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Abstract. We study the problem of storing XML documents using re-
lational mappings. We propose a formalization of classes of mapping
schemes based on the languages used for defining functions that assign
relational databases to XML documents and vice-versa. We also discuss
notions of information preservation for mapping schemes; we define loss-
less mapping schemes as those that preserve the structure and content of
the documents, and validating mapping schemes as those in which valid
documents can be mapped into legal databases, and all legal databases
are (equivalent to) mappings of valid documents. We define one natural
class of mapping schemes that captures all mappings in the literature,
and show negative results for testing whether such mappings are loss-
less or validating. Finally, we propose a lossless and validating mapping
scheme, and show that it performs well in the presence of updates.

1 Introduction

The problem of storing XML documents using relational engines has attracted
significant interest with a view to leveraging the powerful and reliable data
management services provided by these engines. In a mapping-based XML stor-
age system, the XML document is represented as a relational database and
queries (including updates) over the document are translated into queries over
the database. Thus, it is important that the translation of XML queries and up-
dates into SQL transactions be correct. In particular, only updates resulting in
valid documents should be allowed. To date, the focus of the work in designing
mapping schemes for XML documents has been on ensuring that XML queries
over the documents can be answered using their relational representations. In
this paper, we study the problem of designing mapping schemes that ensure only
valid update operations can be executed.

An important requirement in mapping systems is that any query over the
document must be computable from the database that represents the docu-
ment. In particular, the mapping must be lossless, that is, the document itself
must be recoverable from its relational image. When updates are considered,
one must be able to test whether an operation results in the representation of
a valid document before applying the operation to the database. This amounts
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to checking whether the resulting database represents a well-formed document
(i.e., a tree) and that this document conforms to a document schema. Several
works [4,22] exploit information about a document schema for designing better
mapping schemes; the metric in most of these is query performance, for example,
the number of joins required for answering certain queries. However, to the best
of our knowledge, there has been no work on ensuring that only valid updates
can be processed over relational representations of documents.

1.1 Related Work

There is extensive literature on defining information preserving mappings for
relational databases [17]; our notion of lossless mapping schemes is inspired by
that of lossless decompositions of relations. The incremental checking of rela-
tional view/integrity constraints has also been widely studied [15,12]. Some of
the view maintenance techniques have been extended to semi-structured mod-
els that were precursors of XML [23]. Another related problem, the incremental
validation of XML documents w.r.t. XML schema formalisms, has been studied
in [3,5,19]; we use the incremental algorithms proposed in [3] in this work.

The literature on mapping XML documents to relational databases is also
vast [16]. One of the first proposals was the Edge [14] scheme, a generic approach
that explicitly stores all the edges in a document tree. Departing from generic
mappings, several specialized strategies have been proposed which make use of
schema information about the documents to generate more efficient mappings.
Shanmugasundaram et al. [22] describe three specialized strategies which aim to
minimize data fragmentation by inlining, whenever possible, the content of cer-
tain elements as columns in the relation that represents their parents. LegoDB [4]
is a cost-based tool that generates relational mappings using inlining as well as
other operations [21]; the goal there is to find a relational configuration with
lowest cost for processing a given query workload on a given XML document.
STORED [11] is a hybrid method for mapping semistructured data in which rela-
tional tables are used for storing the most regular and frequent structures, while
overflow graphs store the remaining portions of the semistructured database.
None of these works deals with checking the validity of updates.

Orthogonal to designing mapping approaches is the translation of constraints
in the document schema to the relational schema for the mappings. For instance,
the propagation of keys [9] and functional dependencies [8] have been studied.
Besides capturing the semantics of the original document schema, these tech-
niques have been shown to improve the mappings by, e.g., reducing the storage
of redundant information [8]. However, these works do not consider the transla-
tion of the constraints defined by the content models (i.e., regular expressions)
in the document schema, which is the focus of this work. We note that these
techniques can be applied directly in our method.

Designing relational mappings for XML documents can be viewed as the
reincarnation of the well-known problem of “simulating” semantic models in
relational schemas [1], and there are mapping schemes that follow this “classical”
approach. However, the semantic mismatch between the XML and relational
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models is much more pronounced than in previously considered models. For
example, XML data is inherently ordered; moreover, preserving this ordering
is crucial for deciding the validity of the elements in the document. Mani and
Lee [18] define an extended (yet unordered) ER model for describing XML data,
and provide algorithms for translating these models into relational schemas.

For this study, we had to fix an update language; we settled for a simple
language, as the goal was to verify the feasibility of our approach rather than
proposing a new language. For a discussion on updating XML, see [24].

Contributions and Outline. In Section 3, we provide a formalization of map-
ping schemes as pairs of functions, the mapping and publishing functions, that
assign relational databases to XML documents and vice-versa. We introduce in
Section 3.1 the notion of parameterized classes of mapping schemes, which are
defined by the languages used for specifying the mapping function, the publishing
function, and the relational constraints in the target schema. In Section 3.2 we
introduce XDS: a natural class of mapping schemes powerful enough to express
all, to the best of our knowledge, mapping schemes in the literature. In Section 4,
we characterize mapping schemes with respect to information preservation. In
particular, we define lossless mapping schemes as those that ensure all XML
queries over a document can be executed over its corresponding database; and
validating mapping schemes, which ensure only valid updates can be effected.
We also show that testing both properties for XDS mapping schemes is unde-
cidable. In Section 5 we propose an XDS mapping scheme that is both lossless
and validating, and discuss the incremental maintenance of the constraints in
such mappings in the presence of updates in Section 6.

2 Preliminaries

We model XML documents as ordered labeled trees with element and text nodes.
The root of the tree represents the whole document and has one child, which
represents the outermost element. Following the XML standard [27], the content
of an element node e is the (possibly empty) list of element or text nodes that
are children of e. For simplicity, in an element with mixed content (i.e., element
and text nodes as its children), we replace each text node by an element node
whose label is #PCDATA and whose only child is the given text node. Thus,
each element in the tree has either text or element nodes as its content; also, all
text nodes are leaf nodes in the tree.

More precisely, we define the following. Let I, D be two disjoint, countably
infinite sets of node ids and values.

Definition 1 (XML Document) An XML document is a tuple 〈T, λ, τ, ν〉,
such that T is an ordered tree whose nodes are elements of I, λ : I → D is an
assignment of labels to nodes in T , τ : I → {element, text} is an assignment of
node types to the nodes in T , and ν : I → D is an assignment of values to text
nodes in T (i.e., ν is undefined for a node e if τ(e) �= text).
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We model document schemas as sets of rules which constrain the structure
and the labels of the elements in the document. Such element declaration rules
assign content models to element types. An element type is defined by a path
expression of the form [ci]/li where li is an element label and ci is an optional
path expression specifying the context in which li occurs. We restrict contexts to
be path expressions matching E := a | E/E | E//E, where a is either an element
label or the wildcard ∗ for matching elements of any label. We say an element
is of type ti if it is in the result set of evaluating [ci]/li over the document.
Following the XML standard, a content model is specified by a 1-unambiguous
regular expression [6] of the form E := ε | a | #PCDATA | (E) | E|E | E, E |
E∗ | E+ | E?, where ε represents the empty string, a is an element label, and
#PCDATA represents textual content. Note that this captures all four content
models for XML elements [27].

Definition 2 (Document Schema) A document schema X is a set of element
declaration rules of the form ti ← ri where ti is an element type and ri is a
content model, such that for any document D that is valid with respect to X (as
defined below), for each element e in D, there is exactly one element type ti such
that e is of type ti.

Let e be an element of type ti, and c1, . . . , cn be its (ordered) children; we say
e is valid with respect to rule ti ← ri if the string λ(c1) · · ·λ(cn) matches ri. We
say a document D is valid with respect to a document schema X, denoted D ∈
L(X) if all elements in D are valid with respect to the rules in X corresponding
to their respective types.

Let I, D be two disjoint countably infinite sets of surrogates and constants.
We define relational database as follows:

Definition 3 (Relational Database) Each relation scheme R has a set (pos-
sibly empty) of attributes of domain I, called the surrogate attributes of R, and
a set (possibly empty) of attributes with domain D. Everything else is defined as
customary for the relational model.

Intuitively, renaming node ids in a document does not yield a new document.
Similarly, renaming surrogates in a database does not create a new mapping. In
order to capture these properties, we define:

Definition 4 (Document Equivalence) XML documents D1 =
〈T1, λ1, τ1, ν1〉, and D2 = 〈T2, λ2, τ2, ν2〉, are equivalent, denoted by D1 ≡ D2,
if there exists an isomorphism φ between T1 and T2 s.t. λ1(v) = λ2(φ(v)),
τ1(v) = τ2(φ(v)), and ν1(v) = ν2(φ(v)), for all v ∈ T1.

Definition 5 (Database Equivalence) Two database instances I1, I2 are
equivalent, written I1 ≡ I2 if there exists a bijection on I ∪ D that maps I

to I, is the identity on D, and transforms I1 into I2.

(The notion of database equivalence discussed above has been called OID
equivalence in the context of object databases [1].)
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3 XML-to-Relational Mappings

We define an XML-to-relational mapping scheme as a triple µ = (σ, π, S), where
S is a relational schema; σ is a mapping function that assigns databases to
XML documents; and π is a publishing function that assigns XML documents
to databases. More precisely, let X be the set of all XML documents; we define:

Definition 6 (Mapping Scheme) A mapping scheme is a triple µ = (σ, π, S),
where σ : X → R(S) is a partial function, and π : R(S)→ X is a total function.
Moreover:
1. for all D1, D2 D1 ≡ D2 implies σ(D1) ≡ σ(D2),
2. for all I1, I2 I1 ≡ I2 implies π(I1) ≡ π(I2).

Defining σ to be a partial function allows mapping schemes where the rela-
tional schemas are customized for documents conforming to a given document
schema X [4,22]; in other words, mapping schemes where Dom(σ) = L(X). On
the other hand, requiring π to be total ensures that any legal database (as de-
fined below) can be mapped into a document. Conditions 1 and 2 in Definition 6
ensure that both σ and π are generic (in the sense of database theory [1]): they
map equivalent documents to equivalent databases and vice-versa.

3.1 Parameterized Classes of Mapping Schemes

We define classes of mapping schemes based on the languages used for specifying
σ, S, and π. The power of these languages determines what kinds of mappings
can be specified. For example, some sort of counting mechanism in the mapping
language is required for specifying mapping functions that encode “interval-
based” element ordering [10].

3.2 The XDS Class of Mappings

We now describe one particular class of mapping schemes that captures all map-
pings proposed in the literature. In summary, we use an XQuery-like language
for defining σ, we allow boolean datalog queries with inequality and stratified
negation to be specified in the relational schema, and we use XQuery coupled
with a standard publishing framework such as SilkRoute [13]. We will call this
class of mappings XDS, (for XQuery, Datalog, and SilkRoute).

The Mapping Language. The language consists of XQuery augmented with a
clause sql . . . end for specifying SQL insert statements, and to be used instead
of the return clause in a FLOWR expression. The semantics of the mapping
expressions is defined similarly to the usual semantics of FLOWR expressions:
the for, let, where, order by clauses define a list of tuples which are passed,
one at a time, to the sql . . . end clause, and one SQL transaction is issued per
such tuple. Unlike a query, a mapping expression does not return any values,
and is declared within a procedure, instead of an XQuery function.
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The Relational Constraints. In XDS mapping schemes, each constraint in
the relational schema is a boolean query that must evaluate to false unless the
constraint is violated. We say that a relational instance is legal if it does not
violate any of the constraints. Each of these queries is expressed as a set of
datalog rules, augmented with stratified negation and not-equals. This language
allows easy expression of standard relational constraints such as functional de-
pendencies and referential integrity, while the recursion in datalog can be used
to express, for example, that the children of an element conform to the element’s
content model, as shown in the Edge++ mapping of Section 5.

The Publishing Language. Publishing functions are arbitrary XQuery ex-
pressions over a “canonical” XML view of a relational database. That is, each
relation is mapped into an element whose children represent the tuples in that
relation in the standard way (i.e., one element per column). This is the approach
taken by SilkRoute [13] and XPERANTO [7]. Of course, there are several dif-
ferent “canonical” views (i.e., documents) that represent the same database, as
no implicit ordering exist among tuples or relations in the database.

It is easy to see that fairly complex mapping schemes are possible in the
XDS class. In fact, all mapping schemes that we are aware of in the literature
are in XDS. Below, we give an example of such a mapping scheme.

Example 1. The Edge mapping scheme [14] belongs to XDS and can be de-
scribed as follows. The relational schema S contains the relations (primary keys
are underlined):

Edge(parent : I, child : I, ordinal : D, label : D), Value(element : I, value : D)

The Edge relation contains a tuple for each element-to-element edge in the
document tree, consisting of the ids of the parent and child, the child’s ordinal,
and the child’s label. The Value relation contains a tuple for each leaf in the tree.
The relational schema also contains constraints for ensuring that: there is only
one root element; every child has a parent; every element id in Value appears
also in Edge; and that the ordinals of nodes in the tree are consistent. Note these
constraints are easily expressed as boolean datalog programs.

The mapping function σ is defined by a recursive procedure that visits the
children of a given node, storing the element nodes in the Edge relation and the
text nodes in Value relation:

define procedure map node($e as node){
for $n at $i in $e/*
if ($n instance of element()) then
sql INSERT INTO Edge VALUES (id($e),id($n),$i,name($n)) end;
map node($n);

if ($n instance of text()) then
sql INSERT INTO Value VALUES (id($e),$n) end; }

(: to map the document :)
map node(doc("doc.xml"));
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<a>
<b>foo</b>
mixed

<b>bar</b>
</a>

(a) Document

Edge:
parent child ordinal label

0 1 0 a
1 2 0 b
1 3 1 #PCDATA
1 4 2 b

Value:
element value

2 foo
3 mixed
4 bar

(b) Edge mapping

Fig. 1. Edge mapping of a document.

The id() function used in the procedure above can be any function that
assigns a unique value to each node in the tree; for concreteness, we assume the
function returns the node’s discovery time in a DFS traversal of the tree, and
that the discovery time of the document node (i.e., the node that is the parent
of the root element in the document) is 0. Figure 1 shows a document and its
image under the Edge mapping.

Finally, the publishing function π is defined as follows. The publishing of an
element e is done by finding all its children in the Edge and Value elements
in the “canonical” published views, and returning them in the same order as
their ordinal values. We use the order by clause in the FLOWR expression to
reconstruct the sequence of element and text nodes in the same order as in the
original document.

4 Preserving Document Information

As discussed in Section 1, a mapping-based storage system for an XML document
should correctly translate any query over the document, including updates, into
queries over the mapped data. In this section, we discuss two properties that
ensure that queries and valid updates can always be processed over databases
that represent documents.

The generally assumed notion of information preservation for a mapping
scheme is that it must be lossless; that is, one must be able to reconstruct
any (fragment of a) document from its relational image [11]. More precisely, we
define:

Definition 7 (Lossless Mapping Scheme) A mapping scheme µ = (σ, π, S)
is lossless if for all D ∈ Dom(σ), π(σ(D)) ≡ D.

Informally, losslessness ensures that all queries over the documents can be
answered using their mapped images: besides the naive approach of materializing
π(σ(D)) and processing the query, there are several techniques for translating
the XML queries into SQL for specific mappings and XML query languages [16].
The following is easy to verify:
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Fig. 2. Updating documents and their mapping images.

Proposition 1 The Edge mapping scheme is lossless.

While losslessness is necessary for document reconstruction, it does not en-
sure that databases represent valid documents, nor that updates to representa-
tions of valid documents result in databases that also represent a valid docu-
ments. As an example, consider a mapping scheme for documents conforming
to the schema X : a ← (b|#PCDATA)∗; b ← #PCDATA, and recall the (loss-
less) Edge mapping scheme discussed in Example 1. Figure 1(a) shows a valid
document with respect to X, and its relational representation is shown in Fig-
ure 1(b). It is easy to see that any permissible update (i.e., an update resulting
in a valid document) to the document can be translated into an equivalent SQL
transaction over the document’s representation. However, it is also possible to
update the representation in a way that results in a legal database that does
not represent a valid document with respect to X. For instance, the SQL trans-
action that inserts the tuple (3,4,0,c) into Edge and (4,0,foo) into Value, which
results in a legal database, has no equivalent permissible XML update because it
corresponds to inserting an element labeled c as a child of the second b element,
which violates the document schema.

We define a property of mapping schemes that ensures that all and only valid
documents can be represented:

Definition 8 (Validating Mapping Scheme) µ = (σ, π, S) is validating
with respect to document schema X if σ is total on L(X), and for all I ∈ R(S),
there exists D ∈ L(X) such that I ≡ σ(D).

For simplicity, we drop the reference to the document schema X when dis-
cussing a validating mapping scheme, and just say that a document is valid if
it is valid with respect to X. Intuitively, a mapping scheme is validating with
respect to X if it maps all valid documents to some legal database and if every
legal database is (equivalent to) the image of some valid document under the
mapping. This implies that all permissible updates to documents can be trans-
lated into equivalent updates over their mappings, and vice-versa, as depicted
in the diagram in Figure 2.

We conclude this section by showing that there are theoretical impediments
to the goal of automatically designing lossless and/or validating XDS mappings.
The following results are direct consequences of the interactions of context-free
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languages and chain datalog programs1 [25,26]. The proofs are omitted in the
interest of space and are given in the full version of the paper [2].

Theorem 1 Testing losslessness of XDS mapping schemes is undecidable.

Theorem 2 Testing validation of XDS mapping schemes is undecidable.

5 A Lossless and Validating XDS Mapping Scheme

In this section we introduce Edge++: a lossless and validating mapping scheme in
XDS. The Edge++ mapping scheme is an extension of the Edge mapping scheme
that includes constraints for ensuring the validation property. In this section we
fully describe the procedure for creating a mapping scheme µ = (σ, π, S) given
a document schema X, and show that µ is both lossless and validating with
respect to X.

5.1 The Relational Schema

Recall the definition of relational databases in Section 2. Let I′ = I∪{#}, # /∈ I
(the symbol # will be used for marking elements that have no children); also, let
Q ⊆ D be a set of states, T ⊆ D be a set of type identifiers, and B ⊆ D denote
the set of boolean constants. The relational schema of Edge++ is as follows:

Edge(parent : I, child : I, label : D), FLC(parent : I,first : I′, last : I′),

ILS(left : I, right : I), Value(element : I, value : D), Type(element : I, type : T),

Transition(type : T, from : Q, symbol : D, to : Q, isAccepting : B)

The Edge and Value relations are used essentially as in the Edge mapping
scheme, except that the ordering of the element nodes is not explicitly stored.
Instead, we use the FLC and ILS relations to represent the successor relation
among element nodes that are children of the same parent element (ILS stands
for “immediate-left-sibling” and FLC stands for “first-last-children”). The choice
of keeping the ordering of the elements using the FLC and ILS relations is mo-
tivated by the fact that they allow faster updates to the databases, as we do
not need to increase (resp. decrease) the ordinals of potentially all children of an
element after an insertion (resp. deletion). The constraints that we discuss here
require only that we can access the next sibling of any element, and, of course,
can be adapted to other ordering schemes (e.g., interval-based).

More precisely, the FLC relation contains a tuple for each element e in the
document whose content model is not #PCDATA, consisting of the id of e and
the ids of its first and last children; if e has no content (i.e., no children), a
tuple (se, #, #) is stored in FLC, where se is the surrogate to e’s id. The ILS
relation contains a tuple consisting of the ids of consecutive element nodes that
1 Chain datalog programs seek pairs of nodes x and y in a graph such that there exists

a path x � y whose labels spell a word in an associated language.
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are children of the same parent. Thus, if c1, . . . , cn are the ordered children of
an element e; we have (se, sc1 , scn

) ∈ FLC, and {(sc1 , sc2), . . . , (scn−1 , scn
)} ⊆

ILS. The Type relation contains the types of each element in the document.
Finally, the Transition relation stores the transition functions of the automata
that correspond to the content models in the document schema.

Next, we discuss the two kinds of constraints defined in the relational schema.

Structural Constraints. Similarly to the Edge mapping scheme, the structural
constraints ensure that any legal database encodes a well-formed XML document
(i.e., an ordered labeled tree). We also need to ensure that the ordering of the
element nodes is consistent, and that each element has a type. We note that
these constraints are easily encoded as boolean datalog programs. For instance,
the following constraint ensures that no element that is marked as having no
children is the parent of any other element:

invalid :− FLC(p, #, #), Edge(p, , )

Validation Constraints. The validation constraints encode the rules in the
document schema into equivalent constraints over the relations in S, to ensure
that the document represented by the mapping is indeed valid. For each rule
ti ← ri in the document schema, we define the following datalog program:

reachti(p, #, s) :− FLC(p, #, #), Type(p, ti), Transition(ti, q0, ε, s, ) (1)

reachti(p, c, s) :− Edge(p, c, x), FLC(p, c, ), Type(p, ti), Transition(ti, q0, x, s, ) (2)

reachti(p, c, s) :− reachti(p, x, y), ILS(x, c), Type(p, ti), Edge(p, c, w), (3)

Transition(ti, y, w, s, )

acceptti
(p) :− reachti(p, c, s), FLC(p, , c), Type(p, ti), Transition(ti, , , s, true)

invalidti :− FLC(p, , ), ¬acceptti
(p)

The boolean view invalidti evaluates to true iff there is some element p of
type ti whose contents are invalid with respect to ri. The recursive view reachti

simulates the automaton using the labels of the children of each element p as
follows. The simulation starts with rules (1) or (2); rule (1) applies only if the
element has no content (the constant q0 denote the starting state of the automa-
ton for ri). Rule (3) carries out the recursion over the children of p. Finally, the
acceptti rule checks that the computation is accepting if the state s reached after
inspecting the last child c (note that c could be # if the element has no content)
is accepting.

5.2 The Mapping Function

As in Edge, we define a recursive function that maps all nodes in the document
tree. Besides that, the mapping procedure in Edge++ also assigns types to the
elements in the document. Of course, the types assigned to elements must match
those stored in the Transition relation; for concreteness, we assume that type ti
is represented by the integer i. The mapping of the document is then defined by
the following function shown in Figure 3.
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define procedure map node($e as node){
let $cc := $e/*
for $n in $cc
if ($n instance of text()) then
sql INSERT INTO Value VALUES (id($e), data($e)) end;

else
if ($n instance of element()) then
if count($cc)=0 then (:the element has no children:)
sql INSERT INTO FLC VALUES (id($e),’#’,’#’) end;

else
let $first := $cc[1], $last := $cc[count($cc)]
for $c at $i in $cc
sql INSERT INTO Edge VALUES (id($e),id($c), name($c));

INSERT INTO FLC VALUES (id($e), id($first), id($last));
end;
if ($i > 1) then
let $j := $cc[$i-1];
sql INSERT INTO ILS VALUES (id($c),id($j)) end;

else ()
map node($n);

}
map node(doc("doc.xml"));

(: the following assign the types to elements :)
for $e in $d/t1 sql INSERT INTO Type VALUES (id($e),1) end;
. . .
for $e in $d/tn sql INSERT INTO Type VALUES (id($e),n) end;

Fig. 3. Mapping function for Edge++.

5.3 The Publishing Function

The publishing function π in Edge++ is straightforward. Note that publishing a
single element e of type x is done by visiting all elements in the published view
that have e as parent. In order to retrieve the elements in their original order, we
use a recursive function that returns the next sibling according to the successor
relation stored in ILS. In order to publish a subtree one can recursively apply
the simple method above.

The following is easy to verify:

Proposition 2 Let X be a document schema, then the Edge++ mapping scheme
µ = (σ, π, S) is lossless and validating with respect to X.

6 Updates and Incremental Validation

Any update (i.e., SQL transaction) over an Edge++ mapping succeeds only if
the resulting database satisfies the constraints in the schema (i.e., represents a
valid document). Evidently, testing all constraints after each update is inefficient
and, in most cases, unnecessary [15]. In this section, we discuss efficient ways of
checking the validity of the Edge++ constraints in the presence of updates. We
start by briefly discussing a simple update language for XML documents which
can be effectively translated into SQL transactions over Edge++ mappings.
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6.1 The Update Language

The update language provided to the user has a significant impact on the per-
formance of a mapping-based storage system. In particular, there may be con-
straints in the relational schema that can be dropped if the user is not allowed
to issue arbitrary SQL updates over the mapped data.

Consider the constraint in the Edge mapping scheme discussed in Example 1
that specifies that “every element that appears in the Value relation must also
appear in the Edge relation”. This constraint ensures that every #PCDATA
value stored in the database is the content of some element in the document.
Note that this constraint is necessary only if the user can write arbitrary SQL
update statements that modify the Value relation, but can be dropped if inserting
elements with textual content is always done by a transaction that inserts tuples
in Edge and Value relations at the same time.

We note that it is reasonable to assume the user updates are issued in some
XML update language, and these are translated into SQL transactions in a way
that the “structural” constraints are preserved, so they need not be checked after
each transaction.

Update Operations. To date, there is no standard update language for XML,
and proposing a proper update language is outside the goals of this work; instead,
we use a minimal set of atomic operations, consisting basically of insertions and
deletions of subtrees.

– Append(p,y), where both p and y are elements, results in inserting y as the
last child of p;

– InsertBefore(x,y), where both x and y are elements, results in inserting y
as the immediate left sibling of x; this operation is not defined if x is the
root of the document being updated;

– Delete(x), where x is an element, results in deleting x from the document.

For the Edge++ mapping scheme, it is straightforward to translate the primi-
tive operations above into SQL transactions in a way that preserves structural
validity.

6.2 Incremental Checking of Validating Constraints

The validating constraints in Edge++ mappings are recursive datalog programs
that test membership in regular languages, which is a problem that has been
shown to have low complexity. Patnaik and Immerman [20] show that member-
ship in regular languages can be incrementally tested for insertion, deletion or
single-symbol renaming in logarithmic time. By viewing the sequence of children
of an element as a string generated by the regular expression for that element,
Barbosa et al. [3] give a constant time incremental algorithm for matching strings
to certain 1-unambiguous regular expressions. The classes of regular expressions
considered in that work capture those most commonly used in real-life document
schemas.
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Fig. 4. Updates and incremental validation times.

Essentially, the idea behind the algorithms in [20,3] is to store the paths
through the automata (i.e., sequence of states) together with the strings. Test-
ing whether an update to the string is valid amounts to testing whether the
corresponding path can be updated accordingly, while yielding another accept-
ing path. As shown in [3], this test can be easily implemented as an efficient
datalog program.

7 Experimental Evaluation

We show preliminary experimental results for the incremental maintenance of
the validation constraints as defined in Section 5.1. Our experiments were run
on a Pentium-4 2.5 GHz machine running DB2 V8.1 on Linux. We used several
XMark documents of varying sizes (512KB, 4MB, 32MB, 256MB and 2GB); we
note that the regular expressions used in the XMark DTD follow the syntactic
restrictions discussed in the previous section, and, thus, are amenable to the
simple algorithm discussed.

The implementation used in our experiments uses a more efficient relational
schema than the one discussed in Section 5, which consists of horizontally parti-
tioning the Edge relation based on the type of the parent element in each edge.
That is, for each element type ti, we define Edgeti

(p, c, l):-Edge(p, c, l),Type(p, ti);
the Transition table is partitioned in a similar fashion. Note that this results in
eliminating some of the joins in the validating constraint. The workload in our
experiments consists of 100 insertions and deletions of items for auctions in the
North America region, each performed as a separate transaction. Each element
inserted is valid and consists of an entire subtree of size comparable to those
already in the document, and each delete operation removes one of the items
inserted.

Figure 7 shows the times for executing the insertions, deletions and for in-
crementally recomputing (and updating) the validation constraints. The graph
shows that, in practice, Edge++ can achieve good performance: per-update costs
are dominated by SQL insert and delete operations; and the costs scale well with
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document size, which is consistent with the results in [3]. It is worthy of note
that, in this experiment, all transactions were executed at the “user level”, thus
incurring overheads (e.g., compiling and optimizing the queries for incremental
maintenance of the validating constraints) that can be avoided in a native (inside
the database engine) implementation. Even with these overheads, the cost for
maintaining the validating constraints is roughly 10 times smaller than the cost
of performing the actual update operations.

8 Conclusion

In this paper we have proposed a simple formal model for XML-to-relational
mapping schemes. Our framework is based on classes of mapping schemes de-
fined by the languages used for mapping the documents, specifying relational
constraints, and publishing the databases back as XML documents. We intro-
duced a class of mappings called XDS, which captures all mapping schemes in
the literature. We proposed two natural notions of information preservation for
mapping schemes, which ensure that queries and valid updates over the doc-
uments can be executed using these mappings. We showed that testing either
property for XDS mappings is undecidable. Finally, we have proposed a lossless
and validating XDS mapping scheme, and shown, through preliminary experi-
mental evaluation that it performs well in practice.

We are currently working on designing information preserving transforma-
tions to derive lossless and validating mapping schemes from other such map-
pings. We have observed that virtually all mapping transformations proposed
in the literature (e.g., inlining) can be modified to preserve the losslessness and
validation properties in a simple way. We also hope that our simple formalization
can be used by other researchers for studying other classes of mapping schemes,
using other languages and possibly other notions of document (or database)
equivalence.
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