
Multi-Fragment Effects on the GPU using the k-Buffer

Louis Bavoil∗ Steven P. Callahan∗ Aaron Lefohn† João L. D. Comba‡ Cláudio T. Silva∗
∗ Scientific Computing and Imaging Institute, University of Utah

† Neoptica ‡ Instituto de Informática, UFRGS

Figure 1: Example effects using the k-buffer for multi-fragment processing. The Lucy model (28,055,742 triangles) is rendered with trans-
parency on the left and with translucency on the right. These effects captured 8 fragments per pixel in a single geometry pass and were
rendered with a current hardware implementation that avoids read-modify-write hazards. With our proposed extension to hardware, these
hazards can be automatically avoided and performance improved.

Abstract

Many interactive rendering algorithms require operations on mul-
tiple fragments (i.e., ray intersections) at the same pixel loca-
tion; however, current Graphics Processing Units (GPUs) capture
only a single fragment per pixel. Example effects include trans-
parency, translucency, constructive solid geometry, depth-of-field,
direct volume rendering, and isosurface visualization. With current
GPUs, programmers implement these effects using multiple passes
over the scene geometry, often substantially limiting performance.
This paper introduces a generalization of the Z-buffer, called the
k-buffer, that makes it possible to efficiently implement such algo-
rithms with only a single geometry pass, yet requires only a small,
fixed amount of additional memory. The k-buffer uses framebuffer
memory as a read-modify-write (RMW) pool of k entries whose
use is programmatically defined by a small k-buffer program. We
present two proposals for adding k-buffer support to future GPUs
and demonstrate numerous multiple-fragment, single-pass graph-
ics algorithms running on both a software-simulated k-buffer and
a k-buffer implemented with current GPUs. The goal of this work
is to demonstrate the large number of graphics algorithms that the
k-buffer enables and that the efficiency is superior to current multi-
pass approaches.

Keywords: fragment processing, graphics hardware, visibility or-
dering, blending, volume rendering, transparency, CSG

1 Introduction

Raster-based graphics algorithms simulate many effects by operat-
ing on multiple fragments in the same pixel. Several existing algo-
rithms keep all the fragments for each pixel [Carpenter 1984; Mark

and Proudfoot 2001; Wittenbrink 2001] so that they can be sorted
and composited in either front-to-back or back-to-front order for
transparency. However, the unbounded memory requirements for
these types of algorithms is a limiting factor for practical applica-
tions.

Recent work by Callahan et al. [2005] proposed the k-buffer—a
fixed size buffer of fragments per pixel that is maintained in GPU
memory. This k-buffer was shown to be effective for sorting and
compositing fragments in the special case of direct volume ren-
dering with current graphics hardware. However, many applica-
tions other than direct volume rendering require access to multiple
fragments simultaneously. Here, we generalize the definition of
the k-buffer to be a pool of fragments per pixel that can be read,
modified, and written at the fragment level. The benefit of the k-
buffer is that it allows fragments to be compared, ordered, blended,
and discarded in a streaming manner. Thus, many effects that nor-
mally require multiple passes over the scene geometry can instead
be streamed through the k-buffer in one pass. Note that in this pa-
per, we refer to a pass as a rendering pass over the scene geometry,
not image processing passes, such as deferred shading, which ren-
der a screen-aligned quadrilateral with a pixel shader. For large
or complex scenes, the geometry passes are much more expensive
than the image processing passes.

Whereas a traditional Z-buffer-based framebuffer saves fragment
results for a single depth per pixel (the front-most fragment), the
k-buffer can save up to k fragments with only a small increase in
memory requirements. By giving access to multiple ray intersec-
tions along a viewing ray, the additional information in a k-buffer
provides algorithms with a more global view of the scene, in turn
opening up a number of new algorithmic possibilities for raster
graphics. For example, the first k fragments per pixel in front-to-
back order can be stored in a k-buffer, effectively performing depth
peeling in a single pass. Since the k-buffer supports programmable
RMW operations, it can also be used to implement a Z-buffer, a
stencil buffer, or arbitrary blending.

The k-buffer can be implemented in current hardware using read-
modify-write (RMW) operations on textures at the fragment level.
Currently, this feature is allowed in hardware, though the results
are undefined. Because of the highly parallel nature of fragment
processing on the GPU, there is no guarantee that artifacts will not

appear from overlapping geometry in screen space. We address
this issue by describing solutions that avoid the race conditions that
can occur with overlapping fragments. This current implementation
is used for validating our k-buffer applications, generating images,
and producing experimental results of the data structure. However,
with a few modifications to the current GPU pipeline, we believe
that full k-buffer support is possible. We propose two such modifi-
cations that would avoid RMW hazards in future hardware.

We believe that the k-buffer has important implications for interac-
tive graphics and visualization because of the number of applica-
tions that it enables or simplifies. The contributions of this paper
include:

• we discuss a general definition of the k-buffer and its imple-
mentation in current hardware;

• we suggest modifications to the current hardware pipeline to
enable full hardware support of a k-buffer on future GPUs;

• we outline efficient single-pass algorithms using the k-buffer
that normally require expensive, multi-pass algorithms using
a traditional Z-buffer; and

• we provide experimental results of our applications of the k-
buffer on current GPUs and compare them to multi-pass ap-
proaches.

The rest of the paper is outlined as follows. Section 2 provides
an overview of related research. Section 3 describes the general
k-buffer framework including future and current hardware imple-
mentations. Section 4 describes specific algorithms for single-pass
effects facilitated by the k-buffer. We provide experimental results
of the k-buffer in Section 5. Finally, we provide a general discus-
sion in Section 6 and conclude our paper in Section 7.

2 Related Work

Single-Pass Approaches. There are many relevant publications on
storing and processing multiple fragments per pixel. The traditional
image-based algorithm for fragment sorting is the Z-buffer [Cat-
mull 1974]. It is a streaming algorithm—for every pixel, the frag-
ment with lowest (or greatest) depth is kept and the others are dis-
carded. The A-buffer [Carpenter 1984] is an extension of the Z-
buffer which stores all the fragments rasterized per pixel in a list,
which is then sorted according to depth. Fragments that belong to
the same surface and that have very close depth values are merged.
This algorithm is not suitable to current graphics hardware because
of its unbounded memory per pixel. The R-buffer [Wittenbrink
2001] is a variation of the A-buffer. All the fragments for the scene
are stored in a single FIFO queue in memory. Although the R-buffer
was designed for hardware implementation, storing a large number
of transparent fragments is not feasible in practice. Another stream-
ing approach for fragment processing is the Z3 algorithm [Jouppi
and Chang 1999]. Z3 uses a fixed number of fragments per pixel
and thus requires less memory than the A-buffer or R-buffer. When
the maximum number of fragments per pixel is reached, it selects
the two closest fragments and merges them together using a set of
heuristics based on pixel coverage. Of these streaming methods,
only the Z-buffer has an actual hardware implementation in current
GPUs. Recently, Eisemann and Décoret [2006] showed that an ap-
proximate partitioning of the scene can be performed in a single
pass on the GPU by voxelizing the scene. Although this technique
is very efficient for volumetric effects such as transmittance shadow
mapping, it does not allow effects which require the exact locations
of the fragments, such as transparency. Of these algorithms, the k-
buffer is most similar to the Z3 architecture because it stores a fixed

number of fragments per pixel. The k-buffer can be seen as a gen-
eralization of Z3 where the storage and insertion of the fragments
has been made programmable.

Multi-Pass Approaches. Due to memory resources on graphics
hardware, multi-pass rendering is often required to achieve many
effects. The F-buffer [Mark and Proudfoot 2001] is very similar
to the R-buffer, except that it does not sort the fragments. The F-
buffer requires semi-transparent surfaces to be rendered in depth or-
der, although it may be possible to sort an F-buffer using a bitonic
sort. Implementations of the F-buffer which require rendering the
whole geometry for every pass are available on ATI’s graphics hard-
ware [Houston et al. 2005]. The original depth peeling algorithm
by Mammen [1984] proposes a solution for sorting fragments by
peeling the layers in depth order in separate passes. A hardware
implementation was more recently described by Everitt [2001].
Depth peeling has been used for rendering order-independent trans-
parency [Everitt 2001; Wexler et al. 2005; Luft and Deussen 2006],
volume rendering [Nagy and Klein 2003; Bernardon et al. 2006],
global illumination [Hachisuka 2005; Mendez et al. 2006], colli-
sion detection [Heidelberger et al. 2003], and multi-layer shadow
maps [Woo 1992; Bavoil et al. 2006]. Kelley et al. [1994] proposed
a hybrid solution that stores four RGBAZ fragments per pixel,
sorted front-to-back, and handles overflow with multiple passes. In
each pass, the four layers are composited into a single layer and
the three remaining layers are used to capture the next fragments.
A recent approach similar to depth peeling is the Vis-Sort algo-
rithm [Govindaraju et al. 2005] which sorts 3D primitives using oc-
clusion queries on the GPU, assuming there are no visibility cycles
and no intersecting primitives. With Vis-Sort, the number of passes
required to composite transparent fragments depends on the disor-
der in the topological sort of the geometry. The k-buffer simplifies
multi-pass approaches by allowing k fragments to be operated on
in a single pass. Since it operates in image-space, it also avoids
problems with visibility cycles and intersecting primitives.

3 The k-Buffer

The k-buffer is a generalization of the traditional Z-buffer-based
framebuffer. Instead of restricting framebuffers to a single depth
value, a single stencil value, and n color values, the k-buffer uses
framebuffer memory as a RMW pool of k entries whose use is pro-
grammatically defined by k-buffer operations. In essence, the recent
addition of multiple render targets (MRTs) to GPUs already allows
multiple fragments to be stored, albeit in textures. We take this
a step further and suggest that the programmable combination of
these fragments is as important as their storage to achieve many ad-
vanced effects in a single pass. The general structure of the k-buffer
algorithms for each fragment f that is rasterized is as follows:

1. Read the k-buffer elements for this pixel from memory. These
values, along with the incoming fragment f , are now available
for processing.

2. Modify the k-buffer elements using f .

3. Write the k-buffer elements back to memory and discard f .

Many effects can be performed using different types of modify op-
erations on the k-buffer values. Generally, these modify operations
fall into two types. The first type is to use the k-buffer to accumu-
late up to k fragments for a post-processing pass such as deferred
shading. Examples of this type of algorithm are depth peeling and
depth partitioning, which can be used to perform effects such as
transparency, translucency, midpoint shadow mapping, constructive
solid geometry, and depth-of-field. The second type is to use the k-
buffer as a fragment stream processor and programmable blender.
An example of this type of algorithm is fragment ordering, which

can be used to perform isosurfacing, direct volume rendering, and
transparency of geometry with large depth complexity.

The first type of algorithm generally requires a fixed number of
fragments to perform the desired effect. The k-buffer is used as
temporary storage of the most significant fragments to be used in
a post-processing pass. These fragments can be rasterized in any
particular order with no change in the final result. However, the
second type of algorithm generally needs to consider all fragments
to achieve the desired effect. In this case, when a new fragment
is inserted, a blending operation is performed and a fragment is
discarded. Thus, the rasterization order of the fragments will af-
fect the output. The k-buffer is capable of sorting a k-nearly sorted
sequence (k-NSS) of fragments. Given a sequence S of fragment
depths, S is a k-NSS if no depth in S is more than k positions out
of place. Therefore, when fragment ordering is required, the ge-
ometry needs to be rasterized in at least a partial order so that the
k-buffer can complete the ordering and blend the results all in one
pass (see [Callahan et al. 2005] for a more formal definition of a k-
NSS). The partial ordering of the geometry occurs in object-space
prior to rasterization. The extent of the ordering that is required is
dependent both on the depth complexity and the available k size.

3.1 Future Hardware Implementation

Complete k-buffer support in hardware would enable fast single-
pass effects without RMW hazards that may occur with our current
implementation. Although the specifics of hardware implementa-
tions are not publicly available, we propose two possible high-level
solutions based upon available information about the current hard-
ware pipeline. In both solutions, we implement the k-buffer as a set
of floating-point renderable buffers, and write to these buffers using
MRTs. The main difference between the two solutions is where we
execute the k-buffer operations (read, modify, and write). The first
solution involves changes at the fragment scheduling stage of the
pipeline and the second solution involves changes at the blending
stage of the pipeline. Figure 2 shows a simplified version of the
GPU pipeline with annotations that specify the areas that require
modification for our hardware proposals.

3.1.1 Fragment Scheduling

In this solution, the k-buffer operations are implemented in frag-
ment programs, and the reads are performed using the connection
between the memory partition and the texture cache. However, this
approach has issues with RMW hazards because current GPUs pro-
cess multiple fragments at the same time per fragment pipeline,
with multiple parallel pipelines. When an output of a fragment is
computed, it is not immediately written to memory, but written to
a reorder buffer which reorders the fragments in the order in which
the primitives have been rasterized. This is necessary for the cor-
rectness of RMW raster ops such as blending and stencil buffer.
This asynchronous write to memory means that if two overlapping
fragments are processed concurrently, and they modify a value of
the k-buffer for the same pixel, one fragment will read an obsolete
value, and overwrite the value of the other fragment with an incor-
rect value. A solution to this issue—like for CPUs—would be to
add dynamic scheduling of fragments to GPUs to detect and avoid
pipeline hazards.

The Unified Render Architecture proposed by ATI in the next-
generation GPU architecture [Doggett 2005] aims for better load
balancing on vertex and fragment shaders by executing them on a
single type of shader unit that are managed by a thread arbiter (or
the fragment dispatcher) . The thread arbiter controls the data being
passed to the shader units, and finds the best possible way to ensure
that all of the shader units are busy. If the thread arbiter can be
configured, or even programmed in the future, it would be possible

Figure 2: The pipeline of the GeForce 6/7 showing where our pro-
posed modifications will occur. Figure adapted from Kilgariff and
Fernando [2005].

to divide fragments into non-overlapping groups that are processed
by different shader units. Similarly to early-Z culling [Kilgariff and
Fernando 2005], the hardware could keep a scoreboard [Thornton
1964] in the form of a coarse image of what fragments are currently
in the pipeline. For a given incoming fragment packet (fragments
are currently packed to perform derivative operations), the score-
board would be checked for overlaps with a fragment already in the
pipeline. If an overlap is detected, the packet could be inserted in
a buffer, and the next packet coming from the rasterizer could be
tested. An overflow of this temporary buffer would result in a stall
until a pipeline becomes available.

The main advantage to k-buffer support at the rasterization stage
is that it leaves the current pipeline relatively unchanged. Another
advantage is that k-buffer programs can use all the features of frag-
ment shaders, including texture accesses (e.g., for lookup tables).
Note that the k-buffer access does not need to be a texture access.
It may be more efficient to implement it as varying arguments like
texture coordinates. In any case, k-buffer programs could mix tex-
ture accesses with k-buffer accesses. However, there are several
disadvantages to this proposed solution. First, by modifying depth
in fragment programs, early-Z tests are invalidated. Since the k-
buffer generally requires all the fragments anyway, this is not a
major issue. Second, the fragment scheduler may adversely affect
performance by reducing the parallelism during fragment process-
ing. Finally, full-screen antialiasing presents some challenges be-
cause fragment shaders operate on pixel fragments while multisam-
ple antialiased blending operations occur on multiple samples per
pixel [Blythe 2006]. To support antialiasing with the k-buffer would
likely require supporting the more costly supersample antialiasing
rather than the more efficient multisample antialiasing.

3.1.2 Programmable Blending

A more promising approach is to implement the k-buffer by allow-
ing programmable blending. Currently, the only RMW operations
on colors in the graphics pipeline are fixed-function per-pixel op-
erations. The k-buffer can be supported by extending RMW capa-
bilities using blending programs similar to fragment or vertex pro-
grams. Specifying different k-buffer applications could then occur

(a) (b)

Figure 3: Artifacts that appear in our current implementation due to
hazards. (a) With the original mesh layout. (b) Sorting the triangles
with a depth sort by centroid.

with the use of a programmable blender that takes as input the re-
sults of the fragment shader and outputs the values in the k-buffer
for the pixel. Programmable blending has been discussed as a pos-
sible hardware extension in the future [Blythe 2006].

To demonstrate that this model conceptually fits into the current
pipeline, we extended Mesa 6.5 with k-buffer support for pro-
grammable blending. We modified the OSMesa driver, which is a
purely software implementation of Mesa. The following changes
to the existing pipeline were made. In the software rasterizer,
we added a k-buffer mode which changes the behavior of MRTs.
When in this mode, fragments leaving the fragment program are
passed to a programmable blender. A programmable blender is
a specialized fragment program which takes as input the current
pixel in the framebuffer, and the current k-buffer fragments for this
pixel, passing these fragments as 4-float varying arguments. Pro-
grammable blenders are written in ARBfp1 assembly and speci-
fied using a new target GL KBUFFER PROGRAM MESA in place of the usual
GL FRAGMENT PROGRAM ARB. This k-buffer program is then optionally
executed instead of blending. Figure 10c was rendered using this
implementation.

Implementing k-buffers with programmable blending has a number
of benefits over implementing them in the fragment program stage.
First, it does not require texture (random) memory access, which
means the only memory reads are pure stream accesses from the
incoming fragment and the k-buffer. Second, it does not require
scheduling so it would not affect the parallelization of the fragment
pipeline. Third, current caching strategies for pixel tiles are crit-
ical to GPU performance [Hasselgren and Akenine-Möller 2006]
and would still be applicable. Fourth, no cache coherency would
be required between the pixel tile caches and the texture caches.
Finally, multisample antialiasing would still be possible, given that
the k-buffer operates directly on subsamples rather than fragments.
One consideration of this approach is that many compression algo-
rithms are hardcoded for the fixed semantics of each component of
the framebuffer [Hasselgren and Akenine-Möller 2006]. By gener-
alizing the framebuffer, the hardware may no longer know which
chunks of memory can be optimized for depth, stencil, color, etc.

3.2 Current Hardware Implementation

We created an experimental implementation of the k-buffer using
current hardware to test k-buffer applications and demonstrate the
flexibility of the framework. All of the effects and results shown in
this paper were created using this implementation, unless specified
otherwise. Our experimental k-buffer is implemented in OpenGL
as a set of textures that can be read and written to in fragment pro-
grams using MRTs, as described in Section 3.1.1. Since current
hardware does not handle RMW pipeline hazards, artifacts may ap-

(a) (b) (c)

Figure 4: Depth peeling two layers from the dragon dataset. (a)
First layer, (b) Second layer, (c) Transparency using 4 layers.

pear. To perform off-screen rendering into the MRTs with OpenGL,
we use a Framebuffer Object (FBO), which is a collection of logical
buffers such as color, depth, or stencil. Currently, up to four color
buffers can be attached to an FBO and used as MRTs. Algorithms
operating on the k-buffer are currently implemented as fragment
programs on FP32 textures with Z-culling disabled.

If the desired application requires streaming with programmable
blending, one of the color attachments may act as an off-screen
framebuffer, while the other three contain k-buffer entries. Other-
wise, all four available color attachments may be used to store the
k-buffer entries. These entries can be single values (e.g., depth), or
sets of values (e.g., depth, scalar, color) depending on the applica-
tion. Thus, the number of values per entry directly effects the size
of k available for the application. With four MRTs, it is possible
to store up to 16 fragment attributes using RGBA textures. The
precision of these color attachments is application specific, thus by
quantizing the values, it is possible to pack additional k-buffer en-
tries into the color attachments. To minimize the number of at-
tributes stored with each k-entry, we would ideally only need to
store one depth value per entry. The world-space position can be
reconstructed from the depth (either the clip-space depth or the dis-
tance to the eye). From the positions, normals can be estimated
using central differencing so deferred shading can be performed.
Using a lookup table, IDs can also be useful to reduce the number
of attributes stored in the k-buffer.

Our experimental k-buffer reads and writes from the same textures
in each fragment operation. This is available in the current OpenGL
API, even though the results are undefined. In practice, this may
result in RMW hazards due to the parallel nature of GPU archi-
tectures (for example, see Figure 3). To reduce these hazards, we
have developed two heuristics applied to scene geometry prior to
rasterization to avoid screen-space overlaps. Depending on the ap-
plication and scene, these heuristics may be necessary for correct
images using current hardware. Our first heuristic is to sort the
primitives by their centroid depth. This effectively layers the ge-
ometry in screen space, which reduces the likelihood of overlap-
ping fragments in the pipeline simultaneously. For algorithms that
require complete sorting of the fragments, this object-space sorting
is already required, thus the hazards are inherently reduced with-
out additional penalty. Our second heuristic is to batch triangles
and flush the graphics pipeline after each batch by rendering a full-
screen quadrilateral with a GL FALSE color mask. For performance
reasons, we use a simple algorithm to create the batches—triangles
are added to the current batch in order, until a maximum batch size
is reached. Though these heuristics adversely affect performance by
reducing the caching on the GPU and stalling the GPU pipelines,
they demonstrate the ability to overcome the RMW hazards that
occur with the current hardware implementation.

Figure 5: Single-pass transparency by depth peeling with 4 layers
on a subset of the UNC Powerplant dataset (1,946,000 triangles).
All surfaces are semi-transparent with α = 0.5.

4 Applications

Many effects that normally require multiple geometry passes can be
simplified using the k-buffer by simply changing the modify portion
(step 2) of the k-buffer algorithm. In this section, we detail a few of
the many possible applications of the k-buffer.

4.1 Depth Peeling Applications

Depth peeling captures multiple depth layers by stripping the vis-
ible layers of fragments in multiple peeling passes using Z-buffer
tests. The k-buffer makes it possible to perform up to k Z-buffer
tests in a single geometry pass and therefore capture the first k frag-
ments along a viewing ray. Effects that use depth peeling include
transparency, translucency, constructive solid geometry, midpoint
shadow mapping, and volume rendering. A k-buffer can be used
to perform single-pass depth peeling by storing depth-sorted frag-
ments (see Figure 4). The depth values of the k-buffer entries are
initialized with the largest possible depth value. Upon rasterization,
each fragment is inserted into the k-buffer in increasing depth order.
This insertion sort tests the depth of the incoming fragment with the
nearest depth in the sorted k-buffer. If the incoming depth is less
than the nearest depth, it shifts all the elements in the k-buffer, and
sets the nearest fragment to be the incoming fragment. Otherwise,
the second nearest fragment is tested, and so on.

Transparency. In real-time applications, transparency is usually
simulated by compositing fragments in depth order, ignoring refrac-
tion at material interfaces. A common way to do this is to perform
depth peeling to generate fragments in depth order and compos-
ite them into the framebuffer using α-blending [Everitt 2001]. For
simplicity, we use a uniform α , but a non-uniform α can also be
used. Figures 1 and 5 show the results of single-pass transparency
rendering using depth peeling with the k-buffer.

Translucency. Another application of depth peeling with the k-
buffer is rendering translucency effects. We implemented a translu-
cency algorithm that accounts only for absorption and does not sim-
ulate any scattering effects [NVIDIA 2005]. Assuming a bright
ambient light, and ignoring reflection, translucency can be ren-
dered by computing an ambient term Ia using Beer-Lambert’s law:
Ia = exp(−σt l) where σt is the absorption coefficient, and l is the

(a) (b)

Figure 6: Translucency effect on the Happy Buddha (1,087,000 tri-
angles) by depth peeling from the eye with a k-buffer of 8 layers,
attenuating every fragment’s contribution with Fresnel’s terms. (a)
With high absorption coefficient σt and (b) with low σt .

distance that the light travels through the material. The thickness
l can be computed in one pass without the k-buffer on current
hardware by summing the depths of the front and back faces sepa-
rately using additive blending and taking the difference of the sums
[James and Green 2004]. This approach is suitable for comput-
ing thickness, but makes more advanced blending difficult. As an
example, light rays are attenuated based on their incidence angle
with the surface (Fresnel’s effect). For this attenuation, it is com-
mon to use Schlick’s approximation to the Fresnel’s transmittance:
Ft = 1− (1− cosθ)5. These terms can be computed at each frag-
ment and multiplied together using blending in a separate geometry
pass. With the k-buffer, a transmitted intensity can be computed
in a single geometry pass, taking into account both thickness and
Fresnel’s terms. Figure 6 shows the result of depth peeling using
the k-buffer, with two absorption coefficients.

Constructive Solid Geometry. Many complex shapes can be eas-
ily represented using constructive solid geometry (CSG). CSG op-
erations on arbitrary objects can be represented as a boolean func-
tion, which is true for a point inside the new object and false oth-
erwise. To render a CSG object with a boolean function, Kelley et
al. [1994] use a front-to-back depth ordering and encode the CSG
function using a lookup table. With current programmable pixel
shaders, the CSG function can be evaluated efficiently without the
need of lookup tables. To perform CSG, we use our single-pass
depth peeling to capture all the fragments of the scene. In the k-
buffer, we store a linear depth and an object ID for each fragment.
In a post-processing pass, the fragments are traversed from front-to-
back for each pixel. For each valid fragment, the state of the object
(inside or outside) is updated. The first time the boolean function
returns true, the depth of the fragment is stored and used in a de-
ferred shading pass to construct normals and shade the object using
central differencing [Livnat and Tricoche 2004]. Figure 7 shows
the results of a CSG operation using the k-buffer.

4.2 Depth Partitioning Applications

Similarly to depth peeling, the k-buffer can also be used to parti-
tion fragments into multiple depth ranges using a single rendering
pass. Rather than storing the first k fragments along a ray like in
depth peeling, depth partitioning keeps one fragment in each depth
partition. One effect that can be achieved with depth partitioning is
depth-of-field by separating foreground fragments from the back-
ground fragments, and keeping the nearest fragment to the eye in
each partition. Up to k depth ranges can be captured in a single
pass using the k-buffer. This is done by comparing the depth of
an incoming visible fragment with constants that define the ranges

(a) (b) (c)

Figure 7: Example of a CSG operation using the k-buffer. (a) A =
sphere, (b) B = cube, (c) A∩B.

and placing the fragments in their correct range location in the k-
buffer. Other effects based on depth partitioning, such as transmit-
tance shadow maps, soft shadows, and refraction have been demon-
strated by Eisemann and Décoret [2006].

Depth-of-Field. Given depth partitions of the visible fragments,
depth-of-field can be performed on the GPU by applying a depth-
based blur that is weighted by the distance from the focal plane
(i.e., a spatially-varying blur based on the circle-of-confusion). The
drawbacks of this approach are that fragments from the background
bleed onto the foreground and a sharp background cannot be seen
behind blurry, transparent foreground objects. These problems
are largely ameliorated by partitioning the scene into foreground,
midground, and background depth layers [NVIDIA 2005; Kass
et al. 2006; Lefohn 2006], blurring each layer separately, and com-
positing them together. This approach requires rendering the entire
scene three times with different near and far planes. With the k-
buffer, we can route the foreground, midground, and background
fragments into separate buffers based on their depth values. These
buffers can then be blurred separately and composited into the final
image. Figure 8 shows an example of depth-of-field with transpar-
ent foreground, using the k-buffer.

4.3 Sorting and Blending Applications

For effects such as transparency or volume rendering that require
visibility ordering with arbitrary depth complexity, depth peeling
a fixed number of layers may not be sufficient to render the ef-
fect properly. In case of overflow of the k-buffer, one can either
merge fragments in the k-buffer [Carpenter 1984; Jouppi and Chang
1999], or blend one fragment with the current color buffer [Calla-
han et al. 2005]. This later blending approach assumes that the
fragments are generated in a front-to-back, nearly-sorted order.

To perform programmable blending with the k-buffer, a RMW
framebuffer is required for compositing. For every fragment that
is rasterized, the following steps take place. First, the k-buffer en-
tries are read and compared along with the incoming fragment to
find the two fragments closest to the eye (f1 and f2). A value such
as color or depth is then computed using f1, f2, and the distance
between them. This value is then composited into the framebuffer.
Finally, the f2 fragment along with the unused fragments are writ-
ten back into the k-buffer and the f1 fragment is discarded.

To ensure that the fragments are rasterized in a nearly-sorted visi-
bility order, some object-space sorting is usually required. We per-
form the object-space sorting using a Least Significant Digit Radix
Sort [Sedgewick 1998], which operates in linear time on floating
point values with a simple float-to-int conversion [Callahan et al.
2005]. The k-buffer finalizes the order in image-space by select-
ing the fragments closest to the eye from the k stored fragments.
For scenes with many objects of low depth complexity, this object-
space ordering can be accomplished by simply rendering these ob-
jects in depth order. For scenes with complex objects, the render-

(a) (b)

Figure 8: Single-pass depth-range partitioning. Partitioning the
fragments into foreground and background is necessary to render
a sharp background underneath a blurry foreground. (a) Without
depth-of-field (pinhole camera). (b) With foreground depth-of-
field. The foreground, midground, and background are rendered
into three separate images using an RGBZ k-buffer.

able primitives may require sorting. A less conservative approach
can be used in most scenes by sorting clusters of triangles. The
depth of the centroid of the primitive or set of primitives is used
to perform the ordering after every view transformation that effects
the depth order.

Depending on the k-buffer size and the quality of the primitives,
this approximate order results in a correct visibility ordering for the
fragments. Scenes with geometry that overlap in depth and have
high variance in size or aspect ratio can result in artifacts due to
incorrect visibility order with a small k. There are several ways to
avoid these artifacts. First, using a larger k-buffer will lower the
chances of incorrect fragment ordering. Second, subdividing the
triangles such that the centroids are better approximations of the
depth of the fragments will improve the order and reduce inaccura-
cies. This is done by prioritizing the triangles based on their aspect
ratios (i.e., how long and skinny they are), which is directly related
to the error they will cause with centroid sorting. Then, the triangles
are recursively subdivided until a triangle budget is reached. Subdi-
vision schemes on a single triangle, such as Loop subdivision [Loop
1987], can propagate bad aspect ratios to subdivided triangles. In-
stead, we use a new subdivision scheme that reduces the total area
of triangles with bad aspect ratios, while maintaining the original
vertex locations of mesh. Given a triangle, our scheme first finds
the longest edge emax with length lmax and the shortest edge emin
with length lmin. A new vertex is then added on emax at a distance
min(lmin, lmax/2) from the vertex connecting emax and emin. The re-
sulting subdivided triangles are recursively subdivided as needed.
Figure 9 demonstrates this subdivision on one triangle.

Isosurface Rendering. A texture-based approach for isosur-
face rendering of tetrahedral meshes was proposed by Weiler et
al. [2003] which projects the tetrahedra in screen-space to trian-
gles. The method uses a texture lookup to determine if interpolated
texture coordinates correspond to an iso-value or not. Using the
k-buffer, similar isosurface extraction can be performed directly on
the triangles that compose the mesh. Our technique extracts the iso-

Figure 9: Our triangle subdivision scheme for reducing the total
area of triangles with bad aspect ratios.

(a) (b) (c)

Figure 10: Volume visualization with the k-buffer. (a) Isosurface
extraction of the Fighter tetrahedral mesh (1,403,504 tetrahedra).
(b) Isosurface extraction of the Bullet007 MPM dataset (549k par-
ticles) with a constant point size. (c) Direct volume rendering of the
Heart dataset using our custom k-buffer extension of Mesa.

surface without the need to update a texture for each iso-value, and
works with an arbitrary number of isosurfaces. For each fragment,
the first and second nearest fragments to the eye are selected using
the k-buffer. This forms a ray segment. If the iso-value is in the
range of the current ray segment, then the depths of the fragments
are linearly interpolated to find the depth of the isosurface on this
ray segment, and the generated fragment goes through a depth test.
(An entry of the k-buffer is used as a depth buffer.) To optimize the
size of the k-buffer, we only store a depth value and a scalar value
with each fragment. The normals are computed in a post-processing
pass using central differencing on the depths [Livnat and Tricoche
2004]. The surface is then shaded using a Lambertian term in eye
space and silhouettes are computed (without additional cost).

This approach works equally well for tetrahedral meshes as well as
for particles (points). To our knowledge, this is the first GPU-based
approach for interactively extracting isosurfaces from particle data.
Figure 10a and Figure 10b show the results of isosurface extrac-
tion from a tetrahedral mesh as well as from Material Point Method
(MPM) simulation particles.

Volume Rendering. The first k-buffer application was for the spe-
cific case of direct volume rendering of unstructured grids [Calla-
han et al. 2005]. Using programmable blending with the k-buffer,
the ray gaps between triangles can be composited into the frame-
buffer for single-pass volume rendering. For each fragment, the
k-buffer is used to find the two fragments closest to the eye. The
scalar values of these two fragments, along with the distance be-
tween their depths, are used to look up the color contribution for
the ray gap in a pre-computed table of volume rendering integrals.
This color is then composited in front-to-back order. See Calla-
han et al. [2005] for more detail. Figure 10c shows an example of
volume rendering of a tetrahedral mesh using the k-buffer. Since
this application uses a texture fetch (table lookup) in the k-buffer
program, it would only be supported by the fragment-shader option
and not by the blending option (cf. Section 3.1).

5 Results

For our experimental results, we rendered several large scenes using
depth peeling with the k-buffer. We used our current experimental
implementation in OpenGL based on RMW textures to demonstrate
the optimal throughput of the k-buffer. The k-buffer attribute pa-
rameters were varied and a 512× 512 viewport was used. To sim-
ulate a hardware k-buffer, we used OpenGL with GLSL shaders,
32-bit RGBA floating-point textures, and no Z culling. Our test ma-
chine was running Linux with an AMD Opteron at 2.2 GHz, 4 GB
RAM, and an NVIDIA GeForce 7900 GTX with driver 1.0-8774.
The scenes were rendered with three different modes: traditional
multi-pass, single-pass with the k-buffer, and single-pass with the

k-buffer Dataset Num Tris MP SP SPwH
4 RGBZ Dragon 871k 41.4 fps 139 fps 3.1 fps
16 Z 10.3 fps 139 fps 2.6 fps
4 RGBZ Powerplant 12.7M 5.1 fps 20.1 fps 0.2 fps
16 Z 1.3 fps 20.1 fps 0.2 fps
4 RGBZ Lucy 28.0M 0.4 fps 1.7 fps 0.2 fps
16 Z 0.1 fps 1.7 fps 0.1 fps

Table 1: Timing results for depth peeling using traditional multi-
pass rendering (MP), single-pass rendering with the k-buffer (SP),
and single-pass rendering with the k-buffer using heuristics to avoid
RMW hazards (SPwH). Several k-buffer layer sizes (4 or 16) and
attribute combinations (RGBZ or Z) are compared.

Budget Total Tris Max Error
1.0× 0.3M 17
1.5× 1.0M 6
6.0× 4.3M 3
12.0× 8.7M 0

Table 2: Subdivision results when volume rendering a tetrahedral
mesh of a heart (359,310 triangles) with a k-buffer of 12 fragments
per pixel at different triangle count ratios (triangle budget relative
to the original number of triangles). Maximum error represents the
maximum disorder over the image in the nearly-sorted sequences
of fragments for every pixel.

k-buffer including heuristics to decrease RMW artifacts. The last
mode was used to generate most of our images and involved sort-
ing all the triangles by their centroid on the CPU and batching them
in sorted order with at most 32 triangles per batch. In all cases, our
timing results represent the average framerates observed when ren-
dering the scene without deferred shading (see Table 1). When the
pipeline is vertex limited, we get a linear speedup with respect to
geometry passes.

In addition to timing statistics, we performed an analysis of the effi-
ciency of our proposed subdivision scheme for improving visibility
order on degenerate datasets. We used our software implementation
to compare the maximum error that can occur at increasing subdi-
vision steps. For our experiments, we used a tetrahedral dataset of a
heart that contains many badly formed primitives and a k-size of 6.
Table 2 shows the results of our experiment. These results demon-
strate that object-space manipulation of the geometry can minimize
the errors resulting from using a small k.

6 Discussion

Using a k-buffer to implement algorithms that operate on multiple
fragments per pixel in a single geometry pass has two important
benefits. First, for large datasets, each rendering pass of the geome-
try in the scene reduces the interactivity of the system substantially.
Thus, effects that require multiple passes can greatly affect the us-
ability of the system. With the k-buffer, this cost can be drastically
reduced by capturing the relevant fragments in the first pass. An-
other important benefit of the k-buffer is that it simplifies the render-
ing of effects. In large rendering engines, each effect that is incor-
porated will add to the complexity of the code. With the k-buffer,
all of the raster operations are encapsulated inside a single k-buffer
shader, rather than having part of it controlled by fixed functions in
the application and other parts controlled by shaders. This makes
the shaders self-contained, and simplifies effect development.

A first step toward supporting a programmable k-buffer in GPUs
could be a simple depth peeling raster operation for MRTs. This op-
eration could be implemented as a set of depth and associated color
buffers (i.e., multiple depth buffers). At each pass, these buffers
would be filled in front-to-back order with the layered fragments

using an insertion sort. This approach would be much simpler
than a full k-buffer, because it does not require programmability.
Instead, it would simply be enabled by the user in the API (e.g.,
GL DEPTH PEELING). It could also possibly allow early-Z tests by com-
paring with all the stored depth values. Since many of the effects
described in this paper can be performed with depth peeling, this
change would have a high impact at a relatively low cost.

DirectX 10 [Blythe 2006] enables single-pass object-space depth
partitioning by computing a render target index in a geometry
shader. It can also perform fragment-level depth range culling dif-
ferently for each render target using one viewport per render target.
However, in this case, the geometry may need to be rasterized once
per depth partition. The advantage of the k-buffer is that it only
needs the geometry to be rasterized once. Geometry shaders may
ease the need for deep k-buffers for visibility ordering by allowing
the degenerate triangles to be split recursively on the hardware. The
subdivided triangles could then be sorted on the CPU or the GPU,
and finally rendered using image-space sorting and blending. De-
termining the trade-off between subdivision and k size needs to be
addressed when these features become available.

7 Conclusions

In this paper, we have provided a definition of the k-buffer, a gener-
alization of the traditional Z-buffer framebuffer. We describe the k-
buffer data structure, operations on it, its implementation on current
hardware, and two proposals for future hardware implementations.
The k-buffer reduces many multi-pass algorithms to a single geom-
etry pass, and our experimental results for a number of these effects
show the performance advantage of the approach. By providing ac-
cess to multiple ray intersections along a viewing ray, the k-buffer
provides algorithms with a more global view of the scene, opening
up a number of new algorithmic possibilities for raster graphics.

In the future, we are interested in a more theoretical foundation that
describes the relationship between triangle subdivision and sorting
using a fixed-size network. In particular, it would be useful to know
the amount of geometry processing for a given k that is required for
a complete fragment sort.

Acknowledgments. The authors thank Milan Ikits, Carlos Schei-
degger, and Mathias Schott for ideas and useful discussion; John
Owens, Ken Moreland, and Naga Govindaraju for comments on
the manuscript; and ATI and NVIDIA for donated hardware. The
work of Louis Bavoil, Steven Callahan, and Cláudio Silva has
been supported by the National Science Foundation under grants
CCF-0401498, EIA-0323604, OISE-0405402, IIS-0513692, CCF-
0528201, and OCE-0424602, the Department of Energy, an IBM
Faculty Award, the Army Research Office, and a University of Utah
Seed Grant. The work of João Comba is supported by a CNPq grant
478445/2004-0.

References

BAVOIL, L., CALLAHAN, S., AND SILVA, C. 2006. Robust soft shadow mapping with
depth peeling. Tech. Rep. UUSCI-2006-028, SCI Institute, University of Utah.

BERNARDON, F. F., COMBA, J. L. D., PAGOT, C. A., AND SILVA, C. T. 2006.
GPU-based tiled ray casting using depth peeling. Journal of Graphics Tools 11.3,
1–16.

BLYTHE, D. 2006. The Direct3D 10 system. ACM Trans. Graph. 25, 3, 724–734.

CALLAHAN, S. P., IKITS, M., COMBA, J. L. D., AND SILVA, C. T. 2005. Hardware-
assisted visibility sorting for unstructured volume rendering. IEEE Transactions on
Visualization and Computer Graphics 11, 3, 285–295.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface method. In Com-
puter Graphics (Proceedings of SIGGRAPH 84), vol. 18, 103–108.

CATMULL, E. 1974. A Subdivision Algorithm for Computer Display of Curved Sur-
faces. PhD thesis, Dept. of Computer Science, University of Utah.

DOGGETT, M. 2005. Xenos: XBox360 GPU. Eurographics 2005 Slides.

EISEMANN, E., AND DÉCORET, X. 2006. Fast scene voxelization and applications.
In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 71–78.

EVERITT, C. 2001. Interactive order-independent transparency. Tech. rep., NVIDIA
Corporation.

GOVINDARAJU, N. K., HENSON, M., LIN, M. C., AND MANOCHA, D. 2005. Inter-
active visibility ordering and transparency computations among geometric primi-
tives in complex environments. In ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, 49–56.

HACHISUKA, T. 2005. High-quality global illumination rendering using rasterization.
In GPU Gems 2, M. Pharr, Ed. Addison Wesley, ch. 38, 615–633.

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2006. Efficient depth buffer com-
pression. In Graphics Hardware 2006, 103–110.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. H. 2003. Real-time volu-
metric intersections of deforming objects. In Vision, Modeling, and Visualization,
461–468.

HOUSTON, M., PREETHAM, A. J., AND SEGAL, M. 2005. A hardware F-buffer
implementation. Tech. Rep. CSTR 2005-05, Stanford University.

JAMES, G., AND GREEN, S. 2004. Real-time animated translucency. (GDC 2004
Slides).

JOUPPI, N. P., AND CHANG, C.-F. 1999. z3: an economical hardware technique for
high-quality antialiasing and transparency. In Graphics Hardware 1999, 85–93.

KASS, M., LEFOHN, A., AND OWENS, J. D. 2006. Interactive depth of field using
simulated diffusion. Tech. Rep. 06-01, Pixar Animation Studios.

KELLEY, M., GOULD, K., PEASE, B., WINNER, S., AND YEN, A. 1994. Hardware
accelerated rendering of CSG and transparency. In Computer Graphics (Proceed-
ings of SIGGRAPH 94), 177–184.

KILGARIFF, E., AND FERNANDO, R. 2005. The GeForce 6 series GPU architecture.
In GPU Gems 2, M. Pharr, Ed. ch. 30, 471–491.

LEFOHN, A. E. 2006. Glift: Generic Data Structures for Graphics Hardware. PhD
thesis, University of California, Davis.

LIVNAT, Y., AND TRICOCHE, X. 2004. Interactive point-based isosurface extraction.
In Proceedings of IEEE Visualization, 457–464.

LOOP, C. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis,
Department of Mathematics, University of Utah.

LUFT, T., AND DEUSSEN, O. 2006. Real-time watercolor illustrations of plants
using a blurred depth test. In Symposium on Non-Photorealistic Animation and
Rendering, 11–20.

MAMMEN, A. 1984. Transparency and antialiasing algorithms implemented with the
virtual pixel maps technique. IEEE Computer Graphics and Applications 9 (July),
43–55.

MARK, W. R., AND PROUDFOOT, K. 2001. The F-buffer: a rasterization-order FIFO
buffer for multi-pass rendering. In Graphics Hardware 2001, 57–64.

MENDEZ, A., SBERT, M., CATA, J., SUNYER, N., AND FUNTANE, S. 2006. Real-
time obscurances with color bleeding. In ShaderX4: Advanced Rendering Tech-
niques, W. Engel, Ed. Charles River Media, 121–133.

NAGY, Z., AND KLEIN, R. 2003. Depth-peeling for texture-based volume rendering.
In Pacific Conference on Computer Graphics and Applications, 429–433.

NVIDIA. 2005. GPU programming exposed: The naked truth behind NVIDIA’s
demos. (SIGGRAPH 2005 Slides).

SEDGEWICK, R. 1998. Algorithms In C, third ed. Addison-Wesley, 298–301 and
403–437.

THORNTON, J. E. 1964. Parallel operation in the Control Data 6600. 32–39.

WEILER, M., KRAUS, M., MERZ, M., AND ERTL, T. 2003. Hardware-based view-
independent cell projection. IEEE Transactions on Visualization and Computer
Graphics 9, 2, 163–175.

WEXLER, D., GRITZ, L., ENDERTON, E., AND RICE, J. 2005. GPU-accelerated
high-quality hidden surface removal. In Graphics Hardware 2005, 7–14.

WITTENBRINK, C. 2001. R-buffer: A pointerless A-buffer hardware architecture. In
Graphics Hardware 2001, 73–80.

WOO, A. 1992. The shadow depth map revisited. In Graphics Gems III. 338–342.

