Looking at both the Present and the Past to Efficiently
Update Replicas of Web Content

Luciano Barbosat Ana Carolina Salgado* Francisco de Carvalho?
Jacques Robin* Juliana Freiret

+School of Computing
University of Utah
{lbarbosa,julianay@cs.utah.edu

ABSTRACT

Since Web sites are autonomous and independently updated, appli-
cations that keep replicas of Web data, such as Web warehouses
and search engines, must periodically poll the sites and check for
changes. Since this is a resource-intensive task, in order to keep the
copies up-to-date, it is important to devise efficient update sched-
ules that adapt to the change rate of the pages and avoid visiting
pages not modified since the last visit. In this paper, we propose
a new approach that learns to predict the change behavior of Web
pages based both on the static features and change history of pages,
and refreshes the copies accordingly. Experiments using real-world
data show that our technique leads to substantial performance im-
provements compared to previously proposed approaches.

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Web-based services

General Terms

Algorithms, Design, Experimentation

Keywords

indexing update, machine learning, update policy

1. INTRODUCTION

Several applications, including search engines and cache servers,
keep replicas or summaries (e.g., indexes) of Web content [17,
11]. Since Web sites are autonomous and independently updated,
these applications need to periodically poll the sites and check for
changes. A common (and simple) mechanism for refreshing the
replicas is to revisit all documents stored at the same frequency,
in a round-robin fashion. This is a very costly operation, and for
applications that keep a large number of replicas, it may not be pos-
sible to refresh all pages at a reasonable interval so as to guarantee

*Work done while the author was a master student at the Centro de
Informatica, Universidade Federal de Pernambuco.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WIDM’05, November 5, 2005, Bremen, Germany.

Copyright 2005 ACM 1-59593-194-5/05/0011 ...$5.00.

1Centro de Informatica

Universidade Federal de Pernambuco

75

{acs,fatc,jri@cin.ufpe.br

freshness. Take for example search engines: studies show that not
only do search engines return a high-percentage of broken (obso-
lete) links, but it may also take them several months to index new
pages [13, 14].

Since different kinds of content are modified at different rates,
it is wasteful to revisit all pages at uniform intervals. A more ef-
ficient strategy is to adopt a non-uniform refresh policy and revisit
Web pages according to their change rate, i.e., pages that are mod-
ified more often should be visited more frequently than those with
smaller change frequency. Techniques have been proposed that use
the observed change history of a page to predict its change rate [4,
9]. Although the historical behavior of a page is a good indicator
of its future behavior, when a page is first visited, no information
is available information about its change pattern. Thus, these ap-
proaches have an important limitation: since it takes time to learn
the change pattern of a page, they fall back to the uniform update
policy while the history is constructed. As a result, newly acquired
pages can quickly become stale.

In this paper we address this problem by taking into account both
the history and the content of pages in order to predict their be-
havior. When a page is first accessed, the prediction is based on
its content. For subsequent accesses, we devise a novel strategy
to estimate the change rate based on historical information which
derives accurate predictions by quickly adapting to the observed
change history.

We evaluate our approach using a real Web data. We actively
monitored84,699 pages from the most popular sites in the Brazil-
ian Web for 100 days. Our experimental results indicate that our
technique it makes better use of resources and keeps the replicas
fresher than strategies previously proposed in the literature.

2. RELATED WORK

Several works have addressed the problem of Web-replica main-
tenance. Brandman et al. [1] proposed a server-side approach, where
the Web server keeps a file with a list of URLSs and their respective
modification dates. Before visiting a site, a crawler downloads the
URL list, identifies the URLs that were modified since its last visit,
and retrieves only the modified pages. This approach is very effi-
cient and avoids waste of Web server and crawler resources, but it
has a serious drawback in that it requires modifications to the Web
server implementation. As a result, its effectiveness depends on the
adoption of this mechanism by Web sites.

Client-side techniques (see e.g., [4, 9, 7]) make no assumptions
with respect to server functionality. Compared to server-side so-
lutions, they incur substantially higher overheads, as they need re-
trieve all pages and compare them against the replicas, as opposed
to just retrieving the pages that are marked as modified since the
previous visit. Different techniques have been proposed which aim

to predict the change rate of pages based on their history. Cho and
Molina [4] proposed an incremental Web crawler that uses statis-
tical estimators to adjust revisit frequency of pages based on how
often the page changes. Edwards et al. [9] used linear programming
to improve replica freshness. Cho and Ntoulas [7] extract samples
from data sources (e.g., a Web site) to estimate their change rate
and update the replicas of these sources based on this sampling,
i.e., more resources are allocated to more dynamic sources. Their
experimental results showed that, in the long term, the performance
of the sampling approach is worse than the non-uniform policy [7].

Cho and Molina [5] performed an in-depth study on how to main-
tain local copies of remote data sources fresh when the source data
is updated autonomously and independently. They proposed sev-
eral update policies and studied their effectiveness. To maximize
the overall freshness of the data in the replicated repository, they
showed that the uniform policy is always superior to the propor-
tional (non-uniform) approach. Although overall freshness is max-
imized, their measure penalizes the most dynamic pages which may
not be updated as frequently as they change. Since very dynamic
pages have been found to be accessed more often by users [§8], even
if the overall freshness is maximized, the the perceived quality of
the repository may be low if the uniform refresh policy is used. To
address this limitation, Pandey and Olston [16] proposed a user-
centric approach to guide the update process. During the update
process, they prioritize pages that if updated, maximize the ex-
pected improvement in repository quality. This expectation takes
into account the likelihood that this page is viewed in search re-
sults.

A limitation that is common to all these approaches is that they
base their predictions solely on the page change history. As we
show in Section 4, this leads to resource waste, since during the
learning process many pages are visited unnecessarily. By estimat-
ing the changing behavior using static features of Web pages, our
technique achieves substantially improved performance.

Another factor that contributes to the improved performance of
our approach is a novel strategy for history-based prediction. Un-
like the Bayesian estimator proposed by Cho and Molina [5], our
historic classifier quickly adapts to variations in the change rates
and consequently, it is able to predict the change rate with higher
accuracy (see Section 4).

3. OUR SOLUTION

A natural solution to the problem of updating Web-page replicas
is trying to predict the change rate of pages based on their actual
change history. Unlike previous works, in addition to learning the
dynamic behavior of pages, our approach also learns how static
features of pages influence their associated change frequency. As
illustrated in Figure 1, our solution to the Web-replica update prob-
lem consists of two phases:

e (Phase I) When a page P is first visited, there is no a priori
knowledge about its behavior. The only available informa-
tion are the attributes of P, e.g., file size or number of images.
The Static Classifier relies on these attributes to predict how
fast P changes. The predictions are stored in the Change
Predictions repository.

e (Phase II) The Historic Classifier learns to predict how often
the page P changes based on its change history. During each
subsequent visit to P, historical information is accumulated
in the Change History repository, and based on this informa-
tion, the historic classifier continuously updates the predicted
change rate for P.

76

Both the static and historic classifier try to estimate the average
interval of time at which a given page is modified, which is a real
number. To simplify the learning task, we turn this regression task
(i.e., the approximation of a real-valued function) into a classifi-
cation task by discretizing the target attribute. We create a finite
number of change rate groups, and each page retrieved is assigned
to one of these groups. The non-uniform refresh policy will then
update a page based on the average change rate of the group it be-
longs to.

Crawler

Change
prediction

Historic

Classifier

Page history

Change
History

Figure 1: Two-phase solution to the Web-replica maintenance
problem.

3.1 Building the Training Data Set

In order to train the static classifier and generate the history-
based predictions, we need to obtain a set of pages and their change
history. For our experiments, we selected the 100 most accessed
sites of the Brazilian Web' We performed a breadth-first search on
these sites down to depth 9 (depth 1 is the root), and by limiting
the maximum number of retrieved pages to 500 per level (to avoid
overloading these sites), we gathered 84,699 pages.

For 100 days, we visited each of these pages once a day. To de-
tect changes between visits, the checksum of current page (without
html tags) was generated by MD5 algorithm [15] and compared
against the checksum of the replica stored in our local repository.
Note that our history information is incomplete: we have no in-
formation about the behavior of these pages before the monitoring
started; and since the pages were visited once a day, if they changed
more than once daily, this information was not captured.

3.2 Creating Change Rate Groups

As discussed above, we turn the regression task of estimating
the change rate of pages into classification task by defining a finite
number of change rate groups. As we are discretizing the attribute
that represents the groups of classification, we performed this task
using an unsupervised discretization. We selected 56,466 pages
from our repository, and estimated the change rate of each page
using the following estimator:

—In(n — X +0.5/n 4+ 0.5) (1)

Here, n is the number of visits to the page and X is the number of
modifications in these 7 visits. This estimator was found to be most
appropriate when pages are actively monitored at regular intervals
and the change history is incomplete [6].

'This information was obtained from the Ibope E-Ratings Institute
— http://www.ibope.com.br.

50000 50000

1%} (%]

240000 % 40000

©

= 30000 2 30000

o o

s 20000 5 20000

o Qo

£ 10000 ,—l E 10000

> =z

o4 0
1.96 87.94 19 31.27 96.89
Average change frequency Average change frequency
(a) 2 clusters (b) 3 clusters

50000 40000

g g

& 40000 — % 30000

2 30000 — =2

5] o 20000

g 20000 — E

£ 10000 - £ 10000

PSS B s N s N o I B R I o Y Y v N O I

1 311 31.81 96.94 1 3.09 299 68.71 99.33

Average change frequency Average change frequency

(c) 4 clusters

(d) 5 clusters

40000 -

30000

20000 -

10000

Number of pages

P O e I o O o

1 3.02 1544 3396 719 99.48

Average change frequency

(e) 6 clusters

Figure 2: Outputs of the k-means algorithm.

For the unsupervised discretization, we used the k-means clus-
tering algorithm [10]. We ran the k-means algorithm with 2, 3, 4,
5 and 6 clusters. The Figure 2 shows, for different values of k, the
cluster sizes and associated change frequencies. The configuration
with 4 groups was selected to be used by both the static and historic
classifiers. One of the reasons we selected the output with 4 clus-
ters was that it promotes the existence of groups with very dynamic
pages. Since pages that are modified more often are also pages that
are accessed more often [8], it makes sense to prioritize dynamic
content that is most interesting to the users. The output with 4 clus-
ters (Figure 2(c)) is better than 2 (Figure 2(a)) and 3 (Figure 2(b))
because, in these, the most dynamic pages are in only one group
(average change frequency of 1.9), whereas, in the 4, these pages
are distributed in two different clusters with average change fre-
quencies of 1 and 3.11. 'We did not select the configuration with
5 (Figure 2(d)) and 6 (Figure 2(e)) clusters because only groups
with few dynamic pages were generated compared to the configu-
ration with 4 clusters. Besides, the 4-cluster configuration avoids
groups with proportionally few elements. The intuition behind this
choice is that with a larger number of clusters the classifier is not
only more likely to misclassify pages but also the classification task
becomes more expensive.

7

3.3 Learning Static Features

The static classifier learns static features of a page and their re-
lationship to the page’s change behavior. Its goal is to predict, af-
ter seeing a page for the first time, to which change group it be-
longs. Although it may be counter-intuitive that such a relation-
ship exists, recent studies have found that some characteristics of
Web pages are related to their dynamism. For instance, Douglis
et al [8] noted that dynamic pages are larger and have more im-
ages. Brewington and Cybenko [2] observed that the absence of
the LAST-MODIFIED information in the HTTP header indicates
that a page is more volatile than pages that contain this informa-
tion.”> Page features that can be learned by the static classifier
include: number of links; number of e-mail addresses; existence
of the HTTP header LAST-MODIFIED:; file size in bytes (without
html tags); number of images; depth of a page in its domain (a
domain represents, for instance, for the site www.yahoo.com every
page in *.yahoo.com) and the directory level of the page URL in re-
lation to the URL root from the Web server (e.g., www.yahoo.com
is level 1, www.yahoo.com/mail/ level 2, and so on).

This header indicates the last time a page was modified. It is
mainly used by proxy cache servers to verify if a page was changed
since the last time that it was stored in the cache. The absence of
this header can be interpreted to mean that the page is so dynamic
that it is not worthwhile to cache it.

Algorithms Error test rate | Classification time
J48 without pruning 11.9 241s
J48 postpruning 10.7 1.63s
NaivesBayes 40.5 120.5s
IBk with k=1 11.27 4393.15s
IBk with k=2 11.88 6335.49s

Table 1: Results of the execution of the learning algorithms.

Class Visitation | Window Min. Max.

rate size threshold | threshold
one_day 1 day 10 0.3 0.7
one_week 7 days 8 0.3 0.7
one_month 30 days 6 0.3 0.7
greater_month | 100 days 2 0.3 0.7

Table 2: Example of configuration for the historic classifier.

We performed feature selection [10] to derive the feature set for
the static classifier. The feature selection technique used was the
wrapper method, which uses induction algorithms (e.g., decision
tree) to evaluate relevant feature subsets [12], i.e., it conducts a
search in a space of possible subset of features and chooses the
subset that results in the lowest error rate. As a result of this task,
from the features listed above, the only one that was found to have
little or no corrrelation with the change rate was “depth of a page in
its domain”. The relevant features were used to construct the static
classifier.

The discretization step used two-thirds of the monitored pages
to create four change rate classes. Since these groups have dif-
ferent cardinalities, we set the maximum number of pages in each
group to be the cardinality of the smallest group — 5,000 pages.
This prevents classes with more elements to be over-represented in
the training and test data set. If, for example, 90% of these data
belonged to a single class in the test set, the classifier could as-
sign every sample as belonging to this class and its error test rate
would be 0.1, what does not make sense. Thus, the input data for
constructing the static classifier consists of 20,000 pages.

We used WEKA [18] to generate different classifiers for this in-
put set. We built the classifiers using two thirds of this corpus,
and with the remaining one-third, we verified their effectiveness.
For our experiments, we tested the following classification algo-
rithms [10]:

e J48 (decision tree): a decision tree is a flow graph in a tree
structure, in which each internal node represents a test on an
attribute; each branch is the result of this test; and leaf-nodes
represent the target classes. To classify a new observation,
the values are checked against the decision tree. A trace is
performed from the root to the leaf-node, where the sample
is classified;

e NaiveBayes (naive bayes): the naive bayes algorithm is based
on Bayes’ theorem. This algorithm calculates the likelihood
of an instance belonging to a given class based on the distri-
bution of the data in the training set;

e IBk (k-nearest neighbor): the k-nearest neighbor algorithm
is based on analogy learning. The training samples are rep-
resented by n-dimensional numeric attributes. Each sample
is a point in a n-dimensional space, where each dimension is
an attribute. Thus, all the training set samples are plotted in

78

this space. When a new observation is presented, the classi-
fier searches in this space the k closest examples. In the case
of k=1, for instance, the new observation is assigned to the
class of the nearest sample.

These algorithms have been shown to be effective for various learn-
ing tasks; their parameters are easily configured; and they are scal-
able and capable of handling large volumes of data such as required
in our classification task.

In order to compare these classifiers, we take into account both
the error rate and classification time. The error rate on the test-
ing set measures the overall performance of a classifier. Small er-
rors rates lead to improved resource usage and repository freshness.
Only when a page is misclassified, will the crawler visit it in a dif-
ferent rate than the actual change frequency. The classification
time consists of the time it takes to classify all the samples on the
testing set. Especially for repositories that maintain a large number
of replicas (e.g., a Web search engine), if it takes too long to clas-
sify a page, the solution may become infeasible. Thus, it is crucial
to select an efficient classifier.

We tested five distinct configurations for the classification algo-
rithms. The different configurations and their results are shown in
Table 1. The NaiveBayes classifier led to the highest error rate. As
this method assumes that attributes are independent, a possible rea-
son for this result could be the existence of dependencies among
the attributes. The error rate for the two configurations of the IBk
classifier was low, but the classification time was very high. This is
due to the fact that the k-nearest neighbor method stores the whole
training set and builds the classifier model when a new sample is
received, and for this experiment the training set is very large. The
J48 configurations resulted in the best overall performance. Both
the error rate and the classification time were low. Note that the
J48 configuration using postpruning obtained better results than J48
without pruning. This makes sense because the pruning technique
tries to improve the quality of the classifier by removing branches
of the tree that might reflect noise in the training set [10]. As the
J48 classifier with postpruning obtained the best results, we used it
as our static classifier.

3.4 Learning from History

In order to more reliably predict the change rate of pages, it
is necessary to continuously monitor the pages’ change behavior.
Our historic classifier, described in Algorithm 1, infers the be-
havior of a given page based on its change history. It works as
follows. Once the static classifier categorizes the pages into the
change rate groups, these pages are visited using the non-uniform
refresh policy, i.e., according to the average modification rate of
their respective groups. A window size is selected for each group
which determines how often the page will be re-classified — when
the window size is reached for a group (line 2), the page is re-
classified. The classifier verifies how many times the page was
changed (number of changes) and calculates the average number
of changes in these visits (number of changes/window size) (line
4). Finally, based on the average number of changes, the minimum
and maximum change averages threshold for this class, the historic
classifier checks whether a given page really belongs to its current
class or whether it needs to move to lower (lines 5-6) or higher
(lines 7-8) change groups.

Consider, for example, a configuration with 4 change rate groups.
The parameters for each group are given in Table 2. Suppose that
a page belonging to the one_week group changed 6 times after 8
visits (average of changes = 0.75). As the average of changes was
larger than the maximum threshold for this class (0.7), this page is
moved to a higher frequency class, the one_day class. If, on the

Algorithm 1 Historic Classifier

1: Input: Page P, CurrentClass CC, NumberO fChanges NC,
NumberO fVisits NV
{P is the page to be re-classified; CC is the current class of P; N'C is
the number of changes of P; and AV is the number of visits to P}
{Verify if the page needs to be re-classified }
2: if NV == getNumberOfVisits(CC) then
3: WS = getWindowSize(CC){Get the window size of the current
class}
AC =NC /WS {Calculate the average of changes}
{Test if AC is lower than the minimum class threshold }
if AC < getMinimumThreshold(CC) then
moveToLowerClass(P) {Move P to a lower change rate class}
{Test if AC is higher than the maximum class threshold }
else if AC' > getMaxThreshold(CC) then
moveToHigherClass(P) {Move the page to a higher change rate
class}
end if
end if

PN 9 A

,_.
=N

other hand, it had been modified only once (average of changes =
0.125), it would be moved to the one_ month class.

As we discuss in Section 4, a key feature of this algorithm is
that it adapts quickly to the observed change history, preventing
misclassified pages to remain in the incorrect group for too long.

4. EXPERIMENTAL EVALUATION

To verify the effectiveness of our approach (J48+historic), we
compare it against the strategy proposed by Cho and Molina [4].
We selected this as our baseline because it has been shown to lead
to better performance than other strategies [5]. It works as follows.
Initially the pages are classified in a random fashion; in subsequent
visits they use a bayesian estimator to decide in which class a page
belongs based on its change history. A page is assigned to the class
that matches its change history with the highest probability. These
probabilities are updated as the pages are visited. If, for instance, a
page is modified according to the frequency of its class, its proba-
bility of belonging to this class increases, while the probability of
belonging the other classes decreases. Otherwise, the probability of
the original class decreases and the probability of the class which
has a frequency more similar with the change rate of the page in-
creases.

As discussed in Section 3, we actively monitored 84,699 pages
from the 100 most popular sites in the Brazilian web for 100 days.
Two-thirds of these pages were used to train our static classifier
and to obtain the change history for the historic classifier. The re-
maining one-third of the pages was used to measure the error test
rate of each configuration. Recall that a low error rate means the
refresh scheme will visiting the pages in a frequency very similar
to their actual change rates — thus, only a very small percentage of
pages is visited unnecessarily, and the freshness of the repository is
maximized, since it will take less time to update stale pages.

In order to assess the effectiveness of the static classifier, we
compared it against the random classifier. The results are shown in
Table 3. The random classifier leads to a substantially higher error
rate — almost 3 times the error rate of our static classifier. These
numbers indicate that the static classifier leads to a much improved
resource usage than the random classifier.

To better study the effects of the different phases in our ap-
proach in isolation, besides J48-+historic and Random+bayesian,
we examined two additional configurations: our static classifier
followed by Cho and Molina’s bayesian estimator (J48+bayesian);
and the random classifier followed by our historic classifier (Ran-
dom-+historic).

79

Classifier | Error rate
Random 75.22
J48 25.64

Table 3: Error rate of the initial classifiers.

Class Change | Window Min. Max.
frequency size threshold | threshold
Group 0 1 day 3 0.2 0.8
Group 1 3 days 2 0.2 0.8
Group 2 | 31 days 2 0.2 0.8
Group 3 | 96 days 1 0.2 0.8

Table 4: Values used by the historic classifier.

The parameters used by the historic classifier are shown in Ta-
ble 4. The values of change frequency represent the average rela-
tive change frequency of the elements that belong to each of the 4
groups generated in the discretizing task (see Figure 2). The val-
ues for the window size determine the visitation frequency for the
pages in a group. For instance, the change frequency of Group 3 is
96 days; since the window size of Group 3 is 1, pages in this group
will be visited every 96 days (96 times 1). If the value of the win-
dow were 2, the page would be re-visited in 182 days. We ran our
historic classifier with different combinations of window sizes — the
values shown in Table 4 were selected because they led to the best
performance. The bayesian estimator has a single parameter to be
configured: the visitation frequency. The same values of visitation
frequency used by the historic classifier were used by the bayesian
estimator.

Approach Error rate
Random + Bayesian 34.73
Random + Historic 28.33
J48 + Bayesian 37.87
J48 + Historic 14.95

Table 5: Error rates for the composition of the classifiers.

Table 5 shows the error rates for the configurations we experi-
mented with. Our solution (J48-+historic) has the lowest error rate,
roughly half of that of the Random+historic configuration. The ta-
ble also indicates that the historic classifier is very effective: using
either the static or the random classifier with our historic classifier
has a smaller error rate than the configurations that use the Bayesian
estimator. One possible reason for the lower error rate achieved by
the historic classifier is that it adapts faster to the variations in the
page change rates. Using the bayesian estimator, it might take sev-
eral iterations for a page to migrate between classes. Suppose, for
instance, that there are two change frequency groups: one week,
and one month. Suppose too that, at time %o, a given page P be-
longs to the “one week” group with probability of 0.9 and to the
“one month” group with probability 0.1. After one week (to + 7
days), P is visited but is not modified. The probabilities are then
re-computed based on this new observation. Using the bayesian
estimator, the new probabilities are: 0.89 to “one week” and 0.11
to “one month”. In contrast, using the historic classifier, with the
window size of “one week” equals to 1, P would be immediately
moved to a lower change rate group, in this case, to the “one month”

group.

S. CONCLUSION AND FUTURE WORK

In this paper, we propose a new approach to the problem of up-
dating replicas of Web content. Our solution consists of two phases:
when a page is first visited, a decision-tree-based classifier predicts
it change rate based on the page’s (static) features; during subse-
quent Vvisits, an estimator uses the page’s change history to predict
its future behavior. Experiments using actual snapshots of the Web
showed that our solution obtained a substantially improved perfor-
mance compared to other approaches to updating Web data.

There are several directions we plan to pursue in future work.
Notably, we would like to investigate how to obtain additional page
features that can potentially improve the performance of the static
classifier. For example, backlinks and the page rank [3] provide
some indication of a page’s popularity, and are thus intuitively re-
lated to the page dynamism.

REFERENCES

O. Brandman, J. Cho, H. Garcia-Molina, and N. Shivakumar.
Crawler-friendly web servers. ACM SIGMETRICS
Performance Evaluation Review, 28:9-14, 2000.

B. E. Brewington and G. Cybenko. How Dynamic is the
Web? In Proc. of WWW, pages 257-276, 2000.

S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107-117, 1998.

J. Cho and H. Garcia-Molina. The Evolution of the Web and
Implications for an Incremental Crawler. In Proc. of VLDB,
pages 200-209, 2000.

J. Cho and H. Garcia-Molina. Effective page refresh policies
for web crawlers. ACM Transactions on Database Systems,
28(4):390-426, 2003.

6.
(1]

(2]

(3]

(4]

(3]

80

[6] J. Cho and H. Garcia-Molina. Estimating frequency of

change. ACM Transactions on Internet Technology,

3(3):256-290, 2003.

J. Cho and A. Ntoulas. Effective Change Detection Using

Sampling. In Proc. of VLDB, pages 514-525, 2002.

F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate of

Change and other Metrics: a Live Study of the World Wide

Web. In Proc. of the USENIX Symposium on Internetworking

Technologies and Systems, pages 147—158, 1999.

J. Edwards, K. McCurley, and J. Tomlin. An Adaptive Model

for Optimizing Performance of an Incremental Web Crawler.

In Proc. of WWW, pages 106—113, 2001.

J. Han and M. Kambe. Data Mining: Concepts e Techniques.

Morgan Kaufmann Publishers, 2001.

Internet archive. http://www.archive.org.

R. Kohavi and G. H. John. Wrappers for feature subset

selection. Artifical Intelligence, 97(1-2):273-324, 1997.

S. Lawrence and C. L. Giles. Searching the world wide web.

Science, 280(5360):98-100, 1998.

S. Lawrence and C. L. Giles. Accessibility of information on

the web. Nature, 400(6740):107-109, 1999.

The MD5 Message-Digest Algorithm.

http://www.rfc-editor.org/rfc/rfc1321..txt.

S. Pandey and C. Olston. User-Centric Web Crawling. In

Proc. of WWW, pages 401411, 2005.

[17] Webarchive project. http://webarchive.cs.ucla.edu.

[18] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/ ml/weka.

[7

—

(8]

(9]

(10]

(1]
[12]

[13]
[14]
[15]

[16]

