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ABSTRACT

A new mesh quality measure for triangular and tetrahedral meshes is presented.
This mesh quality measure is based both on geometrical and solution information and
is derived by considering the error when linear triangular and tetrahedral elements are
used to approximate a quadratic function. The new measure is shown to be related to
existing measures of mesh quality but with the advantage that local solution information
in the form of scaled derivatives along edges is taken into account. This advantage is
demonstrated by a comparison with a geometrical indicator on a parameterized problem.
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1. Introduction

The increasing use of p.d.e. solvers based on triangular and tetrahedral meshes

e.g see4,17 raises the important issue of whether the mesh is appropriate to represent

the solution. One approach to resolving this issue is have computable error estimates

for each solution component. At present, it is still often the case that such estimates

may not be available or may not be reliable. In the case of mesh generation, the

usual approach is to assume that the solution to the problem is such that mesh

quality may be viewed as being independent of the solution5,11. Indeed when no

solution has been computed on the mesh this is the only way to proceed. Once

a solution has been computed, the generally accepted point of view is that it is

both the shape of the elements and the local solution behavior that is important,

particularly for highly directional flow problems14,15,16. The starting point for this

work was the analysis of Babuska and Aziz3, who showed that the requirement for

triangles was that there should be no large angles . This work was extended to

tetrahedral elements by Krizek10 in a similar spirit.

The intention here is not to deal with the issue of how to construct an optimal

mesh but instead to consider the related issue of how an existing mesh should be
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assessed given a solution. This reflects an important practical issue, particularly

in three space dimensions, when a mesh generator produces a mesh of unknown

quality for a complex solution. The requirement is then to assess how appropriate

the mesh is for the computed solution. The ideal solution is to use a computed error

estimate to assess whether or not the mesh should be refined. This error estimate

should reflect not only the interpolation error caused by approximating the solution

by a finite element space on a given mesh but also the discretization error of the

numerical method used to approximate the p.d.e. and the choice of norm used to

measure the error.

In many cases however such error estimates are not available but it is still desir-

able to understand whether or not the mesh is appropriate. This paper will discuss

the simple mesh quality indicator of Berzins6 based on interpolation error estimates.

The fundamental assumption being made is that the solution is being represented

by a piecewise linear triangular or tetrahedral basis and that the function being

approximated is quadratic. This assumption allows the error to be approximated

by a quadratic function and the results of Nadler12,13 to be used for the triangular

case. The resulting indicator has been shown to be related to those of Bank3 and

Weatherill17 when geometry alone is taken into account.

The quantities used in defining the full indicator have also been used to generate8

and modify2 meshes in two dimensions. This paper will show that the new indicator

may be used to identify which triangular or tetrahedral element needs refining and

also which edge(s) should be refined. A model of boundary layer flow will be used

to demonstrate how the indicator performs in identifying which triangle is best. A

further simple example will show the optimum mesh will depend critically on the

choice of norm used to measure the error.

The second part of the paper will consider the indicator in the case of a linear

element tetrahedral mesh. This indicator will again be shown to behave in a similar

way to that of Weatherill17. A parameterized tetrahedron combined with a sim-

ple model of a solution with highly directional gradients will be used to illustrate

how the new indicator identifies the effect of directionality on the linear element

approximation error and how this contrasts with a purely geometrical mesh quality

measure.

The conclusion of the paper is that while purely geometrical mesh quality indi-

cators may do a good job in identifying meshing anomalies, the appropriateness of

a mesh for a given solution cannot be decided using geometry alone.

2. Nadler’s Error Estimate for Triangles.

The starting point for the derivation of a new mesh quality indicator is the work

of Nadler12 who derives a particularly appropriate expression for the interpolation

error when a quadratic function is approximated by a piecewise linear function on

a triangle. Consider the triangle T defined by the vertices v1, v2 and v3 as shown

in Figure 1 below. Let hi be the length of the edge connecting vi and vi+1 where

v4 = v1 .
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Figure 1: Babuska and Aziz Example Triangles.

Nadler12 considers the case in which a quadratic function

u(x, y) =
1

2
xT H x where x =

[

x
y

]

(1)

is approximated by a linear function ulin(x, y) , as defined by linear interpolation

based on the values of u at the vertices. Denote the error by

elin(x, y) = ulin(x, y) − u(x, y) (2)

Nadler12 as quoted in Rippa16 shows that
∫

T

(elin(x, y))2dx dy =
A

180

[

((d1 + d2 + d3)
2 + d1

2 + d2
2 + d3

3

]

(3)

where A is the area of the triangle and di = 1

2
(vi+1 − vi)

T H (vi+1 − vi) is the

derivative along the edge connecting vi and vi+1.

Example 1 In the case when the matrix H is positive definite with diagonal entries

p2 and q2 and symmetric off-diagonal entries pq then

di = (p ∆xi + q ∆yi)
2 where vi+1 − vi = [∆xi, ∆yi]

T

In the case of the triangle in Figure 1 assuming that x and y are in the horizontal

and vertical directions respectively, the values of di are d1 = p2h2 , d2 = h2(−(1 −
β)p + αq)2 and d3 = h2(βp − αq)2 .

Example 2 In contrast when the matrix H has diagonal entries p and p and sym-

metric off-diagonal entries q then the matrix H has eigenvalues p + q and p− q and

so is positive definite if p > q . In the case of the triangle in Figure 1 assuming that

x and y are in the horizontal and vertical directions respectively, the values of di

for this matrix are

d1 = ph2
1 , d2 = α2h2

1(p(1 + µ2
1) − 2µ1q) and d3 = α2h2

1(p(1 + µ2
2) − 2µ2q) . (4)

where

µ1 = (1 − β)/α, and µ2 = β/α

In this case d2 and d3 can be negative if both p and q are positive and q ≫ p. It is

also possible to pick α and µ1 so that d1 + d2 + d3 = 0 in this case and hence zeros

part of equation (3).
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3. A Mesh Quality Indicator for Linear Triangular Elements

In this section the new mesh quality indicator of Berzins6 based on the work of

Nadler12 will be derived. This indicator takes into account both the geometry and

the solution behavior. The starting point for this indicator is equation (4): in the

case when the values of di are all equal then each edge makes an equal contribution

to the error. However in order to take into account in a consistent way the fact that

the values of di may be of different signs it is necessary to consider their absolute

values. It should also be noticed that if di = hi then the form of equation (see3) has

some similarities with the indicators of Bank3 and Weatherill17. This relationship

will be made precise below. With these two points in mind the scaled forms of the

derivatives di are defined by

d̃i =
|di|

dmax

where dmax = max [|d1|, |d2|, |d3|] (5)

For notational convenience define

q̃(d̃) = (d̃1 + d̃2 + d̃3)
2 + d̃2

1 + d̃2
2 + d̃2

3 (6)

where d̃ = [d̃1, d̃2, d̃3]
T . A measure of the anisotropy in the derivative contributions

to the error is then provided by

qaniso =
q̃(d̃)

12
(7)

The definitions of the coefficients d̃i in equation (5) results in the bounds

1

6
≤ qaniso ≤ 1 (8)

Consider a triangle with only one edge contributing to the error. In this case qaniso =

1/6 whereas if two edges contribute equally and the third makes no contribution

qaniso = 1/2.

In order to derive a consistent and related but geometry-only based indicator it

should be observed that the quantity defined by:

qm(h) =
q̃(h)

16
√

3 A

where h = [h1, h2, h3]
T , has value 1 for an equilateral triangle and tends to the

value infinity as the area of a triangle tends to zero but at least one of its sides is

constant. It is now possible to explain the relationship between this indicator and

those of Bank3 and Weatherill17 as denoted by qb and qw and defined by

1

qb

=
1

4
√

3 A

[

h2
1 + h2

2 + h2
3

]

, qw =
1

3 A

[

(h1 + h2 + h3)
2
]

(9)

respectively. Hence,

qm(h) =
1

4 qb

+ qw

√
3

16
(10)
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The relationship between qaniso and the linear interpolation error is that when the

matrix H is positive definite, i.e. di > 0 , then

qaniso =
15

A d2
max

∫

T

(elin(x, y))2dx dy, (11)

thus showing that the indicator is a scaled form of the interpolation error in this

special case.

3.1. Edge Indices and Mesh Generation/Movement.

In the case when qaniso is small then it is possible to define an edge index which

indicates how much each edge contributes to the error. Suppose that in equation

(6) all the values of the terms d̃i are identical, say, d̃avg then

q̃(d̃) = 12(d̃avg)
2 (12)

Hence

d̃avg =
√

qaniso (13)

The edge index for each edge is then denoted by eind(i) and defined by

eind(i) =
d̃i

d̃avg

, i = 1, 2, 3. (14)

these edge indices thus indicate which edges should be refined to reduce the error.

One recent method to take advantage of such local gradients is the modified De-

launay approach of Borouchaki et al.8 in which the local gradient information, of

the form of di values, is used in conjunction with the Delaunay mesh generator to

compute highly stretched grids for anisotropic flows in two space dimensions. The

results presented by Borouchaki et al. show that this approach can give good results

on problems with highly directional flows.

It is possible to compare the approach adopted here with the recent mesh move-

ment method of Ait-Ali-Yahia et al.2 in which the H matrix is modified to be positive

definite and edge indicators, defined in the notation used here by di/
√

∆x2
i + ∆y2

i ,

are used to move the mesh. This approach thus scales the edge error component

by the edge length. Ait-Ali-Yahia et al.2 interpret di as the edge length in the H

norm. The scaling defined by equation (13), in contrast, scales |di| by an averaging

factor taken over all the edges in the triangle. In the case when H is not positive

definite as in Example 2 of Section 2 if the original values of d2 and d3 are negative

(i.e. q > p ) then the effect of the approach of Ait-Ali-Yahia et al.2 is to transpose

q and p in the H matrix and hence in the definitions of d1, d2 and d3 thus giving

different values from those in Section 2:

d1 = qh2
1 , d2 = α2h2

1(q(1 + µ2
1) − 2µ1p)

and d3 = α2h2
1(q(1 + µ2

2) − 2µ2p) .

where µ1 and µ2 are defined as in Example 2 of Section 2.
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3.2. Boundary Layer Flow Example

The performance of this indicator may be illustrated by considering anisotropic

flow, such as that in a viscous boundary layer, in which the three triangles defined

as Case(a), Case(b) and Case(c) in Figure 2 are used to model a flow with a weak

horizontal component uxx = 1 an intermediate cross derivative uxy = 100 and and

a strong vertical component uyy = 10000. Case(a) is representative of a triangle

thought to be especially suitable for such flows while Case(b) is closer to the type

of triangles produced by unstructured mesh generators. Table 1 shows the values of

qaniso for the three triangles as the height of the triangles α is varied. Also shown is

the ratio of the L2 errors for Case (a) and Case (b) divided by the error in Case(c).

The table shows that in the case when α < 0.04 triangles such as that in Case(b)

are best in terms of interpolation error. and that when α > 0.04 triangles such

as that in Case(c) are best in terms of interpolation error. The mesh anisotropy

indicator qaniso values show how the error is distributed and that smaller values of

this indicator seem preferable since then one or more edge derivatives are orthogonal

to the strongly directional error. For very small values of α anisotropy is not a key

factor as the dominant flow direction is then the horizontal one and not the vertical

one.

h h

hα

Case (c)
h

Case (b)Case (a)

Figure 2: Boundary Layer Flow Example Triangles.

Table 1: Mesh Anisotropy Indicator Values
α Case (a) Case (b) Case (c) Error Ratio a/c Error Ratio b/c
1.0 0.49 0.49 0.29 1.8 1.70
0.1 0.42 0.42 0.35 1.8 1.40

0.038 0.35 0.34 0.53 1.7 1.00
0.02 0.30 0.29 1.00 1.5 0.71
0.01 0.28 0.30 0.68 1.3 0.44
0.001 0.42 0.29 0.50 1.0 0.47
0.0001 0.49 0.28 0.50 1.0 0.55

3.3. Choice of Norm

The following example will illustrate how the choice of norm may be critical in

deciding what is the best mesh by considering the H1 and L2 norms. Given the

linear interpolation error defined by equation (2), The H1 error norm is defined by

6



||elin(x, y)||H1 where

||elin(x, y)||2H1 =

∫

T

(elin(x, y))2 + (elin,x(x, y))2 + (elin,y(x, y))2dxdy (15)

The example used is that of Babuska and Aziz3 in which triangles of the form of

that in Figure 1 are used to model a flow with a horizontal component uxx = 1 and

no other non-zero components uxy = 0 and uyy = 0. In the notation of Babuska

and Aziz H = αh in Figure 1 and the cases β = 1 and β = 1

2
are considered. Hence

U(x, y) = 1

2
x2 and Ulin(x, y) = 1

2
x + β(β − 1)y/(2α) and so

(elin,x(x, y))2 + (elin,y(x, y))2 = (x − 1

2
)2 + β(β − 1)/(2α)2

thus showing a potential source of problems for small values of α. Berzins7 shows

that

||elin(x, y)||2H1
=

A

12

[

1

15
q̃(d) + r̃(d)

]

(16)

where for this problem

q̃(d) = h4
[

(1 + β2 + (1 − β)2)2 + (1 − β)4 + 1 + β4
]

(17)

r̃(d) = 4h2

[

3β2(1 − β)2

α2
) + (1 − β)2 + β2

]

(18)

and the term q̃(d) is defined in equation (8). These results are interesting because

they show that in the L2 norm β = 1

2
is more accurate whereas in the H1 norm for

α < 0.4629 , β = 1 or β = 0 is more accurate and β = 0.5 is the worst value as

α ↓ 0 . Hence a good mesh in one norm is not a good mesh in another norm.

3.4. Extensions to Non-Quadratic Functions

The extension to te case of non-quadratic functions may be considered by assum-

ing that the exact solution is locally quadratic. Bank4 uses such an approach inside

the code PLTMG and calculates estimates of second derivatives. Adjerid, Babuska

and Flaherty1 use a similar approach based on derivative jumps across edges to

estimate the error. An alternative is approach is to use the ideas of Hlavacek et al.9

to estimate nodal derivatives and hence second derivatives.

4. Linear Tetrahedral Approximation of a Quadratic Function

The extension of Nadler’s12 approach to tetrahedra is achieved by considering

the case in which a quadratic function

u(x, y, z) =
1

2
xT H x where x =





x
y
z



 (19)

is approximated by a linear function ulin(x, y, z) defined by linear interpolation

based on the values of u at the vertices of a tetrahedron T defined by the vertices

v1, v2 , v3 and v4 as shown in Figure 3.
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Figure 3: Example Tetrahedron and Reference Tetrahedron.

Let hi be the length of the edge connecting vi and vi+1 where v5 = v1 . With

reference to Figure 3 define the vectors x̂, ŷ, ẑ, û, v̂ and ŵ by

v2 = v1 + x̂, v3 = v2 + ŷ, v1 = v3 + ẑ

v4 = v1 − v̂, v4 = v2 + ŵ, v4 = v3 + û (20)

and consequently

x̂ + ŷ + ẑ = x̂ + ŵ + v̂ = û + v̂ − ẑ = 0. (21)

Define a reference tetrahedron Tref , see Figure 3, by the four nodal points:

v1 = (0, 0, 0)T , v2 = (1, 0, 0)T , v3 = (0, 1, 0)T , v4 = (0, 0, 1)T (22)

Then the mapping from the tetrahedron, Tref , to the tetrahedron, T is given by

x = v1 + B x̃ (23)

where B = [x̂,−ẑ,−v̂] , x̃ is in the reference tetrahedron. Tref and x is the

equivalent point in the original tetrahedron T .

The function u may then be expressed as

u(x, y, z) =
1

2
vT
1 H v1 +

1

2
x̃T BT H v1 +

1

2
vT
1 H B x̃ +

1

2
x̃T BT H B x̃ (24)

where x̃ = [x, y, z]
T
, is defined on Tref . Ignoring the constant and linear terms

(which are approximated exactly by a linear interpolant and expanding the remain-

ing quadratic term using equation (23) gives

u(x, y, z) =
1

2
[(x̂T Hx̂)x2 + (−x̂T Hẑ)2xy + (ẑT Hẑ)y2

(−x̂T Hv̂)2xz + (ẑT Hv̂)2zy + (v̂T Hv̂)z2 ]

Interpolating this by a linear function defined on Tref by the nodal solution values

gives

ulin(x, y, z) =
1

2

[

(x̂T Hx̂)x + (ẑT Hẑ)y + (v̂T Hv̂)z
]

(25)
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and hence the linear interpolation error may be defined as as:

elin(x, y, z) = ulin(x, y, z) − u(x, y, z) (26)

and written as

elin(x, y, z) =
1

2
[(x̂T Hx̂)(x − x2) − (−x̂T Hẑ)2xy + (ẑT Hẑ)(y − y2)

− (−x̂T Hv̂)2xz − (ẑT Hv̂)2zy + (v̂T Hv̂)(z − z2) ]

This in turn may be written as

elin(x, y, z) =
1

2
WT d̂ (27)

where

WT =
[

x − x2, − 2xy, y − y2, − 2xz, − 2zy, z − z2
]

and

d̂
T

=
[

x̂T Hx̂,−x̂T Hẑ, ẑT Hẑ,−x̂T Hv̂, ẑT Hv̂, v̂T Hv̂
]

Hence from equation (27 )

∫

T

(elin(x, y, z))2dx dy dz =
6V

4

∫

Tref

d̂
T

W WT d̂ dx dy dz (28)

where V is the volume of the tetrahedron. Berzins6 shows that this may then be

written as
∫

T

(elin(x, y))2dx dy dz =
3

2
V dT P d . (29)

where the vector of second directional derivatives along edges is defined by

dT =
1

2
[d1, ..., d6 ] =

1

2

[

x̂T Hx̂, ŷT Hŷ, ẑT Hẑ, ûT Hû, v̂T Hv̂, ŵT Hŵ
]

.

and where the matrix P is defined by

P =
4

7!

















4 2 2 1 2 2
2 4 2 2 1 2
2 2 4 2 2 1
1 2 2 4 2 2
2 1 2 2 4 2
2 2 1 2 2 4

















Expanding out equation (29) in terms of the components of d which are the six

directional derivatives along the edges gives:

∫

T

(elin(x, y, z))2dx dy dz =
6

4
V

8

7!

[

(Σdi)
2 − d1d4 − d2d5 − d3d6 + Σd2

i

]

.

(30)

5. Tetrahedral Mesh Quality Indicator
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The results in the previous section make it possible to define the mesh quality

indicator in the same way as in Section 2 in that the error is scaled by the maximum

directional derivative dmax, the integral is scaled by the volume before taking the

square root. In a similar way to that found in Section 3 define

Q̃(d̃) =
[

(Σd̃i)
2 − d̃1d̃4 − d̃2d̃5 − d̃3d̃6 + Σd̃i

2
]

(31)

where now d̃ = [d̃1, d̃2, d̃3, d̃4, d̃5, d̃6]
T . A measure of the anisotropy in the derivative

contributions to the error is then provided by

Qaniso =
Q̃(d̃)

39
(32)

By defining the normalized derivatives as in equation (3) a geometry based indicator

can be written as

Qm(h) =
C

V

[

Q̃(h̃)
]

3

2

(33)

where C is a scaling factor to ensure that the indicator has value one when hi =

h and thus C = 1/(8.48528 × 391.5) and the power of 3

2
reflects the different

dimensions of the error and the volume in powers of h.

The edge quality estimator used by Weatherill17 is of the form

Qw =
1

8.48528V

[

(Σ
hi

6
)3

]

. (34)

A comparison of these two indicators on tetrahedra with uniform gradients was done

by Berzins6 using the eight parameterized tetrahedra of Liu and Joe11 as defined

by Figures 4 to 11 of that paper and showing that the values of the two indicators

differ by less than ten percent but on rare occasions that this difference may rise to

25 percent.

5.1. Edge Indices

As in two dimensions it is possible to define an edge index which indicates how

much each edge contributes to the error. Suppose that in equation (31) all the

values of d̃i are identical, say, d̃avg then

Q̃(d̃) = 39(d̃avg)
2 (35)

Hence

d̃avg =
√

Qaniso . (36)

The edge index for each edge is then denoted by eind(i) and defined by

eind(i) =
d̃i

d̃avg

, i = 1, 2, 3, 4, 5, 6. (37)

5.2. Anisotropic Tetrahedra
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Figure 4: Example Anisotropic Tetrahedron

In order to consider the case when the edge derivatives are nonuniform consider

the model tetrahedron in Figure 4 defined by the four points

x1 = [0, 0, 0]T , x2 = [1, 0, 0]T , x3 = [β, α, 0]T and x4 = [β,
α

2
, γ]T

with edge lengths

h1 = 1, h2 =
√

α2 + (1 − β)2, h3 =
√

α2 + β2,

h4 =
√

α2/4 + γ2, h5 =
√

α2/4 + β2 + γ2, and h6 =
√

α2/4 + (1 − β)2 + γ2,

The volume of this tetrahedron is given by V where V = αγ/6 . The anisotropy

of the solution is shown by the fact that the directional derivatives di given below

depend only on β and not on γ or α.

d1 = 1/2, d2 = 1/2(1− β)2, d3 = 1/2β2,

d4 = 0, d4 = 1/2β2, and d6 = 1/2(1 − β)2

Given these definitions the anisotropy indicator has the value shown in the table

below. In contrast a geometry based indicator such as that of Weatherill, will for

small values of α and β indicate a possible source of problems, as is shown in Table

2 below. Table 2 also shows the values of the H1 norm which is defined as in Section

3.3 except that there is now a third gradient term (elin,z(x, y))2 and the gradient

terms sum to
∫

T

(elin,x(x, y))2 + (elin,y(x, y))2 + (elin,z(x, y))2dxdy =
V

4
×

[

0.05 + 1.2(β − 0.5)2 + β2(1 − β)2(
1

α2
+

1

γ2
)

]

(38)

Hence as in Section 3.3 this norm is sensitive to small values of α and/or γ. Yet

again the behavior of the error norms exhibits different trends from the indicator

Qw. Thus again suggesting that the error norm be used to identify which elements

should be refined and the anisotropy indicator and the values of di to determine

which edges should be targetted for refinement.
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Table 2: Qaniso , Standard Mesh Quality Qw and Square of L2 and H1 Norm Values
β = 0 β = 0.5

Indicator α/γ 0.01 1.0 100.0 0.01 1.0 100.0
Qaniso 0.28 0.28 0.28 0.12 0.12 0.12

0.01 9.1e+2 5.2e+1 9.0e+4 8.9e+2 4.7e+1 9.0e+4
Qw 1.00 5.5e+1 1.20 9.1e+2 4.5e+1 1.03 9.1e+2
o 100. 1.4e+5 1.4e+3 5.0e+1 1.4e+5 1.4e+3 5.1e+1

Scaled 0.01 1.0e-4 1.0e-2 1.0 1.0e-4 1.0e-2 1.0
L2

2
1.00 1.0e-2 1.0 1.0e+2 1.0e-2 1.0 1.0e+2

error 100. 1.0 1.0e+2 1.0e+4 1.0 1.0e+2 1.0e+4

Scaled 0.01 1.0e-4 1.0e-2 1.0 6.9e-1 3.5e+1 3.5e+3
(H1)2 1.00 1.0e-2 1.0 1.0e+2 3.5e+1 1.0 6.5e+1
error 100. 1.0 1.0e+2 1.0e+4 3.5e+3 6.5e+1 3.0e+3

In Table 2 the L2 and H1 norms for each value of beta = 0.0, 0.5 are scaled by

the value of the norm when α = γ = 1. This makes a comparison with the mesh

quality Qw indicator easier as it has a values close to 1 at these points.

The indicators Qw , Qaniso and the L2 error are symmetric about β = 0.5. In

particular when α and γ are small then hi ≈ di and

Qw =
1

8.48528V

[

(Σ
di

6
)3

]

. (39)

Hence as the volume shrinks the mesh quality indicator Qw becomes large while the

approximation error for a fixed value of β is scaled only by the volume. The most

significant result is that the indicator Qaniso doesn’t vary with α and γ and the

error norm naturally increases as α, γ and hence the volume get large. In contrast

the mesh quality indicator Qw has a minimum when α = γ = 1 and is also relatively

small when α and γ are large and the error is also large.

6. Conclusions

The mesh quality indicators developed here appear to be a promising start in

terms of identifying triangular or tetrahedral elements in which the shape of the

elements and the local solution gradients conspire to give a poor linear approxima-

tion to a quadratic solution. The indicators have an obvious application in the case

when linear triangular or tetrahedral finite elements are used to solve p.d.e.s with

anisotropic solutions. The differences that occur when the indicator is used in the

very simplest cases suggest that it is important to try to include solution effects

when assessing the quality of the mesh.
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