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A DATA-BOUNDED QUADRATIC INTERPOLANT ON TRIANGLESAND TETRAHEDRA.M. BERZINS�Abstract. Many real world problems are successfully modelled by partial di�erential equations.Many numerical solvers for these problems use triangular and tetrahedralmeshes to accuratelymodelcomplex geometries. Such problems often involve shocks and discontinuities and it is important todevise interpolation methods that can accurately approximate solutions containing such features.These interpolants are required for the post{processing of the solution e.g. for visualization andto recover solution values at arbitrary points over the numerical domain. This paper describesa triangle{based quadratic interpolant that is "data bounded" and so will not create any valuesoutside of the range of the existing data points. The method is comparedwith the standard quadraticinterpolant and extended to the case of quadratic tetrahedral elements.Key words. Interpolation, Triangles, Tetrahedra, Quadratic Elements.AMS subject classi�cations. 65M20, 65M151. Introduction. In scienti�c computing, the visualization of the solution toreal-world problems is an essential aid to the understanding of the physical problembeing modelled. Interpolation schemes that will respect the physical properties ofthe underlying data are thus needed, one example being to preserve positivity. Manydata sets that require such interpolants result from the numerical solution of partialdi�erential equations (PDEs). Many of the methods used to solve such p.d.e. problemscompute solutions on rectangular or hexahedral meshes. A good survey of a numberof interpolants for such meshes which are appropriate for scienti�c visualization inthat they provide values that are bounded by the data values \data-bounded" andpossibly preserve the shape of data values is given by Brodlie and Mashwama [6].These interpolants are piecewise linear bilinear and tri-linear and are piecewise cubicand bi-cubic. One such interpolant is a bounded bi-cubic interpolant on a rectangularmesh, [6].In two and three spatial dimensions a number of general purpose PDE solversemploy triangular and tetrahedral elements in conjunction with triangular and tetra-hedral mesh generators to solve problems de�ned on complex domains. The bestexample of this being the �nite element method [12] . Alternatively, number of au-thors use a cell-centered or cell-vertex �nite volume spatial discretization schemesto solve convection{dominated PDEs, see [5] [7] and [11] for details. An importantfeature of these problems is that initial smooth conditions may develop into steepgradients or even shocks and discontinuities.Standard quadratic interpolation techniques [8], [12] can be used to �t six shapefunctions over each triangle to give an approximation to the surface. Section 2 belowand the paper of [10] both show that this method can easily produce interpolatedvalues outside the physical range of the data values. Similar problems arise with thestandard quadratic interpolant for tetrahedra, [12].There have been many methods which have attempted to overcome some of theproblems associated with such interpolants. Some of the earliest work is that ofBarnhill et al. [2] [3]. This work will be described in outline form and used as astarting point for the new triangular interpolant developed here. Two other importantinterpolation methods in this area are those of Abgrall [1] and Barth [4]. Both these� School of Computer Studies, The University of Leeds, Leeds LS2 9JT, U.K.2



DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT. 3schemes have the common approach of using adaptive multi-triangle stencils to achievehigh order accuracy for problems which may have shocks and discontinuities. Theproblem is that the number of possible combinations grows rapidly, the stencil used ispotentially large, and the points considered may be some distance from the originalnode. Abgrall's good results provide a more than adequate justi�cation of the schemehowever.A recent paper by Pratt and Berzins, [10], showed that by adopting a relativelysimple approach which involved sacri�cing accuracy at the mid-points of edges it waspossible to achieve positivity for problems with steep gradients. The aim here is toovercome this de�ciency and to consider a simpler alternative to Abgrall's scheme.This will be done by decomposing a standard quadratic interpolant into a combinationof four one-dimensional quadratics. Replacing each of these one dimensional inter-polants by ones which preserve data boundedness, possibly by replacing one quadraticby two piecewise quadratics, enables a new data-bounded interpolant to be devised.This interpolant is bounded by the minimum and maximum data values de�ning itand so may therefore be utilised to preserve positivity. It can also be used for thevisualization of the solution and by the numerical solver to recover values over the nu-merical domain. A novel feature of the new scheme is that the method is local to eachtriangle or tetrahedral element. The price that is paid for this is that when the inter-polant is modi�ed to preserve data-boundedness the resulting piecewise polynomialis only C0 continuous rather than C1 continuous.The extension of the approach to tetrahedra proves to be straightforward by usinga combination of positivity preserving one dimensional and triangular interpolants.2. The Standard Quadratic Triangular Interpolation Scheme. A 2Dquadratic triangular interpolant of an unknown function u(x; y) needs six data points:these points are usually at the vertices of the triangle and the mid{points of the sides,[12]. These can be mapped to area coordinates (L1; L2; L3). Six shape functions canbe �tted to these points such that each is unity at one point and zero at the others.These shape functions are shown in equation (1).�1 = (2L1 � 1)L1; �2 = (2L2 � 1)L2�3 = (2L3 � 1)L3; �4 = 4L2L1(1) �5 = 4L3L2; �6 = 4L1L3The area co-ordinates of points, (L1; L2; L3) , 1 to 6 being (1; 0; 0) , (0; 1; 0) , (0; 0; 1),(12 ; 12 ; 0), (0; 12 ; 12 ) and (12 ; 0; 12) respectively. The interpolated value UI is then de�nedby UI(L1; L2; L3) = 6Xi=1 �i(L1; L2; L3)Ui(2)The position of the points Ui is shown in Figure 1. Ui; i = 1; 2; 3 being the points atwhich the corresponding Li = 1.The problem with the standard interpolation formula is that the shape functionsassociated with the three vertex values are negative over large parts of the triangle.Thus it is possible that new and unphysical extrema may be introduced, [10]. Considerfor example the centroid of the triangle marked as U7 in Figure 1.In the case whenstandard quadratic interpolation based on the values Ui; i = 1; 6 is used then
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Fig. 1. Example Triangle.U7 = U (13 ; 13 ; 13) = 49(U4 + U5 + U6) � 19(U1 + U2 + U3)(3) Hence if all the values Ui; i = 1; 6 are positive but the values U1; U2 and U3 are insome sense large compared to U4; U5 and U6 then U7 may be negative. More generally,possible extrema of the standard quadratic interpolant polynomial UI de�ned byequation (2) lie at the points at which (after replacing L3 with 1�L1�L2 ) @U@L1 = 0and @U@L2 = 0. Di�erentiating UI and collecting terms together gives a pair of equationsfor L1; L2, the critical points:4L1(U1 + U3 � 2U6) + 4L2(U3 + U4 � U5 � U6) = (U1 + 3U3 � 4U6);4L1(U3 + U4 � U5 � U6) + 4L2(U3 + U2 � 2U5) = (U2 + 3U3 � 4U5):The standard multivariable calculus test for determining extrema is that D < 0 whereD = (@2UI@x@y � @2UI@x2 @2UI@y2 ) . The case when D > 0 de�nes saddle points or if D = 0the test fails and there may be no maximum or minimum or a line of critical points.A lengthy but straightforward derivation shows that D has the same sign as �Detwhere Det is the determinant of the preceeding pair of equations.Although this test provides useful help in understanding why the standard inter-polant may not be data-bounded it does not directly help to construct a data-boundedinterpolant. It is this problem, that of constructing a data-bounded quadratic inter-polant that will be addressed in Sections 4 and 5 below. This will be achieved byshowing that the original polynomial may be interpreted as a combination of one-dimensional quadratics. A geometrical outline of the approach is indicated by Figure1 which indicates how a point on the line A B C is de�ned in terms of quadraticsusing U2; U4 and U1 to de�ne a value at A, U3; U7 and U1 to de�ne a value at B andusing U3; U6 and U1 to de�ne a value at C. A further quadratic interpolation usingA,B,C then de�nes points on that line. The problems are thus reduced to that of�nding data-bounded quadratic polynomials in one space dimension and of �nding asuitable centroid value.3. Two Data-Bounded Piecewise Quadratic Polynomials . In this sec-tion two data-bounded one-dimensional piecewise quadratic polynomials are devised.These polynomials will play an important role in the triangular interpolant in Section



DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT. 54 and in the tetrahedral interpolant in Section 8. The approach taken to ensure databoundedness will be, when necessary, to decompose the original quadratic polynomialinto two piecewise polynomial quadratics.3.1. PolynomialP1. Consider the case of the standard one dimensional quadraticinterpolant for the function u(x) de�ned on the interval [0; h] mapped onto [0; 1] withdata points at 0; 12 and 1 given by U0; U 12 and U1. Let this polynomial be de�ned byq1(U0; U 12 ; U1; L1) = U0�̂1 + U 12 �̂2 + U1�̂3;(4)where �̂1 = (1� L1)(1� 2L1); �̂2 = 4L1(1 � L1) ; �̂3 = L1(2L1 � 1)and L1 + L2 = 1 . Di�erentiating with respect to L1 givesdq1dL1 = 0 at L1 = 12 + r where r = U1 � U04(2U 12 �U1 � U0)(5)and di�erentiating again with respect to L1 givesd2q1dL21 = 4(�2U 12 + U1 + U0);(6)which is also a second order di�erence approximation to h2 d2udx2 (12 ). This result showsthat the polynomial may have extrema at non-nodal points. If the second derivativeis zero then as q is linear and hence takes its extrema at the ends of the interval.In order to get a data bounded interpolant for which any extrema lie at datapoints, the key observation in modifying the polynomial is that on the interval [0; 12 ]a completely di�erent value of U1 may be used from the original. Similarly, on theinterval [12 ; 1] a completely di�erent value of U0 from the original may be used withoutdestroying C0 but not C1 continuity of the solution. Thus the original polynomial isreplaced by two piecewise quadratic polynomials.Let these new values of U0 and U1 be denoted by U�0 and U�1 respectively. Thenew piecewise polynomial is then de�ned byp1(U0; U 12 ; U1; L1) = U0�̂1 + U 12 �̂2 + U�1 �̂3 ; 0 � L1 � 12 ;(7) = U�0 �̂1 + U 12 �̂2 + U1�̂3 ; 12 < L1 � 1:(8)These new values of U�0 and U�1 will be de�ned by moving extrema to the closest nodalpoint, denoted by Lnewext , by using equation (5). In the case when r � �12 or r � 12then U�0 = U0 and U�1 = U1 and the original polynomial is unchangedLnewext = 0; �12 < r � �14 ; U�1 = 4U 12 � 3U0;(9) Lnewext = 12 ; �14 < r � 0; U�1 = U0;(10) Lnewext = 12 ; 0 < r � 14 ; U�0 = U1;(11) Lnewext = 1; 14 < r � 12 ; U�0 = 4U 12 � 3U1 :(12)



6 M.BERZINSIn all the above four cases U1�U�1 and U0�U�0 may be rewritten in a more convenientform asLnewext = 0; U�1 � U1 = 4U 12 � 3U0 � U1 = (1 + 2r)2 4 (2U 12 � U0 � U1);(13)Lnewext = 12 ; U�1 � U1 = U0 � U1 = � r 4 (2U 12 � U0 � U1);(14)Lhalfext = 12 ; U�0 � U0 = U1 � U0 = r 4 (2U 12 � U0 � U1);(15) Lnewext = 1; U�0 � U0 = 4U 12 � 3U1 � U0 = (1� 2r)2 4 (2U 12 � U0 � U1) :(16)From the last four equations and equation (6)U1 � U�1 = �(r) d2q1dL21 where � 1=2 � r � 0;(17) U0 � U�0 = �(r) d2q1dL21 where 0 � r � 1=2(18)and where 0 � �(r) � 1=4 is the piecewise linear function de�ned as in equations(13) to (16). Thus the algorithm adds a nonlinear multiple of the second derivative inorder to get a data-bounded interpolant. The extra term introduced by this approachis given by q1(:::; L1)� p1(:::; L1) = (U�1 � U1)�̂3 ; 0 � L1 � 12 ;(19) = (U�0 � U0)�̂1 ; 12 < L1 � 1:(20)As a consequence of this, the error as de�ned on [12 ; 1] is no longer de�ned by thestandard form on, [h=2; h], given byu(x)� q1(U0; U 12 ; U1; L1) = x(x� h=2)(x� h) 16 d3udx3 (�1); �1�[0; h](21)where u(x) is de�ned at the start of this section, but byu(x)� p1(U0; U 12 ; U1; L1) = x(x� h=2)(x� h) 16 d3udx3 (�1)� 2h2 (U�0 � U0)(x� h=2)(x� h):(22)Substituting from equations (15) and (16) for U�0 � U0 givesu(x)� p1(U0; U 12 ; U1; L1) =(x� h=2)(x� h) " 4 �(r) 4(�2U 12 + U0 + U1)2 h2 + x6 d3udx3 (�1)# :(23)Thus in the same way as limiter schemes in the solution of hyperbolic partial di�eren-tial equations vary the order of the method to preserve positivity, see [5], the function�(r) varies the order between second j�(r)j = 1=4 and third order � = 0 to preserve



DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT. 7data boundedness. The case �(r) = 1=4 only occurs if U0 = U 12 or U1 = U 12 and thenthe use of a linear polynomial is unavoidable.In contrast when linear interpolation is used, e.g. on the subinterval [h=2; h], tosubstitute for the polynomial q1 the approximation polynomial isl1(U 12 ; U1; L1) = U 12 2(1� L1) + U1(2L1 � 1)(24)and the modi�ed form of the error may, for comparison purposes, be written asu(x) � l1(:) = u(x) � q1(:) � (l1(:) � q1(:)). After some manipulation this may bewritten as u(x)� l1(U 12 ; U1; L1) =(x� h=2)(x� h) " 4(�2U 12 + U0 + U1)2 h2 + x6 d3udx3 (�1)# :(25)A comparison between equations (23) and (25) shows that when the term d3udx3 (�1)vanishes then the ratio of the two errors is 4�(r) : 1. This is not generally the case. Inthe examples below, for example, the ratios of the errors in the two cases are obtainedby comparing the bracketted terms [ ] in equations (23) and (25). Furthermore, if theoriginal polynomial q1(:) violates the positivity of the data values, then in order forthe modi�ed polynomial to be data-bounded there must be a signi�cant cancellationin the two terms in [ ] in equation (23) and (25). This is also shown in the examplesbelow.3.1.1. Numerical Examples. In this section the cases U0 = 100; U 12 = 0:3 andU1 = 0:1 . and U0 = 1:0; U 12 = 0:3 and U1 = 0:1 are considered as data points for thefunction u(x) de�ned by: u(x) = U1 ea(1�x)b ;(26)where a = log(U0=U1); c = log(U 12 =U1) and b = (log(a)� log(c))=log(2):In the �rst case U0 = 100 and the new and original polynomials are identical in [0; 0:5].Table 1 shows the values of the interpolants at points in (0:5; 1:0) and Table 2 showsthe errors in the interpolants. In particular the original quadratic polynomial has aminimum of about -12 whereas the new polynomial remains positive. In this case thenew value of U�0 is 0.9 , U�0 �U0 = �99:1 �(r) = 0:246 and the change to the originalpolynomial has to be substantial to achieve data-boundedness. Also shown are theresults from the linear polynomial l1 de�ned by equation (24).Now consider the case when the value of U0 is changed to U0 = 1; U 12 = 0:3 andU1 = 0:1 . The new and original polynomials are identical in [0; 0:5]. Table 1 showsthe di�erences at points in (0:5; 1:0). In particular the original quadratic polynomialq1has a minimum of about 0.0975 whereas the new polynomial p1 remains within therange of the data . In this case the new value of U�0 is 0.9 , U�0 � U0 = �0:1 and�(r) = 0:05. Thus the change to the original polynomial is quite small to ensure thatthe data values stay within the range of the data. It should be noted that the newpolynomial is the same for both values of U0 as the value of r in both cases de�nes thesame value of U�0 . Also shown are the results from the linear polynomial l1 de�nedby equation (24).



8 M.BERZINSU0 L1 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95100.0 u(x) 0.3 0.230 0.184 0.153 0.133 0.119 0.110 0.105 0.102 0.100100.0 p1 0.3 0.262 0.228 0.198 0.172 0.150 0.132 0.118 0.108 0.102100.0 l1 0.3 0.280 0.260 0.240 0.220 0.200 0.180 0.160 0.140 0.120100.0 q1 0.3 -4.197 -7.700 -10.21 -11.72 -12.24 -11.76 -10.29 -7.820 -4.3571.0 u(x) 0.3 0.267 0.238 0.212 0.189 0.169 0.151 0.136 0.122 0.1101.0 p1 0.3 0.262 0.228 0.198 0.172 0.150 0.132 0.118 0.108 0.1021.0 l1 0.3 0.280 0.260 0.240 0.220 0.200 0.180 0.160 0.140 0.1201.0 q1 0.3 0.257 0.220 0.178 0.160 0.137 0.120 0.107 0.100 0.098Table 1Results for the standard, modi�ed quadratic and linear interpolantsU0 L1 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95100.0 p1 � u(x) 0.032 0.044 0.045 0.039 0.031 0.022 0.013 0.006 0.002100.0 ll � u(x) 0.050 0.076 0.087 0.087 0.081 0.070 0.055 0.038 0.020100.0 q1 � u(x) -4.42 -7.880 -10.36 -11.85 -12.35 -11.87 -10.39 -7.920 -4.4581.0 p1 � u(x) -0.005 -0.010 -0.014 -0.017 -0.019 -0.019 -0.018 -0.014 -0.0081.0 l1 � u(x) 0.013 0.022 0.028 0.031 0.031 0.029 0.024 0.018 0.0101.0 q1 � u(x) -0.009 -0.018 -0.024 -0.029 -0.031 -0.031 -0.028 -0.022 -0.012Table 2Errors in the standard, modi�ed quadratic and linear interpolants3.2. Polynomial P2. Consider now the case of the one dimensional quadraticinterpolant to the function u(x) on [0; 1] with data points at 0; 13 and 1 given by U0; U 13and U1 de�ned by q2(U0; U 13 ; U1; L1) = U0 ��1 + U 13 ��2 + U1 ��3(27)where ��1 = (1� L1)(1� 3L1); ��2 = 4:5L1(1� L1) ; ��3 = 12L1(3L1 � 1)and L1 + L2 = 1 di�erentiating with respect to L1 givesdq2dL1 = 0 at L1 = 12 + s; where s = U1 � U03(3U 13 � U1 � 2U0) :(28)Di�erentiating again with respect to L1 givesd2q2dL21 = 3(�3U 13 + U1 + 2U0):(29)As above, this polynomial may have extrema at non-nodal points which may be re-moved by modifying the polynomial on the interval [0; 13 ] by using a completely di�er-ent value of U1 from the original or on the interval [13 ; 1] by using a completely di�erentvalue of U0 from the original. This approach preserves C0 but not C1 continuity ofthe solution. The new polynomial is de�ned byp2(U0; U 13 ; U1; L1) = U0 ��1 + U 13 ��2 + U�1 ��3; 0 � L1 � 13(30) = U�0 ��1 + U 13 ��2 + U1 ��3; 13 < L1 � 1(31)De�ne the values of U�0 and U�1 by moving extrema to the closest nodal point, denotedby Lnewext . In the case when s � �12 or s � 12 then U�0 = U0 and U�1 = U1 and the



DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT. 9original polynomial is unchanged. De�ne the values of U�0 and U11 by again movingextrema to the closest nodal point:Lnewext = 0; �12 < s � �13 ; U�1 = 9U 13 � 8U0;(32) Lnewext = 13 ; �13 < s � �16 ; U�1 = 4U0 � 3U 13 ;(33) Lnewext = 13 ; �16 < s � 16 ; U�0 = (U1 + 3U 13 )=4;(34) Lnewext = 1; 16 < s � 12 ; U�0 = (9U 13 � 5U1)=4:(35)The extra error introduced by this approach is given byq2(:::; L1)� p2(:::; L1) = (U1 � U�1 )�̂3 ; 0 � L1 � 13 ;(36) = (U0 � U�0 )�̂1 ; 13 < L1 � 1;(37)whereLnewext = 0; U�1 � U1 = 9U 13 � 8U0 � U1 = (1 + 2s) 3(3U 13 � U1 � 2U0);Lnewext = 13 ; U�1 � U1 = 4U0 � 3U 13 � U1 = �(13 + 2s) 3(3U 13 � U1 � 2U0);Lnewext = 13 ; U�0 � U0 = (U1 + 3U 13 )=4� U0 = ( 112 + s2) 3(3U 13 � U1 � 2U0);Lnewext = 1; U�0 � U0 = (9U 13 � 5U1)=4� U0 = (14 � s2) 3(3U 13 � U1 � 2U0):From the last four equations and equation (5) U1�U�1 = �(s) d2q2dL21 where 0 � �(s) �1=3 and similarly for U0 � U�0 . Hence similar arguments as put forward by equations(21) to (25) in Section 3.1 apply.4. A Data-Bounded Two Dimensional Quadratic Interpolant . In ex-tending the ideas behind the one-dimensional schemes above to two dimensions thereare a number of possible ways to proceed. A direct two dimensional analogy with theprevious section would be to notice that the value of U1 could be changed to U�1 forvalues of L1 < 12 and similarly for U2 and U3. Although this approach can be madeto work for a single triangle there is a problem in enforcing continuity of the solutionalong exterior edges in a mesh of triangles. For a positive interpolant in a mesh oftriangles it is thus important for the scheme to treat edges independently.The starting point for the two-dimensional quadratic scheme is the observationthat the ordinary quadratic interpolant may be written as a combination of four one-dimensional quadratic interpolants; two along exterior edges, one through the centroidand the �nal one across the other three. There are three such interpolants which willbe denoted by UI;j ; j = 1; 2; 3; the subscript I being used to avoid confusion withdata points. For example, referring to Figure 1, letUA = q1(U2; U4; U1; L1);UB = q2(U5; U7; U1; L1);UC = q1(U3; U6; U1; L1);UI;1 = q1(UA; UB ; UC; L3L2 + L3 ):(38)



10 M.BERZINSwhere L3=(L2 + L3) represents the position along the line ABC in that L3 = 0 atA and L2 = 0 at C. As each polynomial is exact for a quadratic this interpolantwill reproduce a quadratic function. This approach has some similarities with that ofBarnhill et al. [2] [3] except that they use three combinations of two quadratics alongedges only with linear interpolation between them and subtracted a multiple of linearinterpolation using the values U1; U2 and U3. The main di�erences here are the useof the centroid value U7 and the use throughout of quadratic polynomials. The twoother ways of writing the interpolant are:UD = q1(U2; U5; U3; L3);UE = q2(U4; U7; U3; L3);UF = q1(U1; U6; U3; L3);UI;2 = q1(UD; UE ; UF ; L1L2 + L1 ):(39) UG = q1(U1; U4; U2; L2);UH = q2(U6; U7; U2; L2);UK = q1(U3; U5; U2; L2);UI;3 = q1(UG; UH ; UK; L3L1 + L3 ):(40)In the case of the standard quadratic interpolant the centroid value, U7 is computedusing equation (3). This value will, as has already been shown in Section 2, notpreserve data boundedness.Using the notation of Section 2 it is now straightforward to describe the boundedpositive quadratic interpolant. Let ÛA be the value corresponding to UA above but re-placing the polynomial q1 with p1 and let the values ÛB ; ÛC ; ÛD; ÛE ; ÛF ; ÛG; ÛH ; ÛKbe similarly de�ned using the data-bounded polynomials p1 and p2, and using a cen-troid value U7 that is itself bounded by the data values Uj ; j = 1; :::; 6. The methodused to compute this centroid value will be given in the next section.De�ne the polynomials ÛI;j ; j = 1; 3 byÛI;1 = p1(ÛA; ÛB; ÛC ; L3L2 + L3 );(41) ÛI;2 = p1(ÛD ; ÛE ; ÛF ; L1L2 + L1 );(42) ÛI;3 = p1(ÛG; ÛH ; ÛK ; L3L1 + L3 ):(43)each of these polynomials being data-bounded and piecewise quadratic. The e�ect ofusing the di�erent combinations of bounded quadratics means that the polynomialsare no longer identical and may be directionally biased. For these reasons the boundedpositive interpolant used is ÛI whereÛI(L1; L2; L3) = 13(ÛI;1 + ÛI;2 + ÛI;3):(44)



DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT. 115. Choosing the Centroid Value, U7. In the case of the cell-centred �nitevolume schemes [5] , [7] values at the centroids of triangles are the primary onesgenerated by the method. In this case interpolation techniques are used to computethe values at the mid-points of edges ,[5], and at the nodes [10]. In the case oftriangular quadratic �nite element based schemes , [12], however the centroid valuesare not available and must be computed.The primary requirement is that the centroid value is itself data bounded andthat any error introduced is comparable to other errors already present. In the casewhen the standard quadratic value U7 de�ned by equation (3) is data bounded thenthis value is used unchanged.Let Umax and Umin be the maximum and minimum of the values U1; :::; U6. Inthe case when U7 lies outside of the range of these values then U7 is set to eitherUmax or Umin using the following procedure. For convenience, consider the case whenU7 > Umax, the other case follows without di�culty. Let the (data bounded) linearinterpolant value at the centroid be denoted by UL7 and de�ned byUL7 = 13(U1 + U2 + U3)(45)then from equation(3)U7 = UL7 � 29 [(U1 � 2U4 + U2) + (U2 � 2U5 + U3) + (U3 � 2U6 + U1)](46)Let h1; h2 and h3 be the lengths of the three edges connecting U1 and U2, U2 and U2and U3 and U1 respectively, thenU1 � 2U4 + U2 = h21 @2UI@z21(47)where zi is the local co-ordinate along the ith edge with length hi. A similar inter-pretation of the other terms in equation (46) gives:U7 � UL7 = 29 �h21@2UI@z21 + h22 @2UI@z22 + h23@2UI@z23 � :(48)As the linear value UL7 is data-bounded and the quadratic one is not it follows thatwe can �nd a constant 0 � 
 � 1 such that
 = Umax � UL7U7 � UL7(49)and hence in replacing U7 by Umax an extra source of error is introduced, which willbe denoted by e7, where e7 = U7 � Umax, and note thate7 = (1� 
) 29 �h21@2UI@z21 + h22 @2UI@z22 + h23@2UI@z23 � :(50)6. Error and Continuity Analysis. The interpolation error of the standardquadratic triangular interpolant is given by Johnson [9], for example. In order toestimate the value of the extra error incurred by using the one-dimensional data-bounded polynomials consider the case of the interpolant de�ned by equation (38).The values ÛA; ÛB; ÛC each have an error of the type considered in Sections 3.1 and



12 M.BERZINS3.2 . Let these errors be denoted by eÛA; eÛB and eÛC respectively. In additionthere is a possible extra error due to the use of the approximate centroid value. Fromequation (27) this can be written as e7 ��2(L1). Hence the additional error due topreserving data-boundedness in ÛI;1 which is denoted by eÛI;1 is given byeÛI;1 = q1(UA; UB; UC ; L3L2 + L3 )� p1(UA + eÛA; UB + eÛB + e7 ��2(L1); UC + eÛC ; L3L2 + L3 ):(51)Adding and subtracting the term q1(UA+eÛA; UB+eÛB+e7 ��2(L1); UC+eÛC ; L3L2+L3 )and simplifying using the results in Section 3.1 giveseÛI;1 = � q1(eÛA; eÛB + e7 ��2(L1); eÛC ; L3L2 + L3 ) +��1( L3L2 + L3 ) �(r̂) h(UA � 2UB + UC) + (eÛA � 2(eÛB + e7 ��2(L1)) + eÛC)i(52)where �(r̂) is calculated by using the modi�ed solution values, i.e. ÛA instead of UAetc. The errors eÛI;2 and eÛI;3 may be similarly estimated. This expression showshow the additional errors introduced by the one dimensional interpolations, eÛA; eÛBand eÛC combine with the centroid error to introduce an additional error ,of the sameorder as the one-dimensional errors, into the interpolant. The �rst term in equation(60) is the quadratic interpolant of the errors at points A,B, and C while the secondterm consists of a similar term to that arising from ensuring that the polynomial q1is data bounded, e.g. see equation (23), but with errors in the data values.Regarding the continuity of the interpolant de�ned in this way: the polynomialsde�ned along the edges of each triangle and through its centroid are clearly continuous.The question remains as to whether or not the dependency of the modi�ed polynomialson r and s might cause discontinuities. Both r and s depend in a �xed well-de�nedway on the nodal data values and so the new interpolant is a composition of continuousfunctions of (x; y) and so is continuous.7. Numerical Examples. In order to illustrate the properties of the interpolantthree simple examples de�ned on a triangle with vertices at (0; 0); (0; 1) and (1; 0)areused. The �rst problem has a maximumat (x0; y0) the second problem has a minimumat (x0; y0) while the third problem has a ridge of maximum values across the triangle.Problem 1u(x; y) = 10:1 + (x� x0)2 + (y � y0)2 x0 = 0:25 y0 = 0:1:(53)Problem 2u(x; y) = 10[(x� x0)2 + (y � y0)2] x0 = 13 y0 = 13 :(54)Problem 3u(x; y) = 2� 12(x+ y0y)2 + x0 (x+ y0y) x0 = �13 y0 = �2:0:(55)Figures 1-10 display the results for these three problems and the associated numer-ical tables in Appendices 1,2 and 3 show the solution values to two signi�cant �gues
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at the mesh points (0:1i; 0:1j) where i = 0; :::; 10 , j = 0; :::; 10 and i + j � 10. Foreach of the three problems the original quadratic and new quadratic interpolants areshown. For Problems 2 and 3 the exact solution is identical to the standard quadraticinterpolant and so is not shown. In the case of Problem 1 the exact solution is shown.In the case of Problem 1 the original interpolant has a maximum value of about9.8 along the line x = 0 whereas the new polynomial does not allow the solution torise above the largest nodal value of 5.7971, thus giving rise to the large maximumerror shown in Figure 4.For Problem 2 the data and original interpolant are both zero at the centroidx = 13 ; y = 13 but the new interpolant does (correctly given its intent) not allow thesolution values to dip below the smallest data value of 0:56 .In the case of Problem 3, the original quadratic interpolant peaks at 2.1 but thenew polynomial remains bounded by the maximum nodal value of 2.041 at point 6.Overall, these results show that the new interpolant remains bounded between themaximum and minimum data values.8. Extension to Tetrahedral Elements. The method described above is read-ily extended to the case of the standard quadratic interpolant on tetrahedra [12]in which each exterior triangular face has the same data points as the triangularquadratic interpolant in Figure 1. The data points are shown in Figure 11 and arenumbered 1 to 10. Suppose that we wish to �nd the value of the interpolant at apoint lying on the Q;R; S triangle de�ned by the points Q;R and S on which thevolume co-ordinate L3 is constant. Let QR;RS and QS be the midpoints of the linesbetween Q and R , R and S and between Q and S respectively. Furthermore let c1be the centroid of the triangular face de�ned by points 1,2,3; c2 be the centroid of thetriangle de�ned by the points 1, 3, 8 and c3 be the centroid of the triangle de�ned bythe points 2,3, 8 .
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7Fig. 11. Example Tetrahedron.The central idea is to use the monotone positive polynomials p1 and p2 de�ned inSection 2 to compute su�cient values on the triangle de�ned by Q;R and S so thatthe triangular interpolant described in Section 3 may be used to �nd the value of theinterpolant. The values at Q;R and S are computed using the p1 polynomials alongthe tetrahedral edges while the values at the midpointsQR;RS and QS are computedusing the p2 polynomial and the centroid values Uc1 ; Uc2 and Uc3 respectively on theexterior faces of the tetrahedron. The three centroid values are calculated in the sameway as in Section 5. In other words:UQ = p1(U2; U5; U3; QL3);US = p1(U8; U7; U3; SL3);UR = p1(U1; U6; U3; RL3);UQR = p2(U4; Uc1 ; U3; QRL3);URS = p2(U9; Uc2 ; U3; RSL3);UQS = p2(U10; Uc3 ; U3; QSL3);where QL3 is the L3 co-ordinate of point Q and similarly for the other �ve values ofL3 .The �nal step is to use the values UQ; UR; US ; UQR; URS ; UQS in the positivetriangular interpolant described in Section 6 to compute the required value. Theaccuracy and positivity properties follow from the properties of the individual linearand triangular interpolants.As in the case of triangles where for any point there are three such interpolantsof this type there are four such tetrahedral interpolants, the one described beingassociated with the volume co-ordinate L3. Again as in the triangular case, providingthat the standard quadratics q1; q2 and the standard quadratic triangular interpolantde�ned by equation (1) are used then all four interpolants will give the same answer.When the positivity preserving polynomials p1 and p2 and the positivity preservingtriangular interpolant de�ned by equation (36) are used the four values will no longerbe identical, though all will be in the range of the data. One solution is to average thefour values. Alternatively the closest value to the original quadratic could be used.9. Conclusions and Extensions. This new method for quadratic interpolationon triangles and tetrahedra, based on combinations of linear monotone quadratic
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20 M.BERZINSAppendix 1 Problem 1. Data Values1.01.2 1.31.5 1.6 1.71.9 2.1 2.2 2.22.4 2.7 2.8 2.8 2.73.1 3.5 3.8 3.8 3.5 3.14.0 4.7 5.2 5.2 4.7 4.0 3.24.9 6.2 7.0 7.0 6.2 4.9 3.8 2.95.8 7.5 8.9 8.9 7.5 5.8 4.3 3.2 2.46.2 8.2 9.8 9.8 8.2 6.2 4.5 3.3 2.5 1.95.8 7.5 8.9 8.9 7.5 5.8 4.3 3.2 2.4 1.9 1.5Problem 1. Original Quadratic Interpolant Values,Data values are shown as [ ].[1.0]1.4 1.71.8 2.1 2.32.2 2.5 2.7 2.72.6 3.0 3.2 3.2 3.0[3.1] 3.4 3.6 3.6 3.4 [3.1]3.6 3.9 4.1 4.1 3.9 3.6 3.14.1 4.4 4.6 4.6 4.4 4.1 3.6 2.94.6 5.0 5.2 5.2 5.0 4.6 4.1 3.4 2.65.2 5.6 5.7 5.7 5.6 5.2 4.7 4.0 3.1 2.1[5.8] 6.1 6.3 6.3 6.1 [5.8] 5.3 4.6 3.7 2.7 [1.5]Problem 1. New Positive Quadratic Interpolant ValuesData values are shown as [ ].[1.0]1.4 1.71.8 2.1 2.32.2 2.6 2.7 2.72.6 3.0 3.2 3.2 3.0[3.1] 3.5 3.6 3.6 3.4 [3.1]3.6 3.9 4.1 4.1 3.9 3.5 3.04.1 4.4 4.5 4.6 4.4 4.0 3.5 2.84.6 4.9 5.0 5.0 4.9 4.5 4.0 3.3 2.55.2 5.4 5.4 5.5 5.4 5.2 4.6 3.9 3.0 2.1[5.8] 5.8 5.8 5.8 5.8 [5.8] 5.3 4.6 3.7 2.7 [1.5]



DATA-BOUNDED TRIANGULAR QUADRATIC INTERPOLANT. 21Appendix 2 Problem 2. Data Values and Original Interpolant Values,Data values used are shown as [ ].[5.6]4.3 3.83.3 2.7 2.42.5 1.9 1.5 1.41.8 1.3 .89 .72 .76[1.4] .82 .46 .29 .32 [.56]1.2 .59 .22 .06 .09 .32 .761.1 .56 .19 .02 .06 .29 .72 1.41.3 .72 .36 .19 .22 .46 .89 1.5 2.41.7 1.1 .72 .56 .59 .82 1.3 1.9 2.7 3.8[2.2] 1.7 1.3 1.1 1.2 [1.4] 1.8 2.5 3.3 4.3 [5.6]Problem 2. New Positive Quadratic Interpolant ValuesData values used are shown as [ ].[5.6]4.3 3.83.3 3.0 2.42.5 2.2 1.9 1.41.8 1.6 1.3 1.0 .76[1.4] 1.2 .94 .77 .67 [.56]1.4 1.0 .75 .63 .67 .67 .761.5 1.1 .77 .60 .61 .77 1.0 1.41.7 1.3 .94 .76 .75 .94 1.3 1.8 2.41.9 1.6 1.3 1.1 1.0 1.2 1.6 2.2 3.0 3.8[2.2] 1.9 1.7 1.5 1.4 [1.4] 1.8 2.5 3.3 4.3 [5.6]Problem 2. Errors in New Positive Quadratic Interpolant[0.0]0.0 0.00.0 .20 0.00.0 .27 .28 0.00.0 .32 .42 .31 0.0[0.0] .33 .48 .48 .35 [0.0].27 .42 .53 .54 .54 .35 0.0.40 .51 .58 .58 .55 .48 .32 0.0.40 .53 .59 .58 .53 .48 .42 .27 0.0.27 .43 .53 .51 .42 .33 .31 .27 .20 0.0[0.0] .27 .40 .40 .27 [0.0] 0.0 0.0 0.0 0.0 [0.0]



22 M.BERZINSAppendix 3 Problem 3. Data Values and Original InterpolantData values used are shown as [ ].[.67].98 1.11.3 1.4 1.51.5 1.6 1.7 1.81.7 1.8 1.8 1.9 1.9[1.8] 1.9 1.9 2.0 2.0 [2.0]1.9 2.0 2.0 2.0 2.1 2.1 2.02.0 2.0 2.1 2.1 2.0 2.0 2.0 2.02.1 2.1 2.0 2.0 2.0 2.0 1.9 1.9 1.82.0 2.0 2.0 2.0 1.9 1.9 1.8 1.7 1.6 1.5[2.0] 2.0 1.9 1.9 1.8 [1.7] 1.6 1.5 1.4 1.3 [1.2]Problem 3. New Positive Quadratic Interpolant ValuesData values used are shown as [ ].[.67].98 1.11.3 1.4 1.51.5 1.6 1.7 1.81.7 1.8 1.8 1.9 1.9[1.8] 1.9 1.9 2.0 2.0 [2.0]1.9 2.0 2.0 2.0 2.0 2.0 2.01.9 2.0 2.0 2.0 2.0 2.0 2.0 1.92.0 2.0 2.0 2.0 2.0 1.9 1.9 1.8 1.72.0 2.0 2.0 1.9 1.9 1.8 1.8 1.7 1.6 1.5[2.0] 2.0 1.9 1.9 1.8 [1.7] 1.6 1.5 1.4 1.3 [1.2]Problem 3. Errors in New Positive Quadratic Interpolant[0.0]0.0 0.00.0 .005 0.00.0 .007 .007 0.00.0 .008 .01 .008 0.0[0.0] .01 .01 .01 .01 [0.0].05 .03 .02 .01 .02 .03 .04.08 .06 .04 .02 .01 .02 .03 .06.08 .07 .05 .03 .01 .01 .02 .04 .06.05 .04 .03 .01 .01 .008 .008 .01 .02 .04[0.0] 0.0 0.0 0.0 0.0 [0.0] 0.0 0.0 0.0 0.0 [0.0]In this case the original quadratic interpolant peaks at 2.1 but the new polynomialremains bounded by the maximum nodal value of 2.041 at point 6.


