
A New Metri for Dynami Load BalaningM. BerzinsShool of Computer Studies, University of Leeds, Leeds LS2 9JT, UKAbstratThe issue of the dynami load balaning of unstrutured adaptive meshes is dis-ussed. Experimental results are used to suggest the need for a new metri fordynami load balaning. The metri is derived by extending the onstrained min-imisation approah of Hu and Blake [3℄ to an unonstrained minimisation problem.Simple examples are used to demonstrate the e�etiveness of this approah for boththe determination of the amount of ommuniations traÆ between proessors andfor the more detailed graph partitioning of a mesh.
1 IntrodutionThis work is onerned with the dynami load-balaning problem whih arisesin the adaptive solution of time-dependent partial di�erential equations (PDEs)using parallel adaptive algorithms based upon hierarhial mesh re�nementsuh as that desribed by [8℄. Calulations using suh odes start by distribut-ing the initial mesh (or generating it in parallel) and then taking as manytime steps as is neessary until the mesh needs to be re�ned or oarsened.At this point the new mesh needs to be redistributed aross the proessorstogether with solution values and other data assoiated with the mesh. In theases when irregular meshes based on triangles or tetrahedra are used or whenregular meshes are used with pathes of mesh re�nement it is non-trivial todeide how to redistribute the mesh so that eah proessor has the same load.A key step in load balaning suh alulations has been to make use of graphbased tehniques following on from the work of Simon [9℄. The omputationsassoiated with the unstrutured mesh are represented by the graph (or pos-sibly the dual graph) of the mesh. The nodes of the graph orrespond to theamount of work on eah mesh ell (or possibly luster of ells) and the interon-netions between the nodes represent the ommuniations required between1Corresponding author. E-mail: martin �ss.leeds.a.uk.Preprint submitted to Elsevier Siene 9 February 2004



them. Graph partitioning tehniques are then used to distribute the mesh sothat the ommuniations between the proessors are minimised and that theload is equally distributed.As a simple example onsider the following simple 8 node mesh taken from Huand Blake [3℄ and representing a small-sale but realisti irregular triangularmesh of around 4720 elements around an airfoil. The graph is given by Figure1.
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1(629) 7 (606)Fig. 1. Mesh and Initial Distribution aross 8 ProessorsIn this ase the weighting of the graph represents the number of elements ineah partition of the spatial mesh.In some adaptive mesh odes suh as those of [8,11℄, a �xed oarse mesh is usedand then subsequently re�ned and oarsened. The graph of the oarse meshmay then be used as the basis for partitioning providing that the elementsof this graph are weighted by the number of re�ned elements on eah oarsemesh element. The oarse mesh is then distributed so that eah proessor hasroughly the same number of �ne mesh elements. In addition the total ut-weight of the partition should be minimised so as to try to redue the amountof ommuniation.Of the many existing load-balaning tools, two of the most popular are Metis([5,6℄) and Jostle ([13,14℄); both use multilevel partitioning algorithms whihprodue a hierarhy of oarsenings of the original weighted graph followed by aareful repartition of the oarsest graph. This new partition is then projetedbak onto the graph at the previous level and modi�ed using a loal algorithmin order to improve the partition quality. The proess is then repeated untilthe original weighted graph is reovered together with a modi�ed partition.2



P 2 4 8 16 32Solver Time 2873 1475 833 430 211Redistribution Time 37 19 42 63 78Migration Frequeny 1 1 2 3 7Table 1Timing Results on 32 Proessor SGI O2000Reent experiments by Touheed et al. [12℄ omparing Jostle and Metis witha number of other methods show that the most robust algorithm in terms of al-ways delivering reasonably well-balaned �nal partitions is ParMetis_RepartG, whih is based upon di�usion but still makes use of global information toensure that a good partition is obtained. This is not usually the best algorithmin any given situation however. Although overall no one algorithm was betterthan the rest, Jostle and Metis performed better than the other algorithmsonsidered.Selwood and Berzins [8℄ investigated the repartitioning of unstrutured meshesand provided experimental results based on extensive testing and also quotedresults obtained by Touheed [12℄ using Jostle on a 32 proessor Origin 2000.These results are shown in Table 1 in whih all times are in seonds. From thistable we see that the redistribution time and migration frequeny both growwith the number of proessors if migration is invoked after a �xed perentageimbalane, (10%) in this ase.Selwood and Berzins' [8℄ analysis of their appliation shows that the ost ofrepartitioning a �xed size mesh is proportional to log(P2 ) where P is the num-ber of proessors. The amount of data moved is also proportional to log(P ).Both Selwood and Berzins [8℄ and Oliker and Biswas [7℄ suggest that there isa reasonably good orrespondene between the maximum number of elementsthat any proessor has to move and the time taken for data redistribution.Touheed et al. [12℄ make the observation that the number of and quality ofrepartitions required appear to be the most important fators in the ost andeÆieny of parallel dynami mesh redistribution. A key issue identi�ed intheir work (but not addressed by them) is that of determining when repar-titioning should take plae. An essential ingredient required to make suhdeisions would appear to be the use of a metri whih inludes both migra-tion osts and ommuniation/halo osts for a given partition relative to aprevious partition.This issue is also addressed by Simon et al. [10,11℄, Aravinthan et al. [1℄ andOliker and Biswas [7℄ who express the omputational gain due to repartition-3



ing asgain = titer Nadapt (W oldmax �W newmax) + trefine  W newmaxW oldmax � 1! � tdatamove(1)where titer is the alulation time per element between the mesh being re-distributed, Nadapt is the number of iterations or timesteps between spatialremeshes. In some situations Nadapt is known in advane. In other situationse.g. steady-state alulations every remesh may be the last one and so it maybe desirable to get the best possible load balane.W oldmax andW newmax are the max-imum loads per proessor at the previous remesh and the present remesh andtrefine is the ost of re�nement. The maximum data movement ost tdatamove isgiven by tdatamove �  MaxSRE +O where  and O are onstants dependingon the arhiteture and MaxSRE is the maximum number of sent/reeivedelements per proessor.As this expression is diÆult to use diretly for load redistribution, an alterna-tive approah is to try instead to minimise the data movement ost of remesh-ing and the load imbalane assoiated with the result of the redistribution.(The atual re�nement ost on eah proessor is small in some appliations[8,12℄ and so trefine is ignored here). Let the extra time due to the maximumproessor imbalane be de�ned by timbal wheretimbal = titer Nadapt (W newmax �W newavg ) (2)where W newmax � W newavg is the maximum imbalane in terms of numbers of el-ements per proessor. Hene, from the disussion above, it is neessary tominimise ftimbal + tdatamoveg the maximum values of the imbalane and thedata movement ost. In this work this is only ahieved indiretly by addressingthe problem in the L2 norm, rather than the ideal situation in whih the max-imum L1 norm is used. This would however make the load balaning problemmuh less tratable. In the L2 norm the expressionf k Timbal k22 + k Tdatamove k22 g; (3)is minimised where the vetor Timbal is omposed of the imbalanes aross allthe proessors and the vetor Tdatamove is omposed of all the data movementosts between proessors. A model of this minimisation problem will be on-struted by extending the approah of Hu and Blake [3℄ to over the datamovement osts. 4



2 Hu and Blake's AlgorithmLet (V;E) be the onneted graph assoiated with P proessors, where V =1; 2; :::; P is the set of verties (proessors) and E is the set of edges onnetingthe proessors. Eah proessor i has a load li and the average load per proessoris lavg = Ppi=1 lip : (4)In the ase of heterogeneous proessors when the ith proessor is a fator of sifaster than the slowest proessor then the average load relative to the slowestproessor islavg = Ppi=1 li=sip : (5)Eah edge also has assoiated with it a salar xij whih is the diretionalamount of load to be sent from proessor i to j. A load balaning algorithmshould ensure equal loads i.e.Xjj(i;j)�E xij = li � lavg; i = 1; :::; p (6)where the summation is over the, j, edges onneted to node i. Again, in thease of heterogeneous proessors, the formula must be modi�ed to readXjj(i;j)�E xij = li � lavgsi; i = 1; :::; p: (7)Should p� 1 of these equations be satis�ed then the remaining equation willalso be satis�ed. As there are far more edges in a graph than verties thisequation is likely to have in�nitely many solutions and so Hu and Blake [4℄hoose the solution to minimise the data movement. This is given by:minimise 12xT W x subjet to A x = b (8)where x is the vetor with omponents xij desribing the data moved betweennodes. W is the diagonal weighting matrix representing the time taken toommuniate a single value between verties relative to the fastest ommuni-ations link. The ith omponent of the vetor b is given by the right side of5



equation (6). The norm of the vetor of data movement ost is thus modelledby k Tdatamove k22 = 12xT W x (9)and the vetor of proessor imbalanes is given byTimbal = A x � b; (10)where the matrix A is the vertex-edge inident matrix [3℄ de�ned by[A℄ij = 1 if vertex i is the head of edge j,[A℄ij = � 1 if vertex i is the tail of edge j and the matrix is zero otherwise.Hu and Blake show that the solution to this problem is found by solving theproblemL d = b; where L = AW�1AT (11)where the diagonal inverse of W , denoted by W�1, represents the relativespeed of ommuniation between nodes. The values of the vetor x are thengiven byx = W�1 AT d : (12)In the general ase where the ommuniation weights of edges ij vary thenthe matrix L is the weighted Laplaian of the form:[L℄ij = � ij; where i 6= j; [L℄ii = X ik; where i$ k; (13)and ij is the entry of the weighting matrix W�1 between verties i and j. Inthe ase of the graph in Figure 1 the L matrix is given by
L = 2666666666664

3 �1 �1 �1�1 3 �1 �1�1 �1 5 �1 �1 �1�1 �1 4 �1 �1�1 3 �1 �1�1 �1 �1 4 �1�1 2 �1�1 �1 �1 �1 4
3777777777775Hu and Blake [3,4℄ show that the amount of load to be transferred from pro-essor i to proessor j is given byxij = ij (di � dj); (14)6



where di and dj are the Lagrange multipliers de�ned by equation (11) assoi-ated with proessors i and j.3 Extending Hu and Blake's ApproahHu and Blake's [3℄ formulation does not take into aount the fat that thetransfer osts must be weighed against the ost of keeping the imbalane untilthe next load balaning. This an be ahieved by using a weighted minimisa-tion of the L2 norms of the data transfer and the imbalane. This approahthus reets the observation that at any partiular time it may be sub-optimalto exatly load balane the mesh beause of the ommuniations ost inurredin doing so. From equations (3), (9) and (10), the minimisation problem thusbeomes:Minimise f �1 12xT W x + �2(A x � b)T (A x � b) g (15)where the parameters �1; �2 reet the importane of the ost of movementto the e�et of load imbalane and are mahine, load and problem dependent.Calulating the derivative of this equation and setting it to zero gives:�1W x + 2�2 AT (Ax� b) = 0Assuming that �1 6= 0 then allows x to be written asx = W�1 AT (2(b� Ax)�2�1 )This suggests that x an be written as x = ATd with d = 2(b�Ax)�2�1 . Heneas in Hu and Blake's Algorithm, [3℄, de�ne the vetor d by equation (12) andsubstitute this expression for x into equation (15) to rewrite the minimisationproblem as.Minimise �1 12dT L d + �2 (L d � b)T (L d � b) : (16)The standard approah for the minimisation of quadrati forms and the useof the identity LT = L for the Laplaian matrix gives the system of equations,e.g. see [2℄,LT h�1 12I + �2 Li d = �2LT b :7



Although LT e = 0 for the vetor e having all entries with equal value one,[9℄,this solution is not required as the vetor b already ontains a multiple lavg ofe. Hene the matrix LT is anelled to arrive at the system of equations:h�1 12I + �2 Li d = �2b ; (17)De�ne the ratio �r = �12�2 as the ratio of mesh movement osts to omputationosts to get the system of equations[�rI + L℄ d = b ; (18)in whih only the diagonal entries of the matrix di�er from those in equation(11). Hene the algorithm may be implemented in exatly the same way asthat of Hu and Blake, [3℄.Remarks It is also worth noting that an equivalent matrix problem for thevetor x may be given by substituting for d using equation (12) to get(�r W + ATA )x = AT bThus provinding that �r is nonzero the matrix is symmetri positive de�niteand hene a unique x is guaranteed. It is also worth noting that the �nalload imbalane is f = b � Ax = �rd and that the traÆ is xTWx = dTLd =dT (b� �rd) = dT (b� f) whih is the produt of the potential d and the loadhange b� f .Solving this system of equations for di�erent values of �r and with b de�nedby b = [39; 8;�103;�125;�40; 41; 16; 164℄ gives the results shown in Table 2.Table 2 shows that as �r inreases the maximum proessor imbalane (MaxImbal) inreases and the amount of network traÆ dereases. For the largestvalues of �r the ost of movement is so high that the initial distribution isunhanged. For the smallest values of �r the movement ost is suÆiently lowthat the Hu and Blake solution [3℄ is reovered.3.1 Uneven proessor ommuniation osts Example 2Now onsider the ase when proessor osts are uneven. Assume that proessorpairs (1,2), (3,4) (5,6) and (7,8) an ommuniate with eah other within apair at ost 1. Further assume that ost of going from one pair to another is 2exept that the ost of moving from proessor pairs (1,2) to (7,8) and (3,4) to(5,6) is 4, see Figure 2. In this ase the diagonal of the matrix W is given byWdiag = [1; 2; 2; 2; 4; 1; 4; 2; 4; 4; 1; 2; 2; 1℄ where the entries of Wdiag orrespond8



�r 0.01 0.1 0.5 1.0 2.0 5.0 10 100 1000Node 1 590 590 590 591 594 601 609 626 629Node 2 591 592 595 598 599 602 601 598 598Node 3 589 588 582 575 564 544 526 493 487Node 4 589 586 572 560 542 515 496 469 465Node 5 589 588 582 576 569 560 555 550 550Node 6 591 591 592 594 598 607 614 629 631Node 7 591 592 598 603 606 610 610 606 606Node 8 591 595 610 625 647 682 707 748 754Max Imbal 1 5 20 35 57 92 117 158 164TraÆ 418 406 363 323 264 173 108 10 0Max Traf 62 60 54 49 40 27 18 2 0Table 2Load balane values with variable �r for Example 1
1     2 3    4

5 6 87Fig. 2. Proessor Con�gurationto inreasing the starting proessor number i after listing all the previouslyunlisted edges to proessors in inreasing number j where j > i for i; j asde�ned in Figure 1. This model arhiteture has some similarities with thatof the Origin 2000. The L matrix for Example 2 is given by
L = 1=4 2666666666664

8 �4 �2 �2�4 7 �2 �1�2 �2 11 �4 �1 �2�2 �4 8 �1 �1�1 7 �4 �2�1 �1 �4 8 �2�2 6 �4�1 �2 �2 �4 9
3777777777775 :Table 3 shows that as �r inreases the maximum proessor imbalane (MaxImbal) inreases and the amount of network traÆ dereases. The table alsoshows that if we ompare the amount of data moved from proessor 2 to 8,3 to 6, 4 to 5 and 4 to 6 in both the weighted ase (when the ost is 4 times9



Edge /�r 0.01 0.1 0.5 1.0 2.0 5.0 10 100 1000(2,8) original 34 33 30 27 23 15 10 1 0(2,8) weighted 26 17 26 15 9 5 3 0 0(3,6) original 19 19 18 18 16 12 8 1 0(3,6) weighted 20 16 16 11 8 4 2 0 0(4,5) original 21 20 18 16 13 9 5 0 0(4,5) weighted 22 16 20 11 7 3 1 0 0(4,6) original 42 41 37 33 27 18 11 1 0(4,6) weighted 29 24 23 16 11 6 3 0 0TraÆ 416 384 393 263 192 107 60 3 0Weighted Traf 938 790 886 591 414 229 131 10 0Orig WT Traf 978 972 875 781 646 431 277 35 0Max Imbal 6 63 76 65 85 116 135 161 164Max TraÆ 76 60 71 47 33 18 10 5 0Table 3Load balane values with variable �r and weightsthe unweighted ase) and the unweighted ase, then less use is made of theexpensive links in the weighted ase, Example 2. Furthermore Table 3 alsoshows that the weighted traÆ (Weighted Traf) summed over all the edges isless than would have been the ase had the original unweighted graph of theprevious setion been used in the weighted ase (Orig WT Traf). The max-imum amount of traÆ (Max TraÆ) also dereases as �r inreases, thoughthere is an unexplainable blip at �r = 0:5.3.2 Uneven proessor ommuniation osts Example 3The following simple example is instrutive in showing how the proposed ap-proah deals with variable ommuniations osts and a variable ratio of �r.Consider the simple network with 4 nodes and six edges given in Figure 3.Assume that the outside edges e1, e2 and e4 have a ommuniations ost 1tand the interior edges e3, e5 and e6 have a ommuniations ost of one. Theinitial values of N1,N2,N3 and N4 are 30,10,5 and 15 respetively. The matrix[�rI + L℄ is given by[�rI + L℄ = 1=4 2664 2t+ 1 + �r �t �t �1�t 2t+ 1 + �r �t �1�t �t 2t+ 1 + �r �1�1 �1 �1 3 + �r 377510
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e1N1 N2

N3

N4Fig. 3. Simple 4 Node Con�guration
t 0.01 1 10�r 0.01 1.0 100 0.01 1.0 100 0.01 1.0 100Load node N1 16 23 30 16 18 30 16 16 27Load node N2 14 12 10 14 14 10 14 14 11Load node N3 14 9 5 14 13 5 14 14 7Load node N4 15 15 15 14 15 15 15 15 15Max Imbal 1 8 15 1 3 15 1 1 12Comms edge e1 4 4 6 6 1Comms edge e2 6 5 8 7 1Comms edge e3 14 7 3 3Comms edge e4 1 1 1 1Comms edge e5 4 2 1 1Comms edge e6 9 4 2 2Total TraÆ 27 13 17 16 15 14 2Table 4Load balane values with variable �r and weights

Table 4 shows the loads on the nodes N1,N2,N3 and N4 and the ommuni-ations taking plae along edges e1 to e6. It is straightforward to see thatwhen t is small ommuniations should take plae along interior edges e3, e5and e6. Furthermore when t is large ommuniations should take plae alongexterior edges e1, e2 and e4. Table 4 shows that this is indeed what happens.As expeted, as �r is inreased the amount of ommuniation is redued. Thisexample thus provides a good illustration of how the proposed approah takesthe ost of moving data into aount.11



4 An Alternative Appliation of the New MetriAlthough the previous setion onsidered how to de�ne the amount of datamovement between proessors, the same idea may be used with a similar metrito estimate how to partition a omputational mesh between a pair of proessorsas part of a reursive bisetion proedure. The entral idea is to extend theoriginal graph-based partitioning approah suggested by Simon [9℄ to inludethe osts of data movement. For example, onsider the partitioning problemafter the (n+1)th remesh with just two proessors. For simpliity assume thatthe number of elements before and after partitioning is the same. Let Ln+1be the weighted Laplaian matrix of the weighted dual graph of the oarsestlevel mesh after the (n+1)th remesh (see, for example, [2℄) and let xn be thelatest partition vetor (xni = �1 aording to whih subdomain oarse elementi belongs to). The ommuniation/halo overhead at the next step of the solveris therefore proportional to (xn)TLn+1xn. Conversely, if repartitioning were totake plae (leading to a new partition vetor xn+1) before the next step of thesolver, the new ommuniation/halo overhead plus the movement ost wouldbe proportional to(xn+1)T Ln+1 xn+1 + �(xn+1 � xn)T (xn+1 � xn) (19)for some onstant � (the ratio of moving ost to ommuniations osts). Witha suitable hoie of this onstant, this quadrati form ould be minimised bysolving the equations:(Ln+1 + �I) xn+1 = � xn (20)for a new partition vetor xn+1, thus yielding an alternative dynami load-balaning heuristi. In ontrast to the approah of the previous setion, whihprovides a way of deiding how muh data should be moved between proes-sors, this approah provides an expliit mehanism for deiding whih elementsshould be moved.One issue for this metri is that the matrix L is singular and hene the de-generate ase of � = 0 must be treated separately as in the work of Simon [9℄and many others sine. Although the vetor e with every entry having valueone satis�es Le = 0 and an be subtrated from the solution obtained bysolving equations (20) it is not neessary to do this in order to alulate apartition, see [2℄. Furthermore unlike the approah desribed earlier there isno diret attempt to take into aount the imbalane of the existing partition.The value of this imbalane is in general given by eTxn+1. This does openup the possibility of inluding the square of this expression in equation (19).As with the earlier approah we need to determine appropriate values of the12



balaning parameter �.Another even more taxing issue is how to solve the equations de�ned by equa-tion (20) is a suÆiently fast way so as to not add exessive overhead to theload-balaning alulation. The issue is more pressing in this ase as the over-all number of equations to be solved is proportional to the number of meshelements rather than the number of proessors.4.1 Retangular Re�ned Mesh Example 4In order to illustrate this approah onsider the following simple exampleonsisting of a retangular oarse mesh with horizontal and vertial links only.This mesh may be represented by a matrix in whih the value 1 representsone oarse mesh ell, 4 represents one oarse mesh ell divided into 4, and16 represents one oarse mesh ell divided into 16 equal ells. One domainis de�ned by positive signs while negative signs are assigned to the otherdomain. De�ne the ommuniations ost between the domains as the sum ofthe absolute values on both sides of the interfae. Suppose the original meshis given by4 4 1 �14 1 �1 �44 1 �1 �41 �1 �4 �4 whih is remeshed to 1 4 16 �161 1 �1 �44 1 �1 �116 �16 �4 �1The ommuniations ost for the original mesh is 8 while for the new meshwith the original partition it is 68. Applying the algorithm desribed abovefor three di�erent values of � gives three new partitions�1 �4 �16 �161 �1 �1 �44 1 1 �116 16 4 1 1 �4 �16 �161 �1 �1 �44 1 �1 �116 16 4 1 1 �4 �16 �161 1 �1 �44 1 1 �116 16 �4 1(a) � � 0:1 (b) � = 1 () � = 10The alulation of the partition is performed as in Hodgson and Jimak [2℄.In order to assess the e�etiveness of this approah it is neessary to de�nethe moving osts assoiated with this approah. Let oldi be the weight of ell ibefore remeshing and let newi be the weight of ell i after remeshing. Assumingthat a oarse mesh ell moving from one partition to another is representedby a hange of sign of xi then the moving ost used is given byCostmoving =Xi min (oldi ; newi ) 14 (xoldi � xnewi )2 (21)13



where the impliit assumption is that mesh ells are oarsened in their existingpartition and re�ned in their new partition, see [7℄. In this ase the movingost for � � 0:1 is 14, while for � = 1 the moving ost = 12 and for � = 10the moving ost is 8. The imbalanes in eah of these ases are zero exeptfor Case () in whih there is an imbalane of 2. The ommuniations ost foreah of the new patterns are 8, 15 and 30 in ases (a), (b) and () respetively.Thus as the ost of moving data rises less data is moved, but at the penaltyof performing more ommuniations at the solver stage.5 ConlusionsThis work has shown by means of simple and easily omprehended examplesthat the idea of taking into aount data redistribution osts has some meritwith regard to the load balaning of dynamially varying unstrutured meshes.Although the simple model presented here is a promising start muh more workremains to be done. In partiular the model needs to be parameterised againsta range of realisti examples.AknowledgementsThe author would like to thank Yifan Hu for supplying the remarks givendiretly below equations (15) and (18) and for supplying the mesh diagram inFigure 1. The author would like to thank Peter Jimak and Chris Walshawfor ommenting on drafts of this paper, Brue Hendrikson for his valuableomments on this topi and Guy Lonsdale, Joe Flaherty and George Karypisfor invitations to meetings that indiretly led to this work being done.Referenes[1℄ V.Aravinthan, S.P. Johnson, K. MManus, C. Walshaw and M. Cross,Dynami Load Balaning for Multi-Physial Modelling using UnstruturedMeshes, Pro. 11th Intl. Conf. Domain Deomposition Methods, Greenwih,UK, 1998, eds. C.H. Lai P.E. Bj�rstad, M. Cross, and O. Widlund,DDM.org, http://www.ddm.org, www.ddm.org/DD11/Aravinthan.ps.gz", pp.380-387, 1999.[2℄ D.C. Hodgson and P.K. Jimak, \EÆient Mesh Partitioning for Parallel ElliptiDi�erential Equation Solvers.", Computing Systems in Engineering, 6, 1{12,1995. 14
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