
An Adaptive Framework for Visualizing

Unstructured Grids with Time-Varying Scalar

Fields

Fábio F. Bernardon a,∗, Steven P. Callahan b,
João L. D. Comba a, Cláudio T. Silva b

aInstituto de Informática, Federal University of Rio Grande do Sul, Brazil
bScientific Computing and Imaging Institute, University of Utah

Abstract

Interactive visualization of time-varying volume data is essential for many scien-
tific simulations. This is a challenging problem since this data is often large, can be
organized in different formats (regular or irregular grids), with variable instances
of time (from hundreds to thousands) and variable domain fields. It is common
to consider subsets of this problem, such as time-varying scalar fields (TVSFs) on
static structured grids, which are suitable for compression using multi-resolution
techniques and can be efficiently rendered using texture-mapping hardware. In this
work we propose a rendering system that considers unstructured grids, which do not
have the same regular properties crucial to compression and rendering. Our solu-
tion simultaneously leverages multiple processors and the graphics processing unit
(GPU) to perform decompression, level-of-detail selection, and volume visualization
of dynamic data. The resulting framework is general enough to adaptively handle
visualization tasks such as direct volume rendering and isosurfacing while allowing
the user to control the speed and quality of the animation.

Key words: volume rendering, unstructured grids, time-varying data

∗ Corresponding author.
Email addresses: fabiofb@inf.ufrgs.br (Fábio F. Bernardon),

stevec@sci.utah.edu (Steven P. Callahan), comba@inf.ufrgs.br (João L. D.
Comba), csilva@cs.utah.edu (Cláudio T. Silva).

Preprint submitted to Parallel Computing 12 February 2007



1 Introduction

Advances in computational power are enabling the creation of increasingly
sophisticated simulations generating vast amounts of data. Effective analysis of
these large datasets is a growing challenge for scientists who must validate that
their numerical codes faithfully represent reality. Data exploration through
visualization offers powerful insights into the reliability and the limitations
of simulation results, and fosters the effective use of results by non-modelers.
Measurements of the real world using high-precision equipment also produces
enormous amounts of information that requires fast and precise processing
techniques that produce an intuitive result to the user.

However, at this time, there is a mismatch between the simulation and acquir-
ing capabilities of existing systems, which are often based on high-resolution
time-varying 3D unstructured grids, and the availability of visualization tech-
niques. In a recent survey article on the topic, Ma [1] says:

“Research so far in time-varying volume data visualization has primarily
addressed the problems of encoding and rendering a single scalar variable
on a regular grid. ... Time-varying unstructured grid data sets has been
either rendered in a brute force fashion or just resampled and downsampled
onto a regular grid for further visualization calculations. ...”

One of the key problems in handling time-varying data is the raw size of the
data that must be processed. For rendering, these datasets need to be stored
(and/or staged) in either main memory or GPU memory. Data transfer rates
create a bottleneck for the effective visualization of these datasets. A number
of successful techniques for time-varying regular grids have used compression
to mitigate this problem, and allow for better use of resources. Most solutions
described in the literature consider only structured grids, where exploiting
coherence (either spatial or temporal) is easier due to the regular structure
of the datasets. For unstructured grids, however, the compression is more
challenging and several issues need to be addressed.

There are four fundamental pieces to adaptively volume render dynamic data.
First, compression of the dynamic data for efficient storage is necessary to
avoid exhausting available resources. Second, handling the data transfer of the
compressed data is important to maintain interactivity. Third, efficient volume
visualization solutions are necessary to provide high-quality images that lead
to scientific insight. Furthermore, the framework has to be flexible enough to
support multiple visualization techniques as well as data that changes at each
frame. Fourth, maintaining a desired level of interactivity or allowing the user
to change the speed of the animation is important for the user experience.
Therefore, level-of-detail approaches that generally work on static datasets

2



Fig. 1. Different time instances of the Turbulent Jet dataset consisting of one mil-
lion tetrahedra and rendered at approximately six frames per second using direct
volume rendering (top) and isosurfacing (bottom). Our user interface consists of
an adjustable orange slider representing the level-of-detail and an adjustable gray
slider representing the current time instance.

must be adapted to efficiently handle the dynamic case.

Since multiple CPUs and programmable GPUs are becoming common for
desktop machines, we concentrate on efficiently using all the available re-
sources. Our system performs decompression, object-space sorting, and level-
of-detail operations with multiple threads on the CPUs for the next time-step
while simultaneously rendering the current time-step using the GPU. This par-
allel computation results in only a small overhead for rendering time-varying
data over previous static approaches.

To demonstrate the flexibility of our framework, we describe how the two
most common visualization techniques for unstructured grids can be easily
integrated. Both direct volume rendering as well as isosurface computation
are incorporated into our adaptive, time-varying framework.

Though our goal is to eventually handle data that changes in geometry and
even topology over time, here we concentrate on the more specific case of time-
varying scalar fields on static geometry and topology. The main contributions
of this paper are:

• We show how the data transfer bottleneck can be mitigated with compres-
sion of time-varying scalar fields for unstructured grids;

3



• We show how a hardware-assisted volume rendering system can be enhanced
to efficiently prefetch dynamic data by balancing the CPU and GPU loads;

• We describe how direct volume rendering and isosurfacing can be incorpo-
rated into our adaptive framework;

• We introduce new importance sampling approaches for dynamic level-of-
detail that operate on time-varying scalar fields.

Figure 1 illustrates our system in action on an unstructured grid represen-
tation of the Turbulent Jet dataset. The rest of this paper is organized as
follows. Section 2 surveys related previous work. Section 3 outlines our system
for adaptively volume rendering unstructured grids with time-varying scalar
fields. The results of our algorithm are shown in Section 4, a brief discus-
sion follows in Section 5, and conclusions and future work are described in
Section 6.

2 Previous Work

The visualization of time-varying data is of obvious importance, and has been
the source of substantial research. Here, we are particularly interested in the
research literature related to compression and rendering techniques for this
kind of data. For a more comprehensive review of the literature, we point the
interested reader to the recent surveys by Ma [1] and Ma and Lum [2].

Very little has been done for compressing time-varying data on unstructured
grids, therefore all the papers cited below focus on regular grids. Some re-
searchers have explored the use of spatial data structures for optimizing the
rendering of time-varying datasets [3–5]. The Time-Space Partitioning (TSP)
Tree used in those papers is based on an octree which is extended to encode
one extra dimension by storing a binary tree at each node that represents the
evolution of the subtree through time [5]. The TSP tree can also store partial
sub-images to accelerate rendering by ray-casting.

The compression of time-varying isosurfaces and associated volumetric data
with a wavelet transform was first proposed in [6]. With the advance of texture-
based volume rendering and programmable GPUs, several techniques explored
shifting data storage and decompression into graphics hardware. Coupling
wavelet compression of structured grids with decompression using texturing
hardware was discussed in work by Guthe et al. [7, 8]. They describe how to
encode large, static datasets or time-varying datasets to minimize their size,
thus reducing data transfer and allowing real-time volume visualization. Sub-
sequent work by Strengert et al. [9] extended the previous approaches by em-
ploying a distributed rendering strategy on a GPU cluster. Lum et al. [10,11]
compress time-varying volumes using the Discrete Cosine Transform (DCT).

4



Because the compressed datasets fit in main memory, they are able to achieve
much higher rendering rates than for the uncompressed data, which needs
to be incrementally loaded from disk. Because of their sheer size, I/O issues
become very important when dealing with time-varying data [12].

More related to our work is the technique proposed by Schneider et al. [13].
Their approach relies on vector quantization to select the best representatives
among the difference vectors obtained after applying a hierarchical decom-
position of structured grids. Representatives are stored in textures and de-
compressed using fragment programs on the GPU. Since the multi-resolution
representations are applied to a single structured grid, different quantization
and compression tables are required for each time instance. Issues regard-
ing the quality of rendering from compressed data were discussed by Fout et
al. [14] using the approach described by Schneider et al. as a test case.

Hardware-assisted volume rendering has received considerable attention in the
research community in recent years (for a recent survey, see [15]). Shirley and
Tuchman [16] introduced the Projected Tetrahedra (PT) algorithm for de-
composing tetrahedra into renderable triangles based on the view direction.
A visibility ordering of the tetrahedra before decomposition and rendering is
necessary for correct transparency compositing [17]. More recently, Weiler et
al. [18] describe a hardware ray caster which marches through the tetrahe-
dra on the GPU in several rendering passes. Both of these algorithms require
neighbor information of the mesh to correctly traverse the mesh for visibility
ordering or ray marching, respectively. An alternative approach was intro-
duced by Callahan et al. [19] which considers the tetrahedral mesh as unique
triangles that can be efficiently rendered without neighbor information. This
algorithm is ideal for dynamic data because the vertices, scalars, or trian-
gles can change with each frame with very little penalty. Subsequent work by
Callahan et al. [20] describes a dynamic level-of-detail (LOD) approach that
works by sampling the geometry and rendering only a subset of the original
mesh. Our system uses a similar approach for LOD, but adapted to handle
time-varying data.

Graphics hardware has also been used in recent research to visualize isosur-
faces of volumetric data. The classic Marching Cubes algorithm [21] and sub-
sequent Marching Tetrahedra algorithm [22] provide a simple way to extract
geometry from structured and unstructured meshes in object space. However,
image-space techniques are generally more suitable for graphics hardware. One
such algorithm was proposed by Sutherland et al. [23] which uses alpha-test
functionality and a stencil buffer to perform plane-tetrahedron intersections.
Isosurfaces are computed by interpolating alpha between front and back faces
and using XOR operation with the stencil buffer. Later, Röttger et al. [24] re-
vised this algorithm and extended the PT algorithm to perform isosurfacing.
Instead of breaking up the tetrahedra into triangles, the algorithm creates

5



Fig. 2. An overview of our system. (a) Data compression and importance sampling
for level-of-detail are performed in preprocessing steps on the CPU. (b) Then during
each pass, level-of-detail selection, optional object-space sorting, and data decom-
pression for the next step occur in parallel on multiple CPUs. (c) Simultaneously,
the image-space sorting and volume visualization are processed on the GPU.

smaller tetrahedra which can be projected as triangles and tested for iso-
surface intersection using a 2D texture. More recent work by Pascucci [25]
uses programmable hardware to compute isosurfaces. The algorithm consid-
ers each tetrahedron as a quadrilateral, which is sent to the GPU where the
vertices are repositioned in a vertex shader to represent the isosurface. Our
system takes advantage of recent hardware features to perform isosurface tests
directly at the fragment level. Furthermore, our isosurfacing can be used di-
rectly in our time-varying framework and naturally benefit from our dynamic
level-of-detail.

Several systems have previously taken advantage of multiple processors and
multi-threading to increase performance. The iWalk system [26] by Correa et
al. uses multiple threads to prefetch geometry and manage a working set of
renderable primitives for large triangles scenes. More recent work by Vo et
al. [27] extends this idea to perform out-of-core management and rendering of
large volumetric meshes. Our approach is similar in spirit to these algorithms.
We use multiple threads to prefetch changing scalar values, sort geometry, and
prepare level-of-detail triangles at each frame.

3 Adaptive Time-Varying Volume Rendering

Our system for adaptive time-varying volume rendering of unstructured grids
consists of four major components: compression, data transfer, hardware-
assisted volume visualization, and dynamic level-of-detail for interactivity.
Figure 2 shows the interplay of these components.

6



Desktop machines with multiple processors and multiple cores are becoming
increasingly typical. Thus, interactive systems should explore these features
to leverage computational power. For graphics-heavy applications, the CPU
cores can be used as an additional cache for the GPU, which may have limited
memory capabilities. With this in mind, we have parallelized the operations on
the CPU and GPU with multi-threading to achieve interactive visualization.

There are currently three threads in our system to parallelize the CPU portion
of the code. These threads run while the geometry from the previous time-
step is being rendered on the GPU. Therefore, the threads can be considered
a prefetching of data in preparation for rasterization. The first thread handles
decompression of the compressed scalar field (see Section 3.1). The second
thread handles object-space sorting of the geometry (see Section 3.3). Finally,
the third thread is responsible for rendering. All calls to the graphics API
are done entirely in the rendering thread since only one thread at a time may
access the API. This thread waits for the first two threads to finish, then copies
the decompressed scalar values and sorted indices before rendering. This frees
the other threads to compute the scalars and indices for the next time-step.
These three threads work entirely in parallel and result in a time-varying
visualization that requires very little overhead over static approaches.

3.1 Compression

Compression is important to reduce the memory footprint of time-varying
data, and the consideration of spatial and temporal coherence of the data
is necessary when choosing a strategy. For example, it is common to exploit
spatial coherence in time-varying scalar fields defined on structured grids,
such as in the approach described by Schneider et al. [13], where a multi-
resolution representation of the spatial domain using vector quantization is
used. This solution works well when combined with texture-based volume
rendering, which requires the decompression to be performed at any given
point inside the volume by incorporating the differences at each resolution
level.

In unstructured grids, the irregularity of topological and geometric informa-
tion makes it hard to apply a multi-resolution representation over the spatial
domain. In our system we apply compression on the temporal domain by con-
sidering scalar values individually for each mesh vertex. By grouping a fixed
number of scalar values defined over a sequence of time instances we obtain a
suitable representation for applying a multi-resolution framework.

Our solution collects blocks of 64 consecutive scalars associated with each mesh
vertex, applies a multi-resolution representation that computes the mean of

7



Fig. 3. Decompression of a given time instance for each mesh vertex requires adding
the scalar mean of a block to the quantized differences recovered from the respective
entries (i8 and i64) in the codebooks.

each block along with two difference vectors of size 64 and 8, and uses vector
quantization to obtain two sets of representatives (codebooks) for each class
of difference vectors. For convenience we use a fixed number of time instances,
but compensate for this by increasing the number of entries in the codebooks
if temporal coherence is reduced and leads to compression errors.

This solution works well for projective volume rendering that sends mesh faces
in visibility ordering to be rendered. At each rendering step, the scalar value
for each mesh vertex in a given time instance is decompressed by adding the
mean of a given block interval to two difference values, which are recovered
from the codebooks using two codebook indices i8 and i64 (Figure 3).

3.2 Data Transfer

There are several alternatives to consider when decompressing and transferring
time-varying data to the volume renderer. This is a critical point in our system
and has a great impact on its overall performance. In this section we discuss
the alternatives we explored and present our current solution. It is important
to point out that with future CPU and GPU configurations this solution might
need to be revisited.

Since the decompression is done on a per-vertex basis, our first approach was
to use the vertex shader on the GPU. This requires the storage of codebooks
as vertex textures, and the transfer for each vertex of three values as texture
coordinates (mean and codebook indices i8 and i64). In practice, this solution
does not work well because the current generation of graphics hardware does
not handle vertex textures efficiently and incurs several penalties due to cache
misses, and the arithmetic calculations in the decompression are too simple

8



to hide this latency.

Our second approach was to use the GPU fragment shader. Since computa-
tion is done at a fragment level, the decompression and the interpolation of
the scalar value for the fragment is necessary. This requires three decompres-
sion steps instead of a single step as with the vertex shader approach (which
benefits from the interpolation hardware). Also, this computation requires
accessing the mean and codebook indices. Sending this information as a sin-
gle vertex attribute is not possible due to interpolation, and multiple-vertex
attributes increase the amount of data transfer per vertex. As our volume
renderer runs in the fragment shader, this solution also increases the shader
complexity and thus reduces performance of the system.

Our final (and current) solution is to perform the decompression on the CPU.
Since codebooks usually fit in CPU memory—a simple paging mechanism
can be used for really large data—the main cost of this approach is to per-
form the decompression step and send scalar values through the pipeline. This
data transfer is also necessary with the other two approaches. The number of
decompression steps is reduced to the number of vertices, unlike the vertex
shader approach which requires three times the number of faces.

3.3 Volume Rendering

Our system is based on the Hardware-Assisted Visibility Sorting 1 (HAVS)
algorithm of Callahan et al. [19]. Figure 2 shows how the volume rendering
system handles time-varying data. Our framework supports both direct volume
rendering as well as isosurfacing.

The HAVS algorithm is a general visibility ordering algorithm for renderable
primitives that works in both object-space and image-space. In object space
the unique triangles that compose the tetrahedral mesh are sorted approxi-
mately by their centroids. This step occurs entirely on the CPU. In image-
space, the triangles are sorted and composited in correct visibility order using
a fixed size A-buffer called the k-buffer. The k-buffer is implemented entirely
on the GPU using fragment shaders. Because the HAVS algorithm operates on
triangles with no need for neighbor information, it provides a flexible frame-
work for handling dynamic data. In this case, the triangles can be stored on the
GPU for efficiency, and the scalar values as well as the object-space ordering
of the triangles can be streamed to the GPU at each time instance.

Our algorithm extends the HAVS algorithm with time-varying data with vir-
tually no overhead by taking advantage of the HAVS architecture. Since work

1 Source code available at http://havs.sourceforge.net

9



performed on the CPU can be performed simultaneously to work on the GPU,
we can leverage this parallelization to prefetch the time-varying data. During
the GPU rendering stage of the current time instance, we use the CPU to
decompress the time-varying field of the next time-step and prepare it for ren-
dering. We also distinguish user provided viewing transformations that affect
visibility order from those that do not and perform visibility ordering only
when necessary. Therefore, the object-space centroid sort only occurs on the
CPU during frames that have a change in the rotation transformation. This
avoids unnecessary computation when viewing time-varying data.

To manage the time-stepping of the time-varying data, our algorithm auto-
matically increments the time instance at each frame. To allow more control
from the user, we also provide a slider for interactive exploration of the time
instances.

3.3.1 Direct Volume Rendering

The HAVS algorithm performs direct volume rendering with the use of pre-
integration [28]. In a preprocess, a three-dimensional lookup table is computed
that contains the color and opacity for every set of scalars and distances
between them (sf , sb, d). Then, as fragments are rasterized, the k-buffer is used
to retrieve the closest two fragments and the front scalar sf , back scalar sb,
and distance d between them is calculated. The color and opacity for the gap
between the fragments is determined with a texture lookup, then composited
into the framebuffer. More details on direct volume rendering with the HAVS
algorithm can be found in [19].

3.3.2 Isosurfaces

We extend the HAVS algorithm to perform isosurfacing in our time-varying
framework. The fragments are sorted using the k-buffer as described above.
However, instead of compositing the integral contribution for the gap between
the first and second fragments, we perform a simple test to determine if the
isosurface value lies between them. If so, the isosurface depth is determined by
interpolating between the depths of the two fragments. The result is a texture
that contains the depth for the isosurface at each pixel (i.e., a depth buffer),
which can be displayed directly as a color buffer or post-processed to include
shading.

There are several differences between our isosurfacing using HAVS and previ-
ous hardware-assisted approaches. First, with the advent of predicates in the
fragment shader, a direct isosurface comparison can be performed efficiently,
without the need of texture lookups as in previous work by Röttger et al. [24].
Second, the k-buffer naturally provides the means to handle multiple transpar-

10



ent isosurfaces by compositing the isosurface fragments in the order that they
are extracted. Third, to handle lighting of the isosurfaces, we avoid keeping
normals in our k-buffer by using an extra shading pass. One option is a simple
depth-based shading [29], which may not give sufficient detail of the true na-
ture of the surface. Another option is to use a gradient-free shading approach
similar to work by Desgranges et al. [30], which uses a preliminary pass over
the geometry to compute a shadow buffer. Instead, we avoid this extra geom-
etry pass by using screen-space shading of the computed isosurface through
central differencing on the depth buffer [31]. This results in fast and high qual-
ity shading. The isosurface figures shown in this paper were generated with
the latter shading model. Finally, since our isosurfacing algorithm is based
on our direct volume rendering algorithm, the same level-of-detail strategies
can be used to increase performance. However, level-of-detail rendering may
introduce discontinuities in the depths that define the isosurface, adversely
affecting the quality of the image-space shading. Thus, we perform an addi-
tional smoothing pass on the depths using a convolution filter, which removes
sharp discontinuities, before the final shading. This extra pass is inexpensive
and typically only necessary at low levels-of-detail.

3.4 Time-Varying Level-of-Detail

Recent work by Callahan et al. [20] introduces a new dynamic level-of-detail
(LOD) approach that works by using a sample-based simplification of the ge-
ometry. This algorithm operates by assigning an importance to each triangle in
the mesh in a preprocessing step based on properties of the original geometry.
Then, for each pass of the volume renderer, a subset of the original geometry
is selected for rendering based on the frame rate of the previous pass. This
recent LOD strategy was incorporated into the original HAVS algorithm to
provide a more interactive user experience.

An important consideration for visualizing time-varying data is the rate at
which the data is progressing through the time instances. To address this
problem, our algorithm uses this LOD approach to allow the user to control
the speed and quality of the animation. Since we are dealing with time-varying
scalar fields, heuristics that attempt to optimize the quality of the mesh based
on the scalar field are ideal. However, approaches that are based on a static
mesh can be poor approximations when considering a dynamically changing
scalar field.

Callahan et al. introduce a heuristic based on the scalar field of a static mesh
for assigning an importance to the triangles. The idea is to create a scalar his-
togram and use stratified sampling to stochastically select the triangles that
cover the entire range of scalars. This approach works well for static geome-

11



try, but may miss important regions if applied to a time-step that does not
represent the whole time-series well. Recent work by Akiba et al. [32] classi-
fies time-varying datasets as either statistically dynamic or statistically static
depending on the behavior of the time histogram of the scalars. A statistically
dynamic dataset may have scalars that change dramatically in some regions
of time, but remain constant during others. In contrast, the scalars in statisti-
cally static datasets change consistently throughout the time-series. Because
datasets vary differently, we have developed two sampling strategies for dy-
namic LOD: a local approach for statistically dynamic datasets and a global
approach for statistically static datasets.

To incorporate these LOD strategies into our time-varying system, we allow
two types of interactions based on user preference. The first is to keep the
animation at a desired frame-rate independent of the data size or viewing
interaction. This dynamic approach adjusts the LOD on the fly to maintain
interactivity. Our second type of interaction allows the user to use a slider
to control the LOD. This slider dynamically changes the speed of the anima-
tion by setting the LOD manually. Since visibility ordering-dependent viewing
transformations occur on the CPU in parallel to the GPU rendering, they do
not change the LOD or speed of the animation. Figure 2 shows the interaction
of the LOD algorithm with the time-varying data.

3.4.1 Local Sampling

Datasets with scalars that vary substantially in some time regions, but very
little in others benefit from a local sampling approach. The general idea is
to apply methods for static datasets to multiple time-steps of a time-varying
dataset and change the sampling strategy to correspond to the current region.
We perform local sampling by selecting time-steps at regular intervals in the
time-series and importance sampling the triangles in those time-steps using the
previously described stochastic sampling of scalars. Since the LOD selects a
subset of triangles ordered by importance, we create a separate list of triangles
for each partition of the time sequence. Then, during each rendering step,
the region is determined and the corresponding list is used for rendering.
Since changing the list also requires the triangles to be resorted for rendering,
we perform this operation in the sorting thread to minimize delays between
frames.

Statistically dynamic datasets benefit from this approach because the triangles
are locally optimized for rendering. The disadvantage of this approach is that
because the active set of renderable triangles may change between time inter-
vals, flickering may occur. However, this is a minor issue when using dynamic
LOD because the number of triangles drawn at each frame may be changing
anyway, to maintain interactivity.

12



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Time-varying level-of-detail(LOD) strategy using the coefficient of variance
for the Torso dataset (50K tetrahedra and 360 time steps). For a close-up view using
direct volume rendering: (a) 100% LOD at 18 fps, (b) 50% LOD at 40 fps, (c) 25%
LOD at 63 fps, and (d) 10% LOD at 125 fps. For the same view using isosurfacing:
(e) 100% LOD at 33 fps, (f) 50% LOD at 63 fps, (g) 25% LOD at 125 fps, and (h)
10% LOD at 250 fps. Front isosurface fragments are shown in light blue and back
fragments are shown in dark blue.

Certain datasets may contain regions in time where none of the scalars are
changing and other regions where many scalars are changing. These datasets
would benefit from a non-linear partitioning of the time sequence (i.e., log-
arithmic). A more automatic approach to partitioning the time-steps is to
greedily select areas with the highest scalar variance to ensure that important
changes are not missed. In our experiments, a regular interval is used because
our experimental datasets do not fall into this category.

3.4.2 Global Sampling

A global strategy is desirable in datasets that are statistically static due to
its simplicity and efficiency. For global sampling, one ordering is determined
that attempts to optimize all time-steps. This has the advantage that it does
not require changing the triangle ordering between frames and thus gives a
smoother appearance during an animation.

A sampling can be obtained globally using a statistical measure of the scalars.
For n time-steps, consider the n scalar values s for one vertex as an inde-
pendent random variable X, then the expectation at that position can be
expressed as

13



E[X] =
n∑
1

s(Pr{X = s}),

where Pr{X = s} = 1/n. The dispersion of the probability distribution of the
scalars at a vertex can then be expressed as the variance of the expectation:

V ar[X] = E[X2]− E2[X]

=
n∑
1

(
s2

n
)− (

n∑
1

s

n
)2

In essence, this gives a spread of the scalars from their expectation. To measure
dispersion of probability distributions with widely differing means, it is com-
mon to use the coefficient of variation Cv, which is the ratio of the standard
deviation to the expectation. This metric has been used in related research
for transfer function specification on time-varying data [32,33] and as a mea-
surement for spatial and temporal error in a time-varying structured grids [5].
Thus, for each triangle t, the importance can be assigned by calculating the
sum of the Cv for each vertex as follows:

Cv(t) =
3∑

i=1

√
V ar[Xt(i)]

E[Xt(i)]

This results in a dimensionless quantity that can be used for assigning impor-
tance to each face by directly comparing the amount of change that occurs at
each triangle over time.

The algorithm provides good quality visualizations even at lower levels-of-
detail because the regions of interest (those that are changing) are given a
higher importance (see Figure 4). The described heuristic works especially well
in statistically static datasets if the mesh has regions that change very little
over time since they are usually assigned a lower opacity and their removal
introduces very little visual difference.

4 Results

In this section we report results obtained using a PC with Pentium D 3.2
GHz Processors, 2 GB of RAM, and an NVidia 7800 GTX GPU with 256 MB
RAM. All images were generated at 512× 512 resolution.

14



Table 1
Results of compression sizes, ratios, and error.

Mesh Num Num Time Size Size Comp. SNR SNR Max

Verts Tets Instances TVSF VQ Ratio Min Max Error

SPX1 36K 101K 64 9.0M 504K 18.3 39.5 42.0 0.005

SPX2 162K 808K 64 40.5M 2.0M 20.6 39.2 42.0 0.009

SPXF 19K 12K 192 14.7M 2.0M 7.1 20.8 30.2 0.014

Blunt 40K 183K 64 10.0M 552K 18.6 41.7 44.4 0.005

Torso 8K 50K 360 11.2M 1.0M 11.4 20.5 28.1 0.002

TJet 160K 1M 150 93.8 M 2.7M 34.7 5.3 17.9 0.204

4.1 Datasets

The datasets used in our tests are diverse in size and number of time in-
stances. The time-varying scalars on the SPX1, SPX2 and Blunt Fin datasets
were procedurally generated by linear interpolating the original scalars to zero
over time. The Torso dataset shows the result of a simulation of a rotating
dipole in the mesh. The SPX-Force (SPXF) dataset represents the magnitude
of reaction forces obtained when a vertical force is applied to a mass-spring
model that has as particles the mesh vertices and as springs the edges between
mesh vertices. Finally, the Turbulent Jet (TJet) dataset represents a regular
time-varying dataset that was tetrahedralized and simplified to a reduced rep-
resentation of the original. The meshes used in our tests with their respective
sizes are listed in Table 1 and results showing different time instances are
shown in Figures 1, 4, 5, and 6.

4.2 Compression

The compression of Time-Varying Scalar Field (TVSF) data uses an adaption
of the vector quantization code written by Schneider et al. [13], as described
in Section 3.1. The original code works with structured grids with building
blocks of 4 × 4 × 4 (for a total of 64 values per block). To adapt its use
for unstructured grids it is necessary to group TVSF data into basic blocks
with the same amount of values. For each vertex in the unstructured grid, the
scalar values corresponding to 64 contiguous instances of time are grouped
into a basic block and sent to the VQ code.

The VQ code produced two codebooks containing difference vectors for the
first and second level in the multi-resolution representation, each with 256
entries (64 × 256 and 8 × 256 codebooks). For our synthetic datasets this
configuration led to acceptable compression results as seen on Table 1. How-
ever, for the TJet and SPXF datasets we increased the number of entries
in the codebook due to the compression error obtained. Both datasets were

15



compressed using codebooks with 1024 entries.

The size of TVSF data without compression is given by sizeu = v × t × 4B,
where v is the number of mesh vertices, t is the number of time instances
in each dataset, and each scalar uses four bytes (float). The compressed size
using VQ is equal to sizevq = v × c × 3 × 4B + c × size codebook, where
c is the number of codebooks used (c = t/64), s is the number of entries
in the codebook (256 or 1024), each vertex requires 3 values per codebook
(mean plus codebook indices i8 and i64), and each codebook size corresponds
to s× 64× 4B + s× 8× 4B.

In Table 1 we summarize the compression results we obtained. In addition
to the signal-to-noise ration (SNR) given by the VQ code, we also measured
the minimum and maximum discrepancy between the original and quantized
values. Results show that procedurally generated datasets have a higher SNR
and smaller discrepancy, since they have a smoother variation in their scalars
over time. The TJet dataset has smaller SNR values because it represents a
real fluid simulation, but it also led to higher compression ratios due to its fixed
codebook sizes. In general, the quality of the compression corresponds with the
variance in the scalars between steps. Thus, datasets with smoother transitions
result in less compression error. A limitation of the current approach is that
because it exploits temporal coherence, it may not be suitable for datasets with
abrupt changes between time instances. In this case, compression methods that
focus more on spatial coherence may be necessary.

4.3 Rendering

The rendering system allows the user to interactively inspect the time-varying
data, continuously play all time instances, and pause or even manually select a
given time instance by dragging a slider. Level-of-detail changes dynamically to
achieve interactive frame rates, or can be manually set using a slider. Changing
from direct volume rendering to isosurfacing is accomplished by pressing a key.
Similarly, the isovalue can be interactively changed with the press of a key and
incurs no performance overhead.

Rendering time statistics were produced using a fixed number of viewpoints. In
Table 2 we show timing results for our experimental datasets. To compare the
overhead of our system with the original HAVS system that handles only static
data, we also measure the rendering rates for static scalar fields without multi-
threading. The dynamic overhead is minimal even for the larger datasets. In
fact, for some datasets, our multi-threading approach is faster with dynamic
data than single threading with static data. Note that for the smaller datasets,
we do not report frame-rates greater than 60 frames per second since it is

16



(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of direct volume rendering using (a) uncompressed and (d)
compressed data on the TJet dataset(1M tetrahedra, 150 time steps). Level-of-Detail
is compared at 5% for the TJet and 3% for the Torso dataset(50K tetrahedra, 360
time steps) using (b)(c) our local approach and (e)(f) our global approach.

difficult to accurately measure higher rates.

In addition to the compression results described above, we evaluate the image
quality for all datasets by comparing it against the rendering from uncom-
pressed data. For most datasets the difference in image quality was minimal.
However, for the TJet dataset (the one with the smaller SNR values), there are
some small differences that can be observed in close-up views of the simulation
(see Figure 5).

4.4 Level-of-Detail

Our sample-based level-of-detail for time-varying scalar fields computes the
importance of the faces in a preprocessing step that takes less than two seconds
for the global strategy or for the local strategy using six intervals, even for
the largest dataset in our experiments. In addition, there is no noticeable
overhead in adjusting the level-of-detail at a per frame basis because only the
number of triangles in the current frame is computed [20]. Figure 4 shows the
results of our global level-of-detail strategy on the Torso dataset at decreasing
levels-of-detail. Figure 5 shows a comparison of our global and local sampling
strategies. To capture an accurate comparison, the local sampling results are

17



Table 2
Performance measures for static and time-varying (TV) scalar fields for direct vol-
ume rendering (DVR) and isosurfacing (Iso). Static measurements were taken with-
out multithreading. Performance is reported for each dataset with object-space sort-
ing (during rotations) and without object-space sorting (otherwise).

Mesh Sort DVR Static DVR TV DVR TV Iso Static Iso TV Iso TV

FPS FPS Tets/s FPS FPS Tets/s

SPX1 Y 24.2 32 3.3M 26.4 28.2 2.9M

SPX1 N 42.6 41.7 4.3M 51.1 43.5 4.5M

SPX2 Y 2.8 2.9 2.4M 2.9 2.9 2.4M

SPX2 N 7.6 7.5 6.2M 8.2 8.2 6.8

SPXF Y >60 >60 0.7M >60 >60 0.7M

SPXF N >60 >60 0.7M >60 >60 0.7M

Blunt Y 16.1 20.4 3.8M 15.9 19.5 3.6M

Blunt N 25.6 27.5 5.2M 31.2 31.1 5.8M

Torso Y 40.6 31.2 1.6M 44.8 31.2 1.6M

Torso N >60 >60 3.1M >60 >60 3.1M

TJet Y 2.3 2.1 2.1M 2.2 2.4 2.4M

TJet N 6.1 5.8 5.8M 5.7 6 6.0M

shown in the middle of an interval, thus showing an average quality. In our
experiments, the frame-rates increase at the same rate as the level-of-detail
decreases (see Figure 4) for both strategies.

5 Discussion

This paper extends on our previously published work [34]. There are three
main contributions that we present here that were not in the original paper.
First, we describe a multi-threaded framework to improve performance and
distribute computation between multiple cores of the CPU and the GPU. Sec-
ond, we expand our description of time-varying level-of-detail to include both
global and local approaches to more accurately handle a variety of data types.
Third, we generalize our rendering algorithm to handle isosurfacing as well as
direct volume rendering. This provides a fast time-varying solution to isosur-
facing with level-of-detail and is important to show that our framework can
handle the two most common visualization techniques for unstructured grids.
Apart from these larger changes, many minor changes in the text, figures, and
results were made to correspond with these new contributions.

An important consideration for the framework we have presented is the scal-
ability of the solution on current and future hardware configurations. De-
velopment of faster processors is reaching physical limits that are expensive
and difficult to overcome. This is leading the industry to shift from the pro-

18



duction of faster single-core processors to multi-core machines. On the other
hand, graphics hardware has not yet reached these same physical limitations.
Even so, hardware vendors are already providing multiple GPUs along with
multiple CPUs. The use of parallel technology ensures that the processing
power of commodity computers keeps growing independently of some physical
limitations, but new applications must be developed considering this new real-
ity to take full advantage of the new features. In particular, for data-intensive
graphics applications, an efficient load balance needs to be maintained between
resources to provide interactivity. In this paper, we focus on this multi-core
configuration that is becoming increasingly popular on commodity machines
instead of focusing on traditional CPU clusters.

To take advantage of multi-core machines with programmable graphics hard-
ware, we separate the computation into three components controlled by dif-
ferent threads. For the largest dataset in our experiments, the computation
time for the three components is distributed as follows: 2% decompression,
55% sorting, and 45% rendering. For the smaller datasets, the processing time
shifts slightly more towards rendering. With more available resources, the ren-
dering and the sorting phases could benefit from additional parallelization.

To further parallelize the sorting thread, the computation could be split amongst
multiple cores on the CPU. This could be done in two ways. The first is to
use a sort-first approach that performs parallel sorting on the geometry in
screen space (see Gasarch et al. [35]), then pushes the entire geometry to the
graphics hardware. The second is a sort-last approach that breaks the geome-
try into chunks that are sorted separately, and sent to the graphics hardware
for rendering and compositing (see Vo et al. [27]).

Because of the parallel nature of modern GPUs, the vertex and fragment pro-
cessing automatically occurs in parallel. Even so, multiple-GPU machines are
becoming increasingly common. The effective use of this technology, however,
is a complex task, especially for scientific computing. We have performed some
tentatives tests of our framework on a computer with an NVidia SLI config-
uration. SLI, or Scalable Link Interface, is an NVidia technology developed
to synchronize multiple GPUs (currently two or four) inside one computer.
This technology was developed to automatically enhance the performance of
graphics applications, and offer two new operation modes: Split Frame Ren-
dering (SFR) and Alternate Frame Rendering (AFR). SFR splits the screen
into multiple regions and assigns each region to a GPU. AFR renders every
frame on a different GPU, cycling between all available resources. Our ex-
periments with both SFR and AFR on a dual SLI machine did not improve
performance with our volume rendering algorithm. The SFR method must
perform k-buffer synchronization on the cards so frequently that no perfor-
mance benefit is achieved. With AFR, the GPU selection is controlled by the
driver and changes at the end of each rendering pass. With a multi-pass ren-

19



dering algorithm, this forces synchronization between GPUs and results in
the same problem as SFR. In the future, as more control of these features be-
comes available, we will be able to take advantage of multiple-GPU machines
to improve performance.

6 Conclusion

Rendering dynamic data is a challenging problem in volume visualization.
In this paper we have shown how time-varying scalar fields on unstructured
grids can be efficiently rendered using multiple visualization techniques with
virtually no penalty in performance. In fact, for the larger datasets in our
experiments, time-varying rendering only incurred a performance penalty of
6% or less. We have described how vector quantization can be employed with
minimal error to mitigate the data transfer bottleneck while leveraging a GPU-
assisted volume rendering system to achieve interactive rendering rates. Our
algorithm exploits both the CPU and GPU concurrently to balance the com-
putation load and avoid idle resources. In addition, we have introduced new
time-varying approaches for dynamic level-of-detail that improve upon exist-
ing techniques for static data and allows the user to control the interactivity
of the animation. Our algorithm is simple, easily implemented, and most im-
portantly, it closes the gap between rendering time-varying data on structured
and unstructured grids. To our knowledge this is the first system for handling
time-varying data on unstructured grids in an interactive manner.

In the future, we plan to explore the VQ approach to find a general way
of choosing its parameters based on dataset characteristics. Also, when next
generation graphics cards become available, we would like to revisit our GPU
solution to take advantage of new features. Finally, we would like to explore
solutions for time-varying geometry and topology.

7 Acknowledgments

The authors thank J. Schneider for the VQ code, Louis Bavoil for the iso-
surfacing shaders, Mike Callahan and the SCIRun team at the University of
Utah for the Torso dataset, Bruno Notrosso (Électricité de France) for the
SPX dataset, Kwan-Liu Ma for the TJet dataset, Huy Vo for the tetrahe-
dral simplification, and NVIDIA from donated hardware. The work of Fábio
Bernardon and João Comba is supported by a CNPq grant 478445/2004-0.
The work of Steven Callahan and Cláudio Silva has been supported by the
National Science Foundation under grants CCF-0401498, EIA-0323604, OISE-
0405402, IIS-0513692, and CCF-0528201, the Department of Energy, an IBM

20



Fig. 6. Different time instances of the SPXF (above, 12K tetrahedra and 192 time
steps) and Torso (below, 50K tetrahedra and 360 time steps) datasets volume ren-
dered at full quality.

Faculty Award, the Army Research Office, and a University of Utah Seed
Grant.

References

[1] K.-L. Ma, Visualizing Time-Varying Volume Data, Computing in Science &
Engineering, 5(2), 2003, pp. 34–42.

[2] K.-L. Ma, E. Lum, Techniques for Visualizing Time-Varying Volume Data, in:
C. D. Hansen, C. Johnson (Eds.), Visualization Handbook, Academic Press,
2004, pp. 511–531.

[3] D. Ellsworth, L.-J. Chiang, H.-W. Shen, Accelerating Time-Varying Hardware
Volume Rendering Using TSP Trees and Color-Based Error Metrics, Volume
Visualization Symposium, 2000, pp. 119-128.

[4] K.-L. Ma, H.-W. Shen, Compression and Accelerated Rendering of Time-
Varying Volume Data, International Computer Symposium Workshop on
Computer Graphics and Virtual Reality, 2000, pp. 82–89.

[5] H.-W. Shen, L.-J. Chiang, K.-L. Ma, A Fast Volume Rendering Algorithm
for Time-Varying Fields Using A Time-Space Partitioning (TSP) Tree, IEEE
Visualization, 1999, pp. 371–377.

[6] R. Westermann, Compression Time Rendering of Time-Resolved Volume Data,
IEEE Visualization, 1995, pp. 168–174.

21



[7] S. Guthe, W. Straßer, Real-time Decompression and Visualization of Animated
Volume Data, IEEE Visualization, 2001, pp. 349–356.

[8] S. Guthe, M. Wand, J. Gonser, W. Straßer, Interactive Rendering of Large
Volume Data Sets, IEEE Visualization, 2002, pp. 53–60.

[9] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, T. Ertl, Hierarchical
Visualization and Compression of Large Volume Datasets Using GPU Clusters,
Eurographics Symposium on Parallel Graphics and Visualization, 2004, pp. 41–
48.

[10] E. Lum, K.-L. Ma, J. Clyne, Texture Hardware Assisted Rendering of Time-
Varying Volume Data, IEEE Visualization, 2001, pp. 263–270.

[11] E. Lum, K.-L. Ma, J. Clyne, A Hardware-Assisted Scalable Solution for
Interactive Volume Rendering of Time-Varying Data, IEEE Transactions on
Visualization and Computer Graphics, 8(3), 2002, pp. 286–301.

[12] H. Yu, K.-L. Ma, J. Welling, I/O Strategies for Parallel Rendering of Large
Time-Varying Volume Data, Eurographics Symposium on Parallel Graphics and
Visualization, 2004, pp. 31–40.

[13] J. Schneider, R. Westermann, Compression Domain Volume Rendering, IEEE
Visualization, 2003, pp. 293–300.

[14] N. Fout, H. Akiba, K.-L. Ma, A. Lefohn, J. M. Kniss, High-Quality Rendering
of Compressed Volume Data Formats, Eurographics/IEEE VGTC Symposium
on Visualization, 2005.

[15] C. T. Silva, J. L. D. Comba, S. P. Callahan, F. F. Bernardon, A Survey of GPU-
Based Volume Rendering of Unstructured Grids, Brazilian Journal of Theoretic
and Applied Computing, 12(2), 2005, pp. 9–29.

[16] P. Shirley, A. Tuchman, A Polygonal Approximation to Direct Scalar Volume
Rendering, San Diego Workshop on Volume Visualization, 24(5), 1990, pp. 63–
70.

[17] P. L. Williams, Visibility-Ordering Meshed Polyhedra, ACM Transactions on
Graphics, 11(2), 1992, pp. 103–126.

[18] M. Weiler, M. Kraus, M. Merz, T. Ertl, Hardware-Based Ray Casting for
Tetrahedral Meshes, IEEE Visualization, 2003, pp. 333-340.

[19] S. P. Callahan, M. Ikits, J. L. D. Comba, C. T. Silva, Hardware-Assisted
Visibility Sorting for Unstructured Volume Rendering, IEEE Transactions on
Visualization and Computer Graphics, 11(3), 2005, pp. 285–295.

[20] S. P. Callahan, J. L. D. Comba, P. Shirley, C. T. Silva, Interactive Rendering of
Large Unstructured Grids Using Dynamic Level-of-Detail, IEEE Visualization,
2005, pp. 199-206.

[21] W. E. Lorensen, H. E. Cline, Marching Cubes: A High Resolution 3D Surface
Construction Algorithm, ACM SIGGRAPH, 1987, pp. 163–169.

22



[22] A. Doi, A. Koide, An Efficient Method of Triangulating Equivalued Surfaces By
Using Tetrahedral Cells, IEICE Transactions Communication, Elec. Info. Syst.,
E74(1), 1991, pp. 214–224.

[23] I. E. Sutherland, R. F. Sproull, R. A. Schumacker, A Characterization of Ten
Hidden Surface Algorithms, ACM Computing Surveys, 6(1), 1974, pp. 1–55.

[24] S. Röttger, M. Kraus, T. Ertl, Hardware-Accelerate Volume Rendering and
Isosurface Rendering Based on Cell-Projection, IEEE Visualization, 2000, pp.
109–116.

[25] V. Pascucci, Isosurface Computation Made Simple: Hardware Acceleration,
Adaptive Refinement, and Tetrahedral Stripping, Eurographics/IEEE VGTC
Symposium on Visualization, 2004, pp. 293–300.

[26] W. Corrêa, J. Klosowski, C. Silva, iWalk: Interactive Out-of-Core Rendering of
Large Models, Princeton University Technical Report TR-653-02, 2002.

[27] H. T. Vo, S. P. Callahan, N. Smith, C. T. Silva, W. Martin, D. Owen,
D. Weinstein, iRun: Interactive Rendering of Large Unstructured Grids, SCI
Institute Technical Report, 2006.

[28] K. Engel, M. Kraus, T. Ertl, High-Quality Pre-Integrated Volume Rendering
Using Hardware-Accelerated Pixel Shading, Eurographics/SIGGRAPH
Workshop on Graphics Hardware, 2001, pp. 9–16.

[29] M. Vannier, J. Marsh, J. Warren, Three Dimensional Computer Graphics
for Craniofacial Surgical Planning and Evaluation, Computer Graphics and
Interactive Techniques, 1983, pp. 263–273.

[30] P. Desgranges, K. Engel, G. Paladini, Gradient-Free Shading: A New Method for
Realistic Interactive Volume Rendering, Vision, Modeling, and Visualization,
2005.

[31] Y. Livnat, X. Tricoche, Interactive Point Based Isosurface Extraction, IEEE
Visualization, 2004, pp. 457–464.

[32] H. Akiba, N. Fout, K.-L. Ma, Simultaneous Classification of Time-Varying
Volume Data Based on the Time Histogram, Eurographics/IEEE VGTC
Symposium on Visualization, 2006, pp. 171–178.

[33] T. J. Jankun-Kelly, K.-L. Ma, A Study of Transfer Function Generation for
Time-Varying Volume Data, Eurographics/IEEE TVCG Workshop on Volume
Graphics, 2001, pp. 51–68.

[34] F. F. Bernardon, S. P. Callahan, J. L. D. Comba, C. T. Silva, Interactive
Volume Rendering of Unstructured Grids with Time-Varying Scalar Fields,
Eurographics Symposium on Parallel Graphics and Visualization, 2006, pp.
51–58.

[35] S. G. Akl, Parallel Sorting Algorithms, Academic Press, Inc., Orlando, 1990.

23


