A New Metric for Dynamic Load Balancing

M. Berzins

School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK

Abstract

The issue of the dynamic load balancing of unstructured adaptive meshes is dis-
cussed. Experimental results are used to suggest the need for a new metric for
dynamic load balancing. The metric is derived by extending the constrained min-
imisation approach of Hu and Blake [3] to an unconstrained minimisation problem.
Simple examples are used to demonstrate the effectiveness of this approach for both
the determination of the amount of communications traffic between processors and
for the more detailed graph partitioning of a mesh.

1 Introduction

This work is concerned with the dynamic load-balancing problem which arises
in the adaptive solution of time-dependent partial differential equations (PDEs)
using parallel adaptive algorithms based upon hierarchical mesh refinement
such as that described by [8]. Calculations using such codes start by distribut-
ing the initial mesh (or generating it in parallel) and then taking as many
time steps as is necessary until the mesh needs to be refined or coarsened.
At this point the new mesh needs to be redistributed across the processors
together with solution values and other data associated with the mesh. In the
cases when irregular meshes based on triangles or tetrahedra are used or when
regular meshes are used with patches of mesh refinement it is non-trivial to
decide how to redistribute the mesh so that each processor has the same load.

A key step in load balancing such calculations has been to make use of graph
based techniques following on from the work of Simon [9]. The computations
associated with the unstructured mesh are represented by the graph (or pos-
sibly the dual graph) of the mesh. The nodes of the graph correspond to the
amount of work on each mesh cell (or possibly cluster of cells) and the intercon-
nections between the nodes represent the communications required between

! Corresponding author. E-mail: martin @scs.leeds.ac.uk.

Preprint submitted to Elsevier Science 9 February 2004

them. Graph partitioning techniques are then used to distribute the mesh so
that the communications between the processors are minimised and that the
load is equally distributed.

As a simple example consider the following simple 8 node mesh taken from Hu
and Blake [3] and representing a small-scale but realistic irregular triangular
mesh of around 4720 elements around an airfoil. The graph is given by Figure
1.

/A
X
N

P
o

4 (465) 5 (550)
6 (631)

3(48

2 (598)

8 (754)
1(629) 7 (606)

Fig. 1. Mesh and Initial Distribution across 8 Processors

In this case the weighting of the graph represents the number of elements in
each partition of the spatial mesh.

In some adaptive mesh codes such as those of [8,11], a fixed coarse mesh is used
and then subsequently refined and coarsened. The graph of the coarse mesh
may then be used as the basis for partitioning providing that the elements
of this graph are weighted by the number of refined elements on each coarse
mesh element. The coarse mesh is then distributed so that each processor has
roughly the same number of fine mesh elements. In addition the total cut-
weight of the partition should be minimised so as to try to reduce the amount
of communication.

Of the many existing load-balancing tools, two of the most popular are Metis
([5,6]) and Jostle ([13,14]); both use multilevel partitioning algorithms which
produce a hierarchy of coarsenings of the original weighted graph followed by a
careful repartition of the coarsest graph. This new partition is then projected
back onto the graph at the previous level and modified using a local algorithm
in order to improve the partition quality. The process is then repeated until
the original weighted graph is recovered together with a modified partition.

P 2 4 8 16 | 32

Solver Time 2873 | 1475 | 833 | 430 | 211
Redistribution Time 37 19 42 63 78

Migration Frequency 1 1 2 3 7

Table 1
Timing Results on 32 Processor SGI 02000

Recent experiments by Touheed et al. [12] comparing Jostle and Metis with
a number of other methods show that the most robust algorithm in terms of al-
ways delivering reasonably well-balanced final partitionsis ParMetis_RepartG
, which is based upon diffusion but still makes use of global information to
ensure that a good partition is obtained. This is not usually the best algorithm
in any given situation however. Although overall no one algorithm was better
than the rest, Jostle and Metis performed better than the other algorithms
considered.

Selwood and Berzins [8] investigated the repartitioning of unstructured meshes
and provided experimental results based on extensive testing and also quoted
results obtained by Touheed [12] using Jostle on a 32 processor Origin 2000.
These results are shown in Table 1 in which all times are in seconds. From this
table we see that the redistribution time and migration frequency both grow
with the number of processors if migration is invoked after a fixed percentage
imbalance, (10%) in this case.

Selwood and Berzins’ [8] analysis of their application shows that the cost of
repartitioning a fixed size mesh is proportional to log(%) where P is the num-
ber of processors. The amount of data moved is also proportional to log(P).
Both Selwood and Berzins [8] and Oliker and Biswas [7] suggest that there is
a reasonably good correspondence between the maximum number of elements
that any processor has to move and the time taken for data redistribution.
Touheed et al. [12] make the observation that the number of and quality of
repartitions required appear to be the most important factors in the cost and
efficiency of parallel dynamic mesh redistribution. A key issue identified in
their work (but not addressed by them) is that of determining when repar-
titioning should take place. An essential ingredient required to make such
decisions would appear to be the use of a metric which includes both migra-
tion costs and communication/halo costs for a given partition relative to a
previous partition.

This issue is also addressed by Simon et al. [10,11], Aravinthan et al. [1] and
Oliker and Biswas [7] who express the computational gain due to repartition-

ing as

new

) W
gain = titer Nadapt (W;;ngm - W£Z1£) + trefine (AT — 1) - tdatamm)e(l)

Wold

maxr

where ., is the calculation time per element between the mesh being re-
distributed, Nygqp: is the number of iterations or timesteps between spatial
remeshes. In some situations N4y is known in advance. In other situations
e.g. steady-state calculations every remesh may be the last one and so it may
be desirable to get the best possible load balance. W24 and W% are the max-
imum loads per processor at the previous remesh and the present remesh and
trefine 18 the cost of refinement. The maximum data movement cost ¢44amove 18
given by tyatamove = ¥ MaxSRE 4+ O where v and O are constants depending
on the architecture and MazSRE is the maximum number of sent/received

elements per processor.

As this expression is difficult to use directly for load redistribution, an alterna-
tive approach is to try instead to minimise the data movement cost of remesh-
ing and the load imbalance associated with the result of the redistribution.
(The actual refinement cost on each processor is small in some applications
[8,12] and S0 t,¢fine is ignored here). Let the extra time due to the maximum
processor imbalance be defined by %;,,5. Where

Limbal = Uiter Nad(wt (Wnew — Wnew) (2)

max avg

where WIS — Wi is the maximum imbalance in terms of numbers of el-
ements per processor. Hence, from the discussion above, it is necessary to
minimise {tjmpar + tdatamove } the maximum values of the imbalance and the
data movement cost. In this work this is only achieved indirectly by addressing
the problem in the L, norm, rather than the ideal situation in which the max-
imum L, norm is used. This would however make the load balancing problem

much less tractable. In the L, norm the expression

{ || Tiimbal ||§ + || Tdatamove ||; }7 (3)

is minimised where the vector T}, 1S composed of the imbalances across all
the processors and the vector T.tamove 18 composed of all the data movement
costs between processors. A model of this minimisation problem will be con-
structed by extending the approach of Hu and Blake [3] to cover the data
movement costs.

2 Hu and Blake’s Algorithm

Let (V, E) be the connected graph associated with P processors, where V =
1,2, ..., P is the set of vertices (processors) and F is the set of edges connecting
the processors. Each processor 7 has a load [; and the average load per processor
is

Tl
lavg = 1;) (4)

In the case of heterogeneous processors when the 7th processor is a factor of s;
faster than the slowest processor then the average load relative to the slowest
processor is

S li/si
; .

(5)

lm)g =

Each edge also has associated with it a scalar x;; which is the directional
amount of load to be sent from processor ¢ to j. A load balancing algorithm
should ensure equal loads i.e.

Z Ty :li*lavga 7:1,,]9 (6)

il(i.5)eE

where the summation is over the, j, edges connected to node i. Again, in the
case of heterogeneous processors, the formula must be modified to read

Z Tij = li — lm)gsi; 1=1,....p. (7)

Jl(ig)eE

Should p — 1 of these equations be satisfied then the remaining equation will
also be satisfied. As there are far more edges in a graph than vertices this
equation is likely to have infinitely many solutions and so Hu and Blake [4]
choose the solution to minimise the data movement. This is given by:

1.T

minimise $x° W x subject to Ax = b (8)

where z is the vector with components z;; describing the data moved between
nodes. W is the diagonal weighting matrix representing the time taken to
communicate a single value between vertices relative to the fastest communi-
cations link. The ith component of the vector b is given by the right side of

equation (6). The norm of the vector of data movement cost is thus modelled
by

|| Tdatamove ||§ - %-’TJT W x (9)

and the vector of processor imbalances is given by

Timbat = Az — ba (10)

where the matrix A is the vertex-edge incident matrix [3] defined by

[A];; = 1if vertex i is the head of edge 7,

[A];; = —1if vertex i is the tail of edge j and the matrix is zero otherwise.
Hu and Blake show that the solution to this problem is found by solving the
problem

Ld = b, where L =AW AT (11)

where the diagonal inverse of W, denoted by W !, represents the relative
speed of communication between nodes. The values of the vector x are then
given by

r=W1A"d. (12)
In the general case where the communication weights of edges ¢;; vary then
the matrix L is the weighted Laplacian of the form:

[L]” = = G, where 17£J, [L]ii = Z(Tik, where 1+ k, (13)

and ¢;; is the entry of the weighting matrix W' between vertices i and j. In
the case of the graph in Figure 1 the L matrix is given by

3 1 -1 1 -
1 3 -1 1
1 -1 5 -1 -1 -1

1 1 4 -1 -1

L= -1 3 -1 -1

1 -1 -1 4 1
1 2 1
I 1 -1 1 -1 4

Hu and Blake [3,4] show that the amount of load to be transferred from pro-
cessor ¢ to processor j is given by

rij = cij (di —dj), (14)

where d; and d; are the Lagrange multipliers defined by equation (11) associ-
ated with processors ¢ and j.

3 Extending Hu and Blake’s Approach

Hu and Blake’s [3] formulation does not take into account the fact that the
transfer costs must be weighed against the cost of keeping the imbalance until
the next load balancing. This can be achieved by using a weighted minimisa-
tion of the Ly norms of the data transfer and the imbalance. This approach
thus reflects the observation that at any particular time it may be sub-optimal
to exactly load balance the mesh because of the communications cost incurred
in doing so. From equations (3), (9) and (10), the minimisation problem thus
becomes:

Minimise { pi3x' Wx + m(Ax — b)T (Ax — b)} (15)

where the parameters g, pus reflect the importance of the cost of movement
to the effect of load imbalance and are machine, load and problem dependent.
Calculating the derivative of this equation and setting it to zero gives:

W x4+ 2y AT (Az —b) =0

Assuming that u; # 0 then allows = to be written as

v = W AT (20— Ax)t2)
2

This suggests that 2 can be written as 2 = A”d with d = 2(b — Az)E2. Hence
as in Hu and Blake’s Algorithm, [3], define the vector d by equation (12) and
substitute this expression for x into equation (15) to rewrite the minimisation
problem as.

Minimise py3d" Ld 4+ pp (Ld = b)' (Ld — b). (16)

2

The standard approach for the minimisation of quadratic forms and the use
of the identity L™ = L for the Laplacian matrix gives the system of equations,
e.g. see [2],

LV (mdl+pa L) d = pol” b

Although LTe = 0 for the vector e having all entries with equal value one,[9],
this solution is not required as the vector b already contains a multiple /,,, of
e. Hence the matrix L? is cancelled to arrive at the system of equations:

pgl 4+ po L) d = pob, (17)

Define the ratio pu, = 2‘% as the ratio of mesh movement costs to computation
costs to get the system of equations

I+ L d = b, (18)

in which only the diagonal entries of the matrix differ from those in equation
(11). Hence the algorithm may be implemented in exactly the same way as
that of Hu and Blake, [3].

Remarks It is also worth noting that an equivalent matrix problem for the
vector x may be given by substituting for d using equation (12) to get

(e W+ ATA)z = ATb

Thus provinding that p, is nonzero the matrix is symmetric positive definite
and hence a unique z is guaranteed. It is also worth noting that the final
load imbalance is f = b — Az = p,d and that the traffic is 27 Wz = d'' Ld =
d" (b — p,d) = d" (b — f) which is the product of the potential d and the load
change b — f.
Solving this system of equations for different values of u, and with b defined
by b = [39,8, —103, —125, —40, 41, 16, 164] gives the results shown in Table 2.
Table 2 shows that as p, increases the maximum processor imbalance (Max
Imbal) increases and the amount of network traffic decreases. For the largest
values of p, the cost of movement is so high that the initial distribution is
unchanged. For the smallest values of y, the movement cost is sufficiently low
that the Hu and Blake solution [3] is recovered.

3.1 Uneven processor communication costs Example 2

Now consider the case when processor costs are uneven. Assume that processor
pairs (1,2), (3,4) (5,6) and (7,8) can communicate with each other within a
pair at cost 1. Further assume that cost of going from one pair to another is 2
except that the cost of moving from processor pairs (1,2) to (7,8) and (3,4) to
(5,6) is 4, see Figure 2. In this case the diagonal of the matrix W is given by
Waiag = [1,2,2,2,4,1,4,2,4,4,1,2,2,1] where the entries of Wy;,, correspond

Ly 00101 (05|10 | 20| 5.0 | 10 | 100 | 1000

Node 1 590 | 590 | 590 | 591 | 594 | 601 | 609 | 626 | 629
Node 2 991 | 592 | 595 | 598 | 599 | 602 | 601 | 598 | 598
Node 3 089 | 588 | 582 | 575 | 564 | 544 | 526 | 493 | 487
Node 4 589 | 586 | 572 | 560 | 542 | 515 | 496 | 469 | 465
Node 5 589 | 588 | 582 | 576 | 569 | 560 | 555 | 550 | 550
Node 6 991 | 591 | 592 | 594 | 598 | 607 | 614 | 629 | 631
Node 7 991 | 592 | 598 | 603 | 606 | 610 | 610 | 606 | 606
Node 8 591 | 595 | 610 | 625 | 647 | 682 | 707 | 748 | 754

Max Imbal 1) 20 | 35 | b7 | 92 | 117 | 158 | 164

Traffic 418 | 406 | 363 | 323 | 264 | 173 | 108 | 10 0

Max Traf | 62 60 | 54 | 49 | 40 | 27 | 18 2 0

Table 2
Load balance values with variable u, for Example 1

1 2 3 4

5 6 7 8

Fig. 2. Processor Configuration

to increasing the starting processor number i after listing all the previously
unlisted edges to processors in increasing number j where 5 > ¢ for 4,5 as
defined in Figure 1. This model architecture has some similarities with that
of the Origin 2000. The L matrix for Example 2 is given by

8 4 2 -2 T
4 7T -2 1
2 2 11 4 1)

) 4 8 -1 -1

L=1/4 -1 7 -4 -2

1 -1 -4 8)
2 6 4
I 1 -2 2 4 9 |

Table 3 shows that as p, increases the maximum processor imbalance (Max
Imbal) increases and the amount of network traffic decreases. The table also
shows that if we compare the amount of data moved from processor 2 to 8,
3 to 6,4 to 5 and 4 to 6 in both the weighted case (when the cost is 4 times

Edge /i 0.01 [01]05|1.0]20]|50/| 10 | 100 | 1000
(2,8) original | 34 | 33 (30|27 |23 |15 |10 | 1 | 0
(2,8) weighted | 26 | 17 | 26 | 15 | 9 | 5 | 3 | 0 | 0
(3,6) original | 19 | 19 | 18 | 18 | 16 | 12 | 8 | 1 | 0
(3,6) weighted | 20 | 16 | 16 | 11 | 8 | 4 | 2 | 0 | ©
(4,5) original | 21 | 20 | 18 | 16 | 13| 9 | 5 | 0 | 0
(4,5) weighted | 22 | 16 | 20 | 11 | 7 | 3 | 1 | 0 | o©
(4,6) original | 42 | 41 | 37 | 33 |27 | 18 |11 | 1 | 0O
(4,6) weighted | 29 | 24 | 23 | 16 | 11 | 6 | 3 | 0 | ©
Traffic 416 | 384 | 393 [263 | 192 [107 | 60 | 3 | 0
Weighted Traf | 938 | 790 | 886 | 591 | 414 [229 | 131 | 10 | 0
Orig WT Traf | 978 | 972 | 875 | 781 | 646 | 431 [277 | 35 | 0
Max Imbal 6 | 63 | 76 | 65 | 85 | 116 | 135 | 161 | 164
Max Traffic 76 | 60 | 71 | 47 | 33 | 18 [10| 5 | 0

Table 3
Load balance values with variable u, and weights

the unweighted case) and the unweighted case, then less use is made of the
expensive links in the weighted case, Example 2. Furthermore Table 3 also
shows that the weighted traffic (Weighted Traf) summed over all the edges is
less than would have been the case had the original unweighted graph of the
previous section been used in the weighted case (Orig WT Traf). The max-
imum amount of traffic (Max Traffic) also decreases as p, increases, though
there is an unexplainable blip at p, = 0.5.

3.2 Uneven processor communication costs FExample 3

The following simple example is instructive in showing how the proposed ap-
proach deals with variable communications costs and a variable ratio of pu,.
Consider the simple network with 4 nodes and six edges given in Figure 3.
Assume that the outside edges el, e2 and e4 have a communications cost 11_(’
and the interior edges e3, eb and e6 have a communications cost of one. The
initial values of N1,N2,N3 and N4 are 30,10,5 and 15 respectively. The matrix
[ur-I + L] is given by

2tc+ 1+ py —tc —tc -1
—tc 2tc+ 1+ py —tc -1
I+L=1/4
lpr I+ 1 / —tc —tc 2tc+14+p, -1
-1 -1 -1 3+ iy

10

N3

N4

N1 el N2

Fig. 3. Simple 4 Node Configuration

tc 0.01 1 10

Ly 0.01 1.0 100]|0.01 1.0 100 |0.01 1.0 100

Load node N1 16 23 30 16 18 30 16 16 27
Load node N2 14 12 10 14 14 10 14 14 11
Load node N3 14 9) 14 13) 14 14 7
Load node N4 15 15 15 14 15 15 15 15 15

Max Imbal 1 8 15 1 3 15 1 1 12
Comms edge el 4 4 6 6 1
Comms edge e2 6 5 8 7 1
Comms edge e3 | 14 7 3 3
Comms edge e4 1 1 1 1
Comms edge eb | 4 2 1 1
Comms edge e6 9 4 2 2
Total Traffic 27 13 17 16 5 14 2
Table 4

Load balance values with variable u, and weights

Table 4 shows the loads on the nodes N1,N2,N3 and N4 and the communi-
cations taking place along edges el to e6. It is straightforward to see that
when fc is small communications should take place along interior edges e3, eb
and e6. Furthermore when fc is large communications should take place along
exterior edges el, e2 and e4. Table 4 shows that this is indeed what happens.
As expected, as p, is increased the amount of communication is reduced. This
example thus provides a good illustration of how the proposed approach takes
the cost of moving data into account.

11

4 An Alternative Application of the New Metric

Although the previous section considered how to define the amount of data
movement between processors, the same idea may be used with a similar metric
to estimate how to partition a computational mesh between a pair of processors
as part of a recursive bisection procedure. The central idea is to extend the
original graph-based partitioning approach suggested by Simon [9] to include
the costs of data movement. For example, consider the partitioning problem
after the (n+1)th remesh with just two processors. For simplicity assume that
the number of elements before and after partitioning is the same. Let L™*!
be the weighted Laplacian matrix of the weighted dual graph of the coarsest
level mesh after the (n + 1)th remesh (see, for example, [2]) and let 2™ be the
latest partition vector (z = +1 according to which subdomain coarse element
i belongs to). The communication/halo overhead at the next step of the solver
is therefore proportional to (z")T L™z, Conversely, if repartitioning were to
take place (leading to a new partition vector 2" *1) before the next step of the
solver, the new communication/halo overhead plus the movement cost would
be proportional to

(.’En+])T Ln+] xn+1 +)\(.77”+1 . Jjn)T(.Z‘n+] . .’En) (19)

for some constant A (the ratio of moving cost to communications costs). With
a suitable choice of this constant, this quadratic form could be minimised by
solving the equations:

(L™ 4 M) 2™ = X " (20)

for a new partition vector 2"*!, thus yielding an alternative dynamic load-
balancing heuristic. In contrast to the approach of the previous section, which
provides a way of deciding how much data should be moved between proces-
sors, this approach provides an explicit mechanism for deciding which elements
should be moved.

One issue for this metric is that the matrix L is singular and hence the de-
generate case of A = 0 must be treated separately as in the work of Simon [9]
and many others since. Although the vector e with every entry having value
one satisfies Le = 0 and can be subtracted from the solution obtained by
solving equations (20) it is not necessary to do this in order to calculate a
partition, see [2]. Furthermore unlike the approach described earlier there is
no direct attempt to take into account the imbalance of the existing partition.
The value of this imbalance is in general given by e”2"*'. This does open
up the possibility of including the square of this expression in equation (19).
As with the earlier approach we need to determine appropriate values of the

12

balancing parameter .

Another even more taxing issue is how to solve the equations defined by equa-
tion (20) is a sufficiently fast way so as to not add excessive overhead to the
load-balancing calculation. The issue is more pressing in this case as the over-
all number of equations to be solved is proportional to the number of mesh
elements rather than the number of processors.

4.1 Rectangular Refined Mesh Example j

In order to illustrate this approach consider the following simple example
consisting of a rectangular coarse mesh with horizontal and vertical links only.
This mesh may be represented by a matrix in which the value 1 represents
one coarse mesh cell, 4 represents one coarse mesh cell divided into 4, and
16 represents one coarse mesh cell divided into 16 equal cells. One domain
is defined by positive signs while negative signs are assigned to the other
domain. Define the communications cost between the domains as the sum of
the absolute values on both sides of the interface. Suppose the original mesh
is given by

4 4 1 -1 1 4 16 —16
4 1 -1 —4 C. 1 1 -1 —4
A 1 -1 -4 which is remeshed to A 1 1 1
1 -1 —4 —4 16 —-16 —4 -1

The communications cost for the original mesh is 8 while for the new mesh
with the original partition it is 68. Applying the algorithm described above
for three different values of A\ gives three new partitions

1 -4 -16 16 1 -4 -16 -16 1 -4 -16 —16

1 -1 -1 —4 1 -1 -1 —4 1 1 -1 —4

4 1 1 -1 4 1 -1 -1 41 1 -1

16 16 4 1 16 16 4 1 16 16 4 1
(a) A < 0.1 (b) A=1 (€) A =10

The calculation of the partition is performed as in Hodgson and Jimack [2].
In order to assess the effectiveness of this approach it is necessary to define
the moving costs associated with this approach. Let ¢?'¢ be the weight of cell i
before remeshing and let ¢*“ be the weight of cell ¢ after remeshing. Assuming
that a coarse mesh cell moving from one partition to another is represented
by a change of sign of x; then the moving cost used is given by

(.Z'(-)ld o xnew)Q (21)

2 7

A~ =

A}

COStmm)ing = Z min (qud Cnew)
7

13

where the implicit assumption is that mesh cells are coarsened in their existing
partition and refined in their new partition, see [7]. In this case the moving
cost for A < 0.1 is 14, while for A = 1 the moving cost = 12 and for A = 10
the moving cost is 8. The imbalances in each of these cases are zero except
for Case (c) in which there is an imbalance of 2. The communications cost for
each of the new patterns are 8, 15 and 30 in cases (a), (b) and (c) respectively.
Thus as the cost of moving data rises less data is moved, but at the penalty
of performing more communications at the solver stage.

5 Conclusions

This work has shown by means of simple and easily comprehended examples
that the idea of taking into account data redistribution costs has some merit
with regard to the load balancing of dynamically varying unstructured meshes.
Although the simple model presented here is a promising start much more work
remains to be done. In particular the model needs to be parameterised against
a range of realistic examples.

Acknowledgements

The author would like to thank Yifan Hu for supplying the remarks given
directly below equations (15) and (18) and for supplying the mesh diagram in
Figure 1. The author would like to thank Peter Jimack and Chris Walshaw
for commenting on drafts of this paper, Bruce Hendrickson for his valuable
comments on this topic and Guy Lonsdale, Joe Flaherty and George Karypis
for invitations to meetings that indirectly led to this work being done.

References

[1] V.Aravinthan, S.P. Johnson, K. McManus, C. Walshaw and M. Cross,
Dynamic Load Balancing for Multi-Physical Modelling using Unstructured
Meshes, Proc. 11th Intl. Conf. Domain Decomposition Methods, Greenwich,
UK, 1998, eds. C.H. Lai P.E. Bjgrstad, M. Cross, and O. Widlund,
DDM.org, http://www.ddm.org, www.ddm.org/DD11/Aravinthan.ps.gz”, pp.
380-387, 1999.

[2] D.C. Hodgson and P.K. Jimack, “Efficient Mesh Partitioning for Parallel Elliptic
Differential Equation Solvers.”, Computing Systems in Engineering, 6, 1-12,
1995.

14

[3] Y.F. Hu and R.J. Blake “An Optimal Migration Algorithm for Dynamic Load
Balancing 7, Concurrency: Practice and Experience, Vol. 10 (6) 467-483 (1998)

[4] Y.F. Hu and R.J. Blake “An Improved Diffusion Algorithm for Dynamic Load
Balancing 7, Parallel Computing, 25, 417-444 (1999)

[5] G. Karypis and V. Kumar, “A Coarse-Grain Parallel Formulation of Multilevel
k-way Graph Partitioning Algorithm”, Proc. of 8th STAM Conf. on Parallel Proc.
for Scientific Computing, STAM, 1997.

[6] G. Karypis, K. Schloegel and V. Kumar, “ParMetis: Parallel Graph Partitioning
and Sparse Matriz Ordering Library. Version 2.0”, Department of Computer
Science, University of Minnesota, 1998.

[7] L. Oliker and R. Biswas, “PLUM: Parallel Load Balancing for Adaptive
Unstructured Meshes”, J. Parallel and Distributed Computing, 52, 150-177, 1998.

[8] P.M. Selwood and M. Berzins, “Portable Parallel Adaptation of Unstructured
Tetrahedral Meshes”, Concurrency Vol. 11 (13) 1-22, 1999.

[9] H.D. Simon, “Partitioning of Unstructured Problems for Parallel Processing”,
Computing Systems in Engineering, 2, 135 148, 1991.

[10] H.D. Simon, A.Sohn and R. Biswas. Harp A Dynamic Spectral Partitioner.
Journal of Parallel and Distributed Parallel Computing, 50, 83-103 1998.

[11] A.Sohn, R.Biswas and H.D. Simon. Impact of Load Balancing on Unstructured
Adaptive Mesh calculations for Distributed-Memory Multiprocessors. In Proc of
Eighth IEEE Symposium on Parallel and Distributed Computing. pp 26-33 New
Orleans, Louisiana, 1996.

[12] N.Touheed , P. Selwood, P.K. Jimack, and M. Berzins A Comparison of
Some Dynamic Load Balancing Algorithms for a Parallel Adaptive Flow Solver.
Parallel Computing 26(12) (2000) pp. 1535-1554.

[13] C. Walshaw, M. Cross and M.G. Everett, “Dynamic Load-Balancing for Parallel
Adaptive Unstructured Meshes”, Proc. of 8th SIAM Conf. on Parallel Proc. for
Sci. Comp., STAM, 1997.

[14] C. Walshaw, M. Cross and M.G. Everett, “Parallel Dynamic Graph Partitioning
for Adaptive Unstructured Meshes”, J. Par. Dist. Comput., 47, 102-108, 1997.

15

