
A New Metri
 for Dynami
 Load Balan
ingM. BerzinsS
hool of Computer Studies, University of Leeds, Leeds LS2 9JT, UKAbstra
tThe issue of the dynami
 load balan
ing of unstru
tured adaptive meshes is dis-
ussed. Experimental results are used to suggest the need for a new metri
 fordynami
 load balan
ing. The metri
 is derived by extending the 
onstrained min-imisation approa
h of Hu and Blake [3℄ to an un
onstrained minimisation problem.Simple examples are used to demonstrate the e�e
tiveness of this approa
h for boththe determination of the amount of 
ommuni
ations traÆ
 between pro
essors andfor the more detailed graph partitioning of a mesh.
1 Introdu
tionThis work is 
on
erned with the dynami
 load-balan
ing problem whi
h arisesin the adaptive solution of time-dependent partial di�erential equations (PDEs)using parallel adaptive algorithms based upon hierar
hi
al mesh re�nementsu
h as that des
ribed by [8℄. Cal
ulations using su
h 
odes start by distribut-ing the initial mesh (or generating it in parallel) and then taking as manytime steps as is ne
essary until the mesh needs to be re�ned or 
oarsened.At this point the new mesh needs to be redistributed a
ross the pro
essorstogether with solution values and other data asso
iated with the mesh. In the
ases when irregular meshes based on triangles or tetrahedra are used or whenregular meshes are used with pat
hes of mesh re�nement it is non-trivial tode
ide how to redistribute the mesh so that ea
h pro
essor has the same load.A key step in load balan
ing su
h 
al
ulations has been to make use of graphbased te
hniques following on from the work of Simon [9℄. The 
omputationsasso
iated with the unstru
tured mesh are represented by the graph (or pos-sibly the dual graph) of the mesh. The nodes of the graph 
orrespond to theamount of work on ea
h mesh 
ell (or possibly 
luster of 
ells) and the inter
on-ne
tions between the nodes represent the 
ommuni
ations required between1Corresponding author. E-mail: martin �s
s.leeds.a
.uk.Preprint submitted to Elsevier S
ien
e 9 February 2004



them. Graph partitioning te
hniques are then used to distribute the mesh sothat the 
ommuni
ations between the pro
essors are minimised and that theload is equally distributed.As a simple example 
onsider the following simple 8 node mesh taken from Huand Blake [3℄ and representing a small-s
ale but realisti
 irregular triangularmesh of around 4720 elements around an airfoil. The graph is given by Figure1.
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1(629) 7 (606)Fig. 1. Mesh and Initial Distribution a
ross 8 Pro
essorsIn this 
ase the weighting of the graph represents the number of elements inea
h partition of the spatial mesh.In some adaptive mesh 
odes su
h as those of [8,11℄, a �xed 
oarse mesh is usedand then subsequently re�ned and 
oarsened. The graph of the 
oarse meshmay then be used as the basis for partitioning providing that the elementsof this graph are weighted by the number of re�ned elements on ea
h 
oarsemesh element. The 
oarse mesh is then distributed so that ea
h pro
essor hasroughly the same number of �ne mesh elements. In addition the total 
ut-weight of the partition should be minimised so as to try to redu
e the amountof 
ommuni
ation.Of the many existing load-balan
ing tools, two of the most popular are Metis([5,6℄) and Jostle ([13,14℄); both use multilevel partitioning algorithms whi
hprodu
e a hierar
hy of 
oarsenings of the original weighted graph followed by a
areful repartition of the 
oarsest graph. This new partition is then proje
tedba
k onto the graph at the previous level and modi�ed using a lo
al algorithmin order to improve the partition quality. The pro
ess is then repeated untilthe original weighted graph is re
overed together with a modi�ed partition.2



P 2 4 8 16 32Solver Time 2873 1475 833 430 211Redistribution Time 37 19 42 63 78Migration Frequen
y 1 1 2 3 7Table 1Timing Results on 32 Pro
essor SGI O2000Re
ent experiments by Touheed et al. [12℄ 
omparing Jostle and Metis witha number of other methods show that the most robust algorithm in terms of al-ways delivering reasonably well-balan
ed �nal partitions is ParMetis_RepartG, whi
h is based upon di�usion but still makes use of global information toensure that a good partition is obtained. This is not usually the best algorithmin any given situation however. Although overall no one algorithm was betterthan the rest, Jostle and Metis performed better than the other algorithms
onsidered.Selwood and Berzins [8℄ investigated the repartitioning of unstru
tured meshesand provided experimental results based on extensive testing and also quotedresults obtained by Touheed [12℄ using Jostle on a 32 pro
essor Origin 2000.These results are shown in Table 1 in whi
h all times are in se
onds. From thistable we see that the redistribution time and migration frequen
y both growwith the number of pro
essors if migration is invoked after a �xed per
entageimbalan
e, (10%) in this 
ase.Selwood and Berzins' [8℄ analysis of their appli
ation shows that the 
ost ofrepartitioning a �xed size mesh is proportional to log(P2 ) where P is the num-ber of pro
essors. The amount of data moved is also proportional to log(P ).Both Selwood and Berzins [8℄ and Oliker and Biswas [7℄ suggest that there isa reasonably good 
orresponden
e between the maximum number of elementsthat any pro
essor has to move and the time taken for data redistribution.Touheed et al. [12℄ make the observation that the number of and quality ofrepartitions required appear to be the most important fa
tors in the 
ost andeÆ
ien
y of parallel dynami
 mesh redistribution. A key issue identi�ed intheir work (but not addressed by them) is that of determining when repar-titioning should take pla
e. An essential ingredient required to make su
hde
isions would appear to be the use of a metri
 whi
h in
ludes both migra-tion 
osts and 
ommuni
ation/halo 
osts for a given partition relative to aprevious partition.This issue is also addressed by Simon et al. [10,11℄, Aravinthan et al. [1℄ andOliker and Biswas [7℄ who express the 
omputational gain due to repartition-3



ing asgain = titer Nadapt (W oldmax �W newmax) + trefine  W newmaxW oldmax � 1! � tdatamove(1)where titer is the 
al
ulation time per element between the mesh being re-distributed, Nadapt is the number of iterations or timesteps between spatialremeshes. In some situations Nadapt is known in advan
e. In other situationse.g. steady-state 
al
ulations every remesh may be the last one and so it maybe desirable to get the best possible load balan
e.W oldmax andW newmax are the max-imum loads per pro
essor at the previous remesh and the present remesh andtrefine is the 
ost of re�nement. The maximum data movement 
ost tdatamove isgiven by tdatamove � 
 MaxSRE +O where 
 and O are 
onstants dependingon the ar
hite
ture and MaxSRE is the maximum number of sent/re
eivedelements per pro
essor.As this expression is diÆ
ult to use dire
tly for load redistribution, an alterna-tive approa
h is to try instead to minimise the data movement 
ost of remesh-ing and the load imbalan
e asso
iated with the result of the redistribution.(The a
tual re�nement 
ost on ea
h pro
essor is small in some appli
ations[8,12℄ and so trefine is ignored here). Let the extra time due to the maximumpro
essor imbalan
e be de�ned by timbal wheretimbal = titer Nadapt (W newmax �W newavg ) (2)where W newmax � W newavg is the maximum imbalan
e in terms of numbers of el-ements per pro
essor. Hen
e, from the dis
ussion above, it is ne
essary tominimise ftimbal + tdatamoveg the maximum values of the imbalan
e and thedata movement 
ost. In this work this is only a
hieved indire
tly by addressingthe problem in the L2 norm, rather than the ideal situation in whi
h the max-imum L1 norm is used. This would however make the load balan
ing problemmu
h less tra
table. In the L2 norm the expressionf k Timbal k22 + k Tdatamove k22 g; (3)is minimised where the ve
tor Timbal is 
omposed of the imbalan
es a
ross allthe pro
essors and the ve
tor Tdatamove is 
omposed of all the data movement
osts between pro
essors. A model of this minimisation problem will be 
on-stru
ted by extending the approa
h of Hu and Blake [3℄ to 
over the datamovement 
osts. 4



2 Hu and Blake's AlgorithmLet (V;E) be the 
onne
ted graph asso
iated with P pro
essors, where V =1; 2; :::; P is the set of verti
es (pro
essors) and E is the set of edges 
onne
tingthe pro
essors. Ea
h pro
essor i has a load li and the average load per pro
essoris lavg = Ppi=1 lip : (4)In the 
ase of heterogeneous pro
essors when the ith pro
essor is a fa
tor of sifaster than the slowest pro
essor then the average load relative to the slowestpro
essor islavg = Ppi=1 li=sip : (5)Ea
h edge also has asso
iated with it a s
alar xij whi
h is the dire
tionalamount of load to be sent from pro
essor i to j. A load balan
ing algorithmshould ensure equal loads i.e.Xjj(i;j)�E xij = li � lavg; i = 1; :::; p (6)where the summation is over the, j, edges 
onne
ted to node i. Again, in the
ase of heterogeneous pro
essors, the formula must be modi�ed to readXjj(i;j)�E xij = li � lavgsi; i = 1; :::; p: (7)Should p� 1 of these equations be satis�ed then the remaining equation willalso be satis�ed. As there are far more edges in a graph than verti
es thisequation is likely to have in�nitely many solutions and so Hu and Blake [4℄
hoose the solution to minimise the data movement. This is given by:minimise 12xT W x subje
t to A x = b (8)where x is the ve
tor with 
omponents xij des
ribing the data moved betweennodes. W is the diagonal weighting matrix representing the time taken to
ommuni
ate a single value between verti
es relative to the fastest 
ommuni-
ations link. The ith 
omponent of the ve
tor b is given by the right side of5



equation (6). The norm of the ve
tor of data movement 
ost is thus modelledby k Tdatamove k22 = 12xT W x (9)and the ve
tor of pro
essor imbalan
es is given byTimbal = A x � b; (10)where the matrix A is the vertex-edge in
ident matrix [3℄ de�ned by[A℄ij = 1 if vertex i is the head of edge j,[A℄ij = � 1 if vertex i is the tail of edge j and the matrix is zero otherwise.Hu and Blake show that the solution to this problem is found by solving theproblemL d = b; where L = AW�1AT (11)where the diagonal inverse of W , denoted by W�1, represents the relativespeed of 
ommuni
ation between nodes. The values of the ve
tor x are thengiven byx = W�1 AT d : (12)In the general 
ase where the 
ommuni
ation weights of edges 
ij vary thenthe matrix L is the weighted Lapla
ian of the form:[L℄ij = � 
ij; where i 6= j; [L℄ii = X 
ik; where i$ k; (13)and 
ij is the entry of the weighting matrix W�1 between verti
es i and j. Inthe 
ase of the graph in Figure 1 the L matrix is given by
L = 2666666666664

3 �1 �1 �1�1 3 �1 �1�1 �1 5 �1 �1 �1�1 �1 4 �1 �1�1 3 �1 �1�1 �1 �1 4 �1�1 2 �1�1 �1 �1 �1 4
3777777777775Hu and Blake [3,4℄ show that the amount of load to be transferred from pro-
essor i to pro
essor j is given byxij = 
ij (di � dj); (14)6



where di and dj are the Lagrange multipliers de�ned by equation (11) asso
i-ated with pro
essors i and j.3 Extending Hu and Blake's Approa
hHu and Blake's [3℄ formulation does not take into a

ount the fa
t that thetransfer 
osts must be weighed against the 
ost of keeping the imbalan
e untilthe next load balan
ing. This 
an be a
hieved by using a weighted minimisa-tion of the L2 norms of the data transfer and the imbalan
e. This approa
hthus re
e
ts the observation that at any parti
ular time it may be sub-optimalto exa
tly load balan
e the mesh be
ause of the 
ommuni
ations 
ost in
urredin doing so. From equations (3), (9) and (10), the minimisation problem thusbe
omes:Minimise f �1 12xT W x + �2(A x � b)T (A x � b) g (15)where the parameters �1; �2 re
e
t the importan
e of the 
ost of movementto the e�e
t of load imbalan
e and are ma
hine, load and problem dependent.Cal
ulating the derivative of this equation and setting it to zero gives:�1W x + 2�2 AT (Ax� b) = 0Assuming that �1 6= 0 then allows x to be written asx = W�1 AT (2(b� Ax)�2�1 )This suggests that x 
an be written as x = ATd with d = 2(b�Ax)�2�1 . Hen
eas in Hu and Blake's Algorithm, [3℄, de�ne the ve
tor d by equation (12) andsubstitute this expression for x into equation (15) to rewrite the minimisationproblem as.Minimise �1 12dT L d + �2 (L d � b)T (L d � b) : (16)The standard approa
h for the minimisation of quadrati
 forms and the useof the identity LT = L for the Lapla
ian matrix gives the system of equations,e.g. see [2℄,LT h�1 12I + �2 Li d = �2LT b :7



Although LT e = 0 for the ve
tor e having all entries with equal value one,[9℄,this solution is not required as the ve
tor b already 
ontains a multiple lavg ofe. Hen
e the matrix LT is 
an
elled to arrive at the system of equations:h�1 12I + �2 Li d = �2b ; (17)De�ne the ratio �r = �12�2 as the ratio of mesh movement 
osts to 
omputation
osts to get the system of equations[�rI + L℄ d = b ; (18)in whi
h only the diagonal entries of the matrix di�er from those in equation(11). Hen
e the algorithm may be implemented in exa
tly the same way asthat of Hu and Blake, [3℄.Remarks It is also worth noting that an equivalent matrix problem for theve
tor x may be given by substituting for d using equation (12) to get(�r W + ATA )x = AT bThus provinding that �r is nonzero the matrix is symmetri
 positive de�niteand hen
e a unique x is guaranteed. It is also worth noting that the �nalload imbalan
e is f = b � Ax = �rd and that the traÆ
 is xTWx = dTLd =dT (b� �rd) = dT (b� f) whi
h is the produ
t of the potential d and the load
hange b� f .Solving this system of equations for di�erent values of �r and with b de�nedby b = [39; 8;�103;�125;�40; 41; 16; 164℄ gives the results shown in Table 2.Table 2 shows that as �r in
reases the maximum pro
essor imbalan
e (MaxImbal) in
reases and the amount of network traÆ
 de
reases. For the largestvalues of �r the 
ost of movement is so high that the initial distribution isun
hanged. For the smallest values of �r the movement 
ost is suÆ
iently lowthat the Hu and Blake solution [3℄ is re
overed.3.1 Uneven pro
essor 
ommuni
ation 
osts Example 2Now 
onsider the 
ase when pro
essor 
osts are uneven. Assume that pro
essorpairs (1,2), (3,4) (5,6) and (7,8) 
an 
ommuni
ate with ea
h other within apair at 
ost 1. Further assume that 
ost of going from one pair to another is 2ex
ept that the 
ost of moving from pro
essor pairs (1,2) to (7,8) and (3,4) to(5,6) is 4, see Figure 2. In this 
ase the diagonal of the matrix W is given byWdiag = [1; 2; 2; 2; 4; 1; 4; 2; 4; 4; 1; 2; 2; 1℄ where the entries of Wdiag 
orrespond8



�r 0.01 0.1 0.5 1.0 2.0 5.0 10 100 1000Node 1 590 590 590 591 594 601 609 626 629Node 2 591 592 595 598 599 602 601 598 598Node 3 589 588 582 575 564 544 526 493 487Node 4 589 586 572 560 542 515 496 469 465Node 5 589 588 582 576 569 560 555 550 550Node 6 591 591 592 594 598 607 614 629 631Node 7 591 592 598 603 606 610 610 606 606Node 8 591 595 610 625 647 682 707 748 754Max Imbal 1 5 20 35 57 92 117 158 164TraÆ
 418 406 363 323 264 173 108 10 0Max Traf 62 60 54 49 40 27 18 2 0Table 2Load balan
e values with variable �r for Example 1
1     2 3    4

5 6 87Fig. 2. Pro
essor Con�gurationto in
reasing the starting pro
essor number i after listing all the previouslyunlisted edges to pro
essors in in
reasing number j where j > i for i; j asde�ned in Figure 1. This model ar
hite
ture has some similarities with thatof the Origin 2000. The L matrix for Example 2 is given by
L = 1=4 2666666666664

8 �4 �2 �2�4 7 �2 �1�2 �2 11 �4 �1 �2�2 �4 8 �1 �1�1 7 �4 �2�1 �1 �4 8 �2�2 6 �4�1 �2 �2 �4 9
3777777777775 :Table 3 shows that as �r in
reases the maximum pro
essor imbalan
e (MaxImbal) in
reases and the amount of network traÆ
 de
reases. The table alsoshows that if we 
ompare the amount of data moved from pro
essor 2 to 8,3 to 6, 4 to 5 and 4 to 6 in both the weighted 
ase (when the 
ost is 4 times9



Edge /�r 0.01 0.1 0.5 1.0 2.0 5.0 10 100 1000(2,8) original 34 33 30 27 23 15 10 1 0(2,8) weighted 26 17 26 15 9 5 3 0 0(3,6) original 19 19 18 18 16 12 8 1 0(3,6) weighted 20 16 16 11 8 4 2 0 0(4,5) original 21 20 18 16 13 9 5 0 0(4,5) weighted 22 16 20 11 7 3 1 0 0(4,6) original 42 41 37 33 27 18 11 1 0(4,6) weighted 29 24 23 16 11 6 3 0 0TraÆ
 416 384 393 263 192 107 60 3 0Weighted Traf 938 790 886 591 414 229 131 10 0Orig WT Traf 978 972 875 781 646 431 277 35 0Max Imbal 6 63 76 65 85 116 135 161 164Max TraÆ
 76 60 71 47 33 18 10 5 0Table 3Load balan
e values with variable �r and weightsthe unweighted 
ase) and the unweighted 
ase, then less use is made of theexpensive links in the weighted 
ase, Example 2. Furthermore Table 3 alsoshows that the weighted traÆ
 (Weighted Traf) summed over all the edges isless than would have been the 
ase had the original unweighted graph of theprevious se
tion been used in the weighted 
ase (Orig WT Traf). The max-imum amount of traÆ
 (Max TraÆ
) also de
reases as �r in
reases, thoughthere is an unexplainable blip at �r = 0:5.3.2 Uneven pro
essor 
ommuni
ation 
osts Example 3The following simple example is instru
tive in showing how the proposed ap-proa
h deals with variable 
ommuni
ations 
osts and a variable ratio of �r.Consider the simple network with 4 nodes and six edges given in Figure 3.Assume that the outside edges e1, e2 and e4 have a 
ommuni
ations 
ost 1t
and the interior edges e3, e5 and e6 have a 
ommuni
ations 
ost of one. Theinitial values of N1,N2,N3 and N4 are 30,10,5 and 15 respe
tively. The matrix[�rI + L℄ is given by[�rI + L℄ = 1=4 2664 2t
+ 1 + �r �t
 �t
 �1�t
 2t
+ 1 + �r �t
 �1�t
 �t
 2t
+ 1 + �r �1�1 �1 �1 3 + �r 377510



e2

e3

e4

e5

e6

e1N1 N2

N3

N4Fig. 3. Simple 4 Node Con�guration
t
 0.01 1 10�r 0.01 1.0 100 0.01 1.0 100 0.01 1.0 100Load node N1 16 23 30 16 18 30 16 16 27Load node N2 14 12 10 14 14 10 14 14 11Load node N3 14 9 5 14 13 5 14 14 7Load node N4 15 15 15 14 15 15 15 15 15Max Imbal 1 8 15 1 3 15 1 1 12Comms edge e1 4 4 6 6 1Comms edge e2 6 5 8 7 1Comms edge e3 14 7 3 3Comms edge e4 1 1 1 1Comms edge e5 4 2 1 1Comms edge e6 9 4 2 2Total TraÆ
 27 13 17 16 15 14 2Table 4Load balan
e values with variable �r and weights

Table 4 shows the loads on the nodes N1,N2,N3 and N4 and the 
ommuni-
ations taking pla
e along edges e1 to e6. It is straightforward to see thatwhen t
 is small 
ommuni
ations should take pla
e along interior edges e3, e5and e6. Furthermore when t
 is large 
ommuni
ations should take pla
e alongexterior edges e1, e2 and e4. Table 4 shows that this is indeed what happens.As expe
ted, as �r is in
reased the amount of 
ommuni
ation is redu
ed. Thisexample thus provides a good illustration of how the proposed approa
h takesthe 
ost of moving data into a

ount.11



4 An Alternative Appli
ation of the New Metri
Although the previous se
tion 
onsidered how to de�ne the amount of datamovement between pro
essors, the same idea may be used with a similar metri
to estimate how to partition a 
omputational mesh between a pair of pro
essorsas part of a re
ursive bise
tion pro
edure. The 
entral idea is to extend theoriginal graph-based partitioning approa
h suggested by Simon [9℄ to in
ludethe 
osts of data movement. For example, 
onsider the partitioning problemafter the (n+1)th remesh with just two pro
essors. For simpli
ity assume thatthe number of elements before and after partitioning is the same. Let Ln+1be the weighted Lapla
ian matrix of the weighted dual graph of the 
oarsestlevel mesh after the (n+1)th remesh (see, for example, [2℄) and let xn be thelatest partition ve
tor (xni = �1 a

ording to whi
h subdomain 
oarse elementi belongs to). The 
ommuni
ation/halo overhead at the next step of the solveris therefore proportional to (xn)TLn+1xn. Conversely, if repartitioning were totake pla
e (leading to a new partition ve
tor xn+1) before the next step of thesolver, the new 
ommuni
ation/halo overhead plus the movement 
ost wouldbe proportional to(xn+1)T Ln+1 xn+1 + �(xn+1 � xn)T (xn+1 � xn) (19)for some 
onstant � (the ratio of moving 
ost to 
ommuni
ations 
osts). Witha suitable 
hoi
e of this 
onstant, this quadrati
 form 
ould be minimised bysolving the equations:(Ln+1 + �I) xn+1 = � xn (20)for a new partition ve
tor xn+1, thus yielding an alternative dynami
 load-balan
ing heuristi
. In 
ontrast to the approa
h of the previous se
tion, whi
hprovides a way of de
iding how mu
h data should be moved between pro
es-sors, this approa
h provides an expli
it me
hanism for de
iding whi
h elementsshould be moved.One issue for this metri
 is that the matrix L is singular and hen
e the de-generate 
ase of � = 0 must be treated separately as in the work of Simon [9℄and many others sin
e. Although the ve
tor e with every entry having valueone satis�es Le = 0 and 
an be subtra
ted from the solution obtained bysolving equations (20) it is not ne
essary to do this in order to 
al
ulate apartition, see [2℄. Furthermore unlike the approa
h des
ribed earlier there isno dire
t attempt to take into a

ount the imbalan
e of the existing partition.The value of this imbalan
e is in general given by eTxn+1. This does openup the possibility of in
luding the square of this expression in equation (19).As with the earlier approa
h we need to determine appropriate values of the12



balan
ing parameter �.Another even more taxing issue is how to solve the equations de�ned by equa-tion (20) is a suÆ
iently fast way so as to not add ex
essive overhead to theload-balan
ing 
al
ulation. The issue is more pressing in this 
ase as the over-all number of equations to be solved is proportional to the number of meshelements rather than the number of pro
essors.4.1 Re
tangular Re�ned Mesh Example 4In order to illustrate this approa
h 
onsider the following simple example
onsisting of a re
tangular 
oarse mesh with horizontal and verti
al links only.This mesh may be represented by a matrix in whi
h the value 1 representsone 
oarse mesh 
ell, 4 represents one 
oarse mesh 
ell divided into 4, and16 represents one 
oarse mesh 
ell divided into 16 equal 
ells. One domainis de�ned by positive signs while negative signs are assigned to the otherdomain. De�ne the 
ommuni
ations 
ost between the domains as the sum ofthe absolute values on both sides of the interfa
e. Suppose the original meshis given by4 4 1 �14 1 �1 �44 1 �1 �41 �1 �4 �4 whi
h is remeshed to 1 4 16 �161 1 �1 �44 1 �1 �116 �16 �4 �1The 
ommuni
ations 
ost for the original mesh is 8 while for the new meshwith the original partition it is 68. Applying the algorithm des
ribed abovefor three di�erent values of � gives three new partitions�1 �4 �16 �161 �1 �1 �44 1 1 �116 16 4 1 1 �4 �16 �161 �1 �1 �44 1 �1 �116 16 4 1 1 �4 �16 �161 1 �1 �44 1 1 �116 16 �4 1(a) � � 0:1 (b) � = 1 (
) � = 10The 
al
ulation of the partition is performed as in Hodgson and Jima
k [2℄.In order to assess the e�e
tiveness of this approa
h it is ne
essary to de�nethe moving 
osts asso
iated with this approa
h. Let 
oldi be the weight of 
ell ibefore remeshing and let 
newi be the weight of 
ell i after remeshing. Assumingthat a 
oarse mesh 
ell moving from one partition to another is representedby a 
hange of sign of xi then the moving 
ost used is given byCostmoving =Xi min (
oldi ; 
newi ) 14 (xoldi � xnewi )2 (21)13



where the impli
it assumption is that mesh 
ells are 
oarsened in their existingpartition and re�ned in their new partition, see [7℄. In this 
ase the moving
ost for � � 0:1 is 14, while for � = 1 the moving 
ost = 12 and for � = 10the moving 
ost is 8. The imbalan
es in ea
h of these 
ases are zero ex
eptfor Case (
) in whi
h there is an imbalan
e of 2. The 
ommuni
ations 
ost forea
h of the new patterns are 8, 15 and 30 in 
ases (a), (b) and (
) respe
tively.Thus as the 
ost of moving data rises less data is moved, but at the penaltyof performing more 
ommuni
ations at the solver stage.5 Con
lusionsThis work has shown by means of simple and easily 
omprehended examplesthat the idea of taking into a

ount data redistribution 
osts has some meritwith regard to the load balan
ing of dynami
ally varying unstru
tured meshes.Although the simple model presented here is a promising start mu
h more workremains to be done. In parti
ular the model needs to be parameterised againsta range of realisti
 examples.A
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