) a(f) (UA —2Up + Uc) + (eUA — 2(6UB + 67¢>2(L1)) + eUc)
where a(7) is calculated by using the modified solution values; i.e. Uy, instead of Uy
etc. The errors eULz and eULg may be similarly estimated. This expression shows
how the additional errors introduced by the one dimensional interpolations, el 4, eUg
and eUc combine with the centroid error to introduce an additional error ,of the same
order as the one-dimensional errors, into the interpolant. The first term in equation
(60) is the quadratic interpolant of the errors at points A B, and C while the second
term consists of a similar term to that arising from ensuring that the polynomial ¢;
is data bounded, e.g. see equation (23), but with errors in the data values.

Regarding the continuity of the interpolant defined in this way: the polynomials
defined along the edges of each triangle and through its centroid are clearly continuous.
The question remains as to whether or not the dependency of the modified polynomials
on r and s might cause discontinuities. Both » and s depend in a fixed well-defined
way on the nodal data values and so the new interpolant is a composition of continuous
functions of (x,y) and so is continuous.

7. Numerical Examples. In order to illustrate the properties of the interpolant
three simple examples defined on a triangle with vertices at (0,0),(0,1) and (1, 0)are
used. The first problem has a maximum at (2, yo) the second problem has a minimum
at (o, yo) while the third problem has a ridge of maximum values across the triangle.

Problem 1

1
53 ,Y) = =0.25 =0.1.
(53) u(,y) 01+ (e — 202+ (y—g0)? " .
Problem 2
2 2 1 1
(54) ue,y) = 10[(z = 20)" + (y —w0)"] 20o=3 w =3
Problem 3
1 9 1
(55) ww y)=2-(z+ypy)’ +oo (@ +wy) To=-3 go=-20.

Figures 1-10 display the results for these three problems and the associated numer-
ical tables in Appendices 1,2 and 3 show the solution values to two significant figues
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Fic. 2. Problem 1. Original Values

Fic. 3. Problem 1. New Interpolant
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FiGc. 4. Problem 1. Errors in New Interpolant

Fi1G. 5. Problem 2. Data Values and Original Interpolant
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Fi1G. 6. Problem 2. New Positive Interpolant

Fic. 7. Problem 2. Errors in New Interpolant
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Fic. 8. Problem 3. Data Values and Original Interpolant

Fic. 9. Problem 3. New Interpolant
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1
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0.8
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0.6

0.5
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0.3
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0.1

Fi1G. 10. Problem 3. Errors in New Interpolant

at the mesh points (0.1¢,0.15) where ¢ = 0,...,10, j = 0,...,10 and ¢ + j < 10. For
each of the three problems the original quadratic and new quadratic interpolants are
shown. For Problems 2 and 3 the exact solution is identical to the standard quadratic
interpolant and so is not shown. In the case of Problem 1 the exact solution is shown.

In the case of Problem 1 the original interpolant has a maximum value of about
9.8 along the line # = 0 whereas the new polynomial does not allow the solution to
rise above the largest nodal value of 5.7971, thus giving rise to the large maximum
error shown in Figure 4.

For Problem 2 the data and original interpolant are both zero at the centroid
x = %, y = % but the new interpolant does (correctly given its intent) not allow the
solution values to dip below the smallest data value of 0.56 .

In the case of Problem 3, the original quadratic interpolant peaks at 2.1 but the
new polynomial remains bounded by the maximum nodal value of 2.041 at point 6.
Overall, these results show that the new interpolant remains bounded between the
maximum and minimum data values.

8. Extension to Tetrahedral Elements. The method described above is read-
ily extended to the case of the standard quadratic interpolant on tetrahedra [12]
in which each exterior triangular face has the same data points as the triangular
quadratic interpolant in Figure 1. The data points are shown in Figure 11 and are
numbered 1 to 10. Suppose that we wish to find the value of the interpolant at a
point lying on the @, R, S triangle defined by the points @, R and S on which the
volume co-ordinate Ls is constant. Let QR, RS and (.S be the midpoints of the lines
between () and R , R and S and between ) and S respectively. Furthermore let ¢y
be the centroid of the triangular face defined by points 1,2,3; ¢2 be the centroid of the
triangle defined by the points 1, 3, 8 and c3 be the centroid of the triangle defined by
the points 2,3, 8 .
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Fic. 11. Ezample Tetrahedron.

The central idea is to use the monotone positive polynomials p; and p, defined in
Section 2 to compute sufficient values on the triangle defined by @), R and S so that
the triangular interpolant described in Section 3 may be used to find the value of the
interpolant. The values at ), R and S are computed using the p; polynomials along
the tetrahedral edges while the values at the midpoints Q R, RS and (.S are computed
using the pa polynomial and the centroid values U,,,U., and U, respectively on the
exterior faces of the tetrahedron. The three centroid values are calculated in the same
way as in Section 5. In other words:

Ug = pi1(Us,Us, Us, QL3),

Us = pi(Us,Ur,Us, SL3),

Ur = pi1(U1,Us, Us, RL3),
Ugr = p2(Us,U.,,Us, QRL3),
Urs = p2(Uy,U.,,Us, RSL3),
Ugs = p2(Uro,Ue,, Us, QSL3),

where () L3 is the L3 co-ordinate of point () and similarly for the other five values of
Ly .

The final step is to use the values Ug,Ur,Us,Uqgr,Urs,Ugs in the positive
triangular interpolant described in Section 6 to compute the required value. The
accuracy and positivity properties follow from the properties of the individual linear
and triangular interpolants.

As in the case of triangles where for any point there are three such interpolants
of this type there are four such tetrahedral interpolants, the one described being
associated with the volume co-ordinate Ls. Again as in the triangular case, providing
that the standard quadratics ¢1, g2 and the standard quadratic triangular interpolant
defined by equation (1) are used then all four interpolants will give the same answer.
When the positivity preserving polynomials p; and p» and the positivity preserving
triangular interpolant defined by equation (36) are used the four values will no longer
be identical, though all will be in the range of the data. One solution is to average the
four values. Alternatively the closest value to the original quadratic could be used.

9. Conclusions and Extensions. This new method for quadratic interpolation
on triangles and tetrahedra, based on combinations of linear monotone quadratic
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polynomials, will preserve positivity in the data in that the interpolant created will
be bounded by the maximum and minimum function values used to define it.

An obvious extension of the approach is consider the interpolant values on a
triangle by global rather than local data values, e.g. [6]. This may be done by
locating extrema on each edge, if necessary replacing them by global extremal data
values, and using a data bounded quadratic to interpolate in between these new values
on that part of the sub-edge where the extremal value lies. In this way, if a non-nodal
extremal value outside the data bounds was detected, each quadratic edge polynomial
would be decomposed into three piecewise quadratic polynomials.

10. Acknowledgements. The author would like to thank Ken Brodlie for point-
ing out the work of Barnhill et al. at a critical moment. The referees are also

thanked for their thoughtful comments including suggesting the use of the term ” data-
bounded”.
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Appendix 1 Problem 1. Data Values

1.0
1.2
1.5

1.3

.7
2.2 2.2

1
2.4 2.7 2.8 2.8 2.7

1.6

1.9 2.1

3.5 3.8 3.8 3.5 3.1
4.0 4.7 5.2 5.2 4.7 4.0 3.2

3.1

4.9 6.2 7.0 7.0 6.2 4.9 3.8 2.9

5.8 7.5 8.9 8.9 7.6 5.8 4.3 3.2 2.4
6.2 8.2 9.8 9.8 8.2 6.2 4.5 3.3 2.5
5.8 7.5 8.9 8.9 7.6 5.8 4.3 3.2 2.4

1.9

1.5

1.9

Problem 1. Original Quadratic Interpolant Values,

Data values are shown as [ ].

[1.0]
1.4

.7

1
1.8 2.1

2.3

2.2 2.5 2.7 2.7

2.6 3.0 3.2 3.2 3.0

[3.1] 3.4 3.6 3.6 3.4 [3.1]

3.9 3.6 3.1

4.1
4.4 4.6 4.6 4.4 4.1
4.6 5.0 5.2 5.2 5.0 4.6 4.1

3.6 3.9 4.1

4.

3.6 2.9

1

3.4 2.6

5.2 5.6 5.7 5.7 5.6 5.2 4.7 4.0 3.1

2.1

6.3 6.3 6.1 [5.8] 5.3 4.6 3.7 2.7 [1.5]

[5.8] 6.1

Problem 1. New Positive Quadratic Interpolant Values

Data values are shown as [ ].

[1.0]
1.4

.7

1
1.8 2.1

2.3

2.2 2.6 2.7 2.7

2.6 3.0 3.2 3.2 3.0

[3.1] 3.5 3.6 3.6 3.4 [3.1]

3.9 3.5 3.0

4.1
4.4 45 4.6 4.4 4.0 3.5 2.8

4.6 4.9 5.0 5.0 4.9 4.5 4.0 3.3 2.5

3.6 3.9 4.1

4.

1

5.2 5.4 5.4 556 5.4 5.2 4.6 3.9 3.0 2.1

[5.8] 5.8 5.8 5.8 5.8 [5.8] 5.3 4.6 3.7 2.7 [1.5]



Appendix 2 Problem 2. Data Values and Original Interpolant Values,
Data values used are shown as [].

[5.6]
4.3 3.8
3.3 2.7
2.5 1.9
1.8 1.3
[1.4]1 .82
1.2 .59
1.1 .66
1.3 .72
1.7 1.1
[2.2] 1.7
Problem 2
Data values
[5.6]
4.3 3.8
3.3 3.0
2.5 2.2
1.8 1.6
[1.4] 1.2
1.4 1.0
1.5 1.1
1.7 1.3
1.9 1.6
[2.2] 1.9
Problem 2
[0.0]
0.0 0.0
0.0 .20
0.0 .27
0.0 .32
[0.0] .33
.27 .42
.40 .b1
.40 .b3
.27 .43

[0.01 .27

DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT.

2.4

1.5 1.4

.89 .72 .76

.46 .29 .32 [.58]

.22 .06 .09 .32 .76

.19 .02 .06 .29 .72 1.4

.36 .19 .22 .46 .89 1.5 2.4

.72 .56 .B9 .82 1.3 1.9 2.7 3.8

1.3 1.1 1.2 [1.4] 1.8 2.5 3.3 4.3 [5.6]
. New Positive Quadratic Interpolant Values
used are shown as [ ].

2.4

1.9 1.4

1.3 1.0 .76

.94 77 .67 [.56]

.75 .63 .67 .67 .76

77 .60 .61 77 1.0 1.4

.94 .76 .75 .94 1.3 1.8 2.4

1.3 1.1 1.0 1.2 1.6 2.2 3.0 3.8

1.7 1.5 1.4 [1.4] 1.8 2.5 3.3 4.3 [5.6]
. Errors in New Positive Quadratic Interpolant

0.0

.28 0.0

.42 .31 0.0

.48 .48 .35 [0.0]

.B3 .54 .54 .35 0.0

.58 .58 .55 .48 .32 0.0

.B9 .58 .B3 .48 .42 .27 0.0

.B3 .b1 .42 .33 .31 .27 .20 0.0

.40 .40 .27 [0.0] 0.0 0.0 0.0 0.0 [0.0]

21
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Appendix 3 Problem 3. Data Values and Original Interpolant
Data values used are shown as [].

[.67]

.98 1.1

1.3 1.4 1.5

1.5 1.6 1.7 1.8

1.7 1.8 1.8 1.9 1.9

[1.8] 1.9 1.9 2.0 2.0 [2.0]

1.9 2.0 2.0 2.0 2.1 2.1 2.0

2.0 2.0 2.1 2.1 2.0 2.0 2.0 2.0

2.1 2.1 2.0 2.0 2.0 2.0 1.9 1.9 1.8

2.0 2.0 2.0 2.0 1.9 1.9 1.8 1.7 1.6 1.5
[2.0] 2.0 1.9 1.9 1.8 [1.7] 1.6 1.5 1.4 1.3 [1.2]
Problem 3. New Positive Quadratic Interpolant Values
Data values used are shown as [].

[.67]

.98 1.1

1.3 1.4 1.5

1.5 1.6 1.7 1.8

1.7 1.8 1.8 1.9 1.9

[1.8] 1.9 1.9 2.0 2.0 [2.0]

1.9 2.0 2.0 2.0 2.0 2.0 2.0

1.9 2.0 2.0 2.0 2.0 2.0 2.0 1.9

2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.8 1.7

2.0 2.0 2.0 1.9 1.9 1.8 1.8 1.7 1.6 1.5
[2.0] 2.0 1.9 1.9 1.8 [1.7] 1.6 1.5 1.4 1.3 [1.2]

Problem 3. Errors in New Positive Quadratic Interpolant
[0.0]
0.0 0.0
0.0 .005 0.0
0.0 .007 .007 0.0
0.0 .008 .01 .008 0.0
0.0l .ot .01 .01 .01 [0.0]
.05 .03 .02 .01 .02 .03 .04
.08 .06 .04 .02 .01 .02 .03 .06
.08 .07 .05 .03 .01 .01 .02 .04 .06
.05 .04 .03 .01 .01 .008 .008 .01 .02 .04
[0.0] 0.0 0.0 0.0 0.0 [0.0] 0.0 0.0 0.0 0.0 [0.0]
In this case the original quadratic interpolant peaks at 2.1 but the new polynomial
remains bounded by the maximum nodal value of 2.041 at point 6.



