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Abstract. This paper proposes a novel formulation to model and an-
alyze the statistical characteristics of some types of segmentation prob-
lems that are based on combining label maps / templates / atlases. Such
segmentation-by-example approaches are quite powerful on their own for
several clinical applications and they provide prior information, through
spatial context, when combined with intensity-based segmentation meth-
ods. The proposed formulation models a class of multiatlas segmentation
problems as nonparametric regression problems in the high-dimensional
space of images. The paper presents a systematic analysis of the nonpara-
metric estimation’s convergence behavior (i.e. characterizing segmenta-
tion error as a function of the size of the multiatlas database) and shows
that it has a specific analytic form involving several parameters that are
fundamental to the specific segmentation problem (i.e. chosen anatom-
ical structure, imaging modality, registration method, label-fusion algo-
rithm, etc.). We describe how to estimate these parameters and show
that several brain anatomical structures exhibit the trends determined
analytically. The proposed framework also provides per-voxel confidence
measures for the segmentation. We show that the segmentation error for
large database sizes can be predicted using small-sized databases. Thus,
small databases can be exploited to predict the database sizes required
(“how many templates”) to achieve “good” segmentations having errors
lower than a specified tolerance. Such cost-benefit analysis is crucial for
designing and deploying multiatlas segmentation systems.

1 Introduction and Background

The strategy of segmenting an image using other examples of similar segmenta-
tions has lead to various approaches in a spectrum of clinical applications over
the last two decades. This paper considers segmentation methods, e.g. [1,5,11],
using a combination of (i) a set of template images that depict the anatomy and
(ii) a set of tissue probability maps or segmentations that give, for each template,
the true probability of each voxel belonging to a specific anatomical structure.
A pair comprising a template image and its true segmentation is termed an at-
las. For segmenting structures in biomedical images where boundary parts of
the anatomy are not readily apparent in the image data, atlases can infuse cru-
cial prior information, strongly influenced by anatomical context, and thereby
complement solely-data-driven segmentation methods.
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For segmenting anatomical structures having weakly-visible boundaries, atlas-
based methods leverage information within the spatial configuration of those sur-
rounding structures whose boundaries are well defined in the image. This relies
on the assumption that the geometry (i.e. location, pose, size, and shape) of the
weakly-visible structure is a function of the geometry of these surrounding struc-
tures. Subsequently, atlas-based segmentation methods register pre-segmented
template images to match the target image containing the structure we want
to segment. Assuming reliable matching of the surrounding structures, registra-
tion methods yield a deformation to best match the weakly-visible structure of
interest. Subsequently, template segmentations are deformed to the target.

Large collections of medical images, and associated expert-defined segmenta-
tions, are becoming ubiquitous as public resources, and within specific clinical
practices. This has lead to multiatlas, nonparametric atlas, or label-fusion ap-
proaches [1,2,5,10,11,13,15,16] to segmentation that leverage information in the
entire database of atlases. Multiatlas approaches can exploit methods for fast
selection [18] of a small subset of templates that are most similar to the tar-
get. They independently register the selected templates to the target and, then,
deform database segmentations to the target space. A weighted average [1] of
the deformed segmentations produces a nonparametric estimate of the segmen-
tation of the target. Instead of using the entire database, the carefully selected
subset produces better estimates, as shown for brain [1] and cardiac [5] images.
The proposed theoretical framework and the results shed light on this behavior,
indicating that an optimal subset size depends on the database size.

The spirit of the proposed framework differs significantly from that of meth-
ods focussing on estimating rater-performance parameters (particularly, rater
bias) [17] and the parameters’ confidence intervals [4] or compensating for inter-
voxel label correlations [15]. Unlike such methods, the proposed approach models
and predicts segmentation error as a function of database size and provides per-
voxel confidence measures on the segmentation.

This paper makes many contributions. It proposes a novel statistical non-
parametric regression framework to model a class of multiatlas segmentation
approaches and analyze the convergence behavior of segmentation error with
respect to database size. It shows that the error convergence rate as a func-
tion of database size has an analytic form with parameters fundamental to the
segmentation problem. By measuring these parameters, it characterizes multiat-
las segmentation problems (i.e. chosen anatomical structure, imaging modality,
etc.) and a class of approaches (i.e. registration algorithm, label-fusion algo-
rithm, etc.) in terms of (i) the complexity of the function mapping the geometry
of (clearly-visible) surrounding structures to the geometry of the structure of
interest, (ii) the inherent anatomical randomness in the structure’s geometry,
(iii) number of atlases available in the database, and (iv) some algorithm pa-
rameters. In this way, the framework offers new methods to evaluate the efficacy
of a particular database of atlases, modality, algorithm, etc. It can provide per-
voxel confidence measures for segmentations. We demonstrate that the segmen-
tation error for large database sizes can be predicted using small-sized databases.
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Thus, small databases can be exploited to predict the database sizes required
(“how many templates”) to achieve “good” segmentations having errors lower
than a specified tolerance. Such cost-benefit analysis is crucial for designing and
deploying multiatlas segmentation systems.

2 Methods

This section presents a novel statistical framework, relying on nonparametric
regression, to model and analyze a class of multiatlas segmentation approaches.

Consider the problem of estimating the unknown segmentation for a target
image, using a database of atlases (templates and their segmentations). Treat-
ing each atlas as a member of a family of atlases under constrained diffeomor-
phisms (e.g. constrained under limited deformation norm), we first transform
the database to factor out a diffeomorphism between the geometrical config-
urations of anatomical structures within the target and each template; better
matches of the two geometries would usually lead to better matches of the seg-
mentations. We assume that multiatlas segmentation methods can compute an
optimal smooth diffeomorphism using image registration on the raw intensities
or on derived geometry-capturing features and, later, deform each template and
segmentation, in the database, to the target-image physical space. Thus, we
propose to (i) model multiatlas segmentation as a regression problem where the
independent variable represents the deformed template images and the dependent
variable represents the deformed segmentation images and (ii) analyze the rate
of convergence of the error in multiatlas segmentation with respect to increasing
database sizes to characterize the difficulty for a specific segmentation problem.

2.1 Statistical Modeling and Analysis of Multiatlas Segmentation

Consider a vector random variable F that models a (deformed) biomedical im-
age with V voxels. Observed images f ∈ R

V are drawn from the probability
density function (PDF) P (F ). For a specific anatomical structure in the image,
let S be a V -dimensional vector random variable modeling the (deformed) true
probabilistic-segmentation image. Segmentations s are drawn from P (S). Let
S[v] denote the random variable at the v-th component of S (i.e. voxel v in
image); ∀s∀v, s[v] ∈ [0, 1]. Assume that the joint random variable (F, S) has a
PDF P (F, S) capturing dependencies between images f and segmentations s.

Consider a database aM � {(fm, sm)}m=1,··· ,M ofM atlases, i.e. template im-
ages {fm}m=1,··· ,M paired with their true segmentations {sm}m=1,··· ,M , where
each observed image pair (fm, sm) is drawn independently from the PDF P (F, S).
For a given target image f0 whose true segmentation s0 is unknown, we get an
estimate ŝ0 of the true segmentation, using database aM .

We treat the multiatlas segmentation problem as that of statistical non-
parametric regression [8,14]. Let r(F ) be a regression function of S (depen-
dent variable) on F (independent variable). We choose r(F ) as the regression
function that minimizes the mean squared error (MSE) risk function EP (F,S)
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[‖S − r(F )‖2] = EP (F )

[
EP (S|F )[‖S − r(F )‖2]]. For any target f , the MSE-

minimizing regression function is the conditional expectation r(f) � EP (S|f)[S].
Let r̂(F, aM ) be an estimator of r(F ).

We want to characterize the behavior of conditional-expectation regression
estimators over (i) varying images f ∼ P (F ) and (ii) varying databases aM

comprising M image pairs. Hence, we treat the database as a random variable
AM , assume a joint PDF P (F, S,AM ), and then define a new MSE function:

MSE(M) � EP (F,S,AM )[‖S − r̂(F,AM )‖2] = EP (F )

[
MSE(M,F )

]
, where (1)

MSE(M, f) � EP (S|f)
[‖S − r(f)‖2]+ EP (AM |f)

[‖r(f)− r̂(f,AM )‖2]

+ EP (S,AM |f)
[
2(S − r(f)) · (r(f) − r̂(f,AM ))

]
. (2)

The second term in the MSE(M, f) expression leads to EP (F )EP (AM |F )[‖r(F )−
r̂(F,AM )‖2], which is the mean integrated squared error associated with regres-
sion estimators [14]. We consider P (AM |F ) = P (AM ).

Let r(f)[v] denote the v-th component of r(f) and let r̂(f,AM )[v] denote the
v-th component of r̂(f,AM ). Then, the linearity of expectation gives:

MSE(M, f) =

V∑

v=1

MSE(M, f)[v], where (3)

MSE(M, f)[v] =EP (S|f)
[
(S[v]− r(f)[v])2

]
+ EP (AM |f)

[
(r(f)[v] − r̂(f,AM )[v])2

]

+EP (S,AM |f)
[
2(S[v]− r(f)[v])(r(f)[v] − r̂(f,AM )[v])

]
. (4)

We now analyze all three terms in the expression for MSE(M, f)[v]:

1. For the conditional-expectation regression function r(f), the first term is
the variance of the conditional PDF P (S[v]|f). This term (i) depends on the
inherent (beyond human control) randomness in the segmentation, at voxel
v, given image data f and (ii) is independent of the estimator r̂(f,AM ).

2. The second term relates to the quality of approximation of the estimator
r̂(f,AM ) to the true conditional-expectation regression function r(f). This
term depends on the database sizeM and the characteristics of the marginal
distribution P (F ) and the regression function r(·) in the locality of f [8].
This term equals the sum of the squared bias and variance of the estimator.

3. The third term vanishes because it is equal to
EP (AM )EP (S|AM ,f)[2(S[v]− r(f)[v])(r(f)[v] − r̂(f,AM )[v])] where the inner

expectation is zero (decomposition of random variable S[v]− r̂(F,AM )[v]).

Thus, MSE(M, f)[v] is the sum of the variance of the conditional PDF, the
squared bias of the estimator, and the variance of the estimator:

MSE(M, f)[v] = Var(S[v]|f) + Bias2(r̂(f,AM )[v]) + Var(r̂(f,AM )[v]). (5)
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We now choose a specific regression estimator. A consistent estimator for the
conditional-expectation regression function r(f) is the generalized k-nearest-
neighbor (kNN) estimator [12] r̂(f, aM ):

r̂(f, aM )[v] �
{

M∑

m=1

sm[v]w

(
g(fm, f)

Rk

)}

/

{
M∑

m=1

w

(
g(fm, f)

Rk

)}

, (6)

where g(·, ·) is some distance metric in the space of f , Rk is the distance between
f and its k-th nearest neighbor in the set {fm}m=1,··· ,M , and w(·) : R → R is a
bounded non-negative generalized weight function satisfying

∫
w(u)du = 1 and

w(u) = 0 for ‖u‖ > 1. In this paper, w(u) is constant ∀u : ‖u‖ ≤ 1.
For the class of generalized kNN estimators [12],

Bias(r̂(f,AM )[v]) ≈ φ
(
r(·)[v], P (F ), f,D) (

k/M
)2/D

; (7)

Var(r̂(f,AM )[v]) ≈ ψ
(
w(·), D)

Var(S[v]|f) (1/k), (8)

where (i) D is the dimension of the independent variable; (ii) φ
(
r(·)[v], P (F ), f,

D
)
depends on the values and differential properties of the PDF P (F ) in the

locality of the fixed image f , the local differential properties of the v-th com-
ponent of the true regression function r(·), and dimension D; (iii) ψ

(
w(·), D)

depends on the chosen weight function w(·) and the dimension D. Indeed, the
kNN estimator converges to the true conditional-expectation regression func-
tion asymptotically as the database size M → ∞ and the number of nearest
neighbors k → ∞ at an appropriate rate such that (k/M) → 0.

It is important to note that the rate of convergence of the bias and variance
depends on (i) the dimensionality D associated with the independent random
variable F , (ii) the values and the differential properties of the PDF P (F ) of
images, and (iii) the differential properties of the regression function r(f).

2.2 Practical Interpretation Using the Statistical Analysis

This section leverages the theory described in Section 2.1 to get practically useful
measures of the difficulty of multiatlas segmentation for a specific segmentation
problem. It describes how to empirically characterize the typical behavior of the
regression-based segmentation scheme for an anatomical structure of interest.

Empirically Computing MSE: For a chosen k and database size M , we
propose to empirically compute MSE(M) in Equation 1 by: (i) Monte-Carlo
sampling of target images f to compute EP (F )[·], (ii) for each f , Monte-Carlo
sampling of databases aM , from a large database with size N > M , to compute
EP (AM |f)[·], and (iii) computing the MSE terms at each voxel v and summing
them over all voxels. We repeat this process for a range of M values.

Parametric Form for MSE: When the class of signals F is unconstrained,
D equals the number of image voxels, which is typically very large. However,
consistent with empirical evidence in the signal-processing literature that the
intrinsic dimension [9] of real-world multivariate data is far less than the number
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of variables, we considerD as the intrinsic dimension of the independent variable
(template images) and estimate it empirically. Note that each voxel v can have
a different value for the intrinsic dimension Dv.

Tracing our way back, we (i) substitute Equations (7) and (8) for voxelwise
regression estimator’s bias and variance, respectively, into Equation (5), (ii) sub-
stitute that into Equation (3), and (iii) substitute the resulting equation into
Equation (1). This gives the following parametric forms for the MSEs:

MSE(M)[v] = αv + βv
(
k/M

)4/Dv
+ γv(1/k) = δv + βv

(
k/M

)4/Dv
, where

αv = EP (F )

[
Var(S[v]|F )], βv = EP (F )

[
φ2

(
r(·)[v], P (F ), F,Dv

)]
,

γv = EP (F )

[
Var(S[v]|F )ψ(w(·), Dv

)]
, δv = αv + γv/k. (9)

MSE(M) = α+ β
(
k/M

)4/D
+ γ(1/k) = δ + β

(
k/M

)4/D
, where

α =
V∑

v=1

αv , β ≈
V∑

v=1

βv , γ =
V∑

v=1

γv , δ = α+ γ/k. (10)

These equations captures the characteristics of a specific segmentation problem
and approach through parameters α, δ, β,D, whose significance we describe next:

1. α denotes the intrinsic randomness in the segmentations s as a function of
the image data f . α is independent of the regression estimator and hence is
the lowest possible achievable MSE.
δ closely relates to α and captures the lowest possible MSEs for the chosen
generalized-kNN estimator (i.e. w(·)) and k, which is achieved when the
database size M → ∞. As M → ∞, we make the kNN estimator converge
to the true conditional expectation, by letting k go to ∞ at such a rate so
that (k/M) → 0; in that case, δ → α.
Assuming that f lies in a Euclidean space, at each voxel, ψ

(
w(·), Dv

)
=

c(Dv)
∫
w2(u)du, where c(Dv) is the volume of the unit sphere in Dv dimen-

sions [12]. For the chosen kNN scheme with constant w(·) within the unit
sphere, ψ

(
w(·), Dv

)
= 1, αv = γv = δv/(1 + 1/k), and α = γ = δ/(1 + 1/k).

2. β represents the overall complexity of multiatlas segmentation in terms of
the (i) differential properties of the true regression function r(f) and (ii) val-
ues and differential properties of the image PDF P (F ). For example, r(·) is
harder to estimate when β is increased when: (i) larger gradients and cur-
vatures in r(·) lead to larger values of φ; (ii) around a target f0, low values
of P (F ) make it harder to obtain databases comprising sufficiently-many
templates near f0; (iii) around a target f0, locally-varying P (F ) leads to
databases where the templates near f0 pull the segmentation estimate to-
wards that for the local higher-probability templates.

3. D in the exponent represents the overall intrinsic dimension associated with
the entire anatomical structure. Larger D increases the difficulty of multiat-
las segmentation by requiring estimation of a higher-dimensional regressor.

Parameter Estimation (α, β, δ,D): To estimate parameters δ, β,D (for a
specific segmentation problem and approach) we (i) empirically evaluate
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MSE(Mj) for a range of database sizes Mj (e.g. M1 = 10,Mj+1 =Mj +10) and
then (ii) solve a weighted nonlinear least-squares curve-fitting problem

arg min
δ,β,D

∑

j

Wj‖MSE(Mj)− δ − β(k/Mj)
4/D‖2, (11)

where weightsWj are the computed variances of the squared errors for eachMj .
Interestingly, effects of changing k are absorbed by changes in δ and β, leaving
D unchanged. As described before, for chosen kNN estimator, α = δ/(1 + 1/k).
Parameter estimates for any voxel v are obtained by curve fitting to MSE(Mj)[v].

3 Experiments and Results on a Clinical Database

This section describes some practical considerations and shows results on a large
clinical database. The results demonstrate the validity of the proposed model
for multiatlas segmentation and the utility of the proposed analysis in clinical
applications. Section 3.1 shows that several anatomical structures in the brain
exhibit the parametric trends determined by the model, which in turn shows
that the model is well-suited for real applications. Section 3.2 shows that the
segmentation error for large database sizes can be predicted using small-sized
databases. Thus, small databases can be exploited to predict the database sizes
required to achieve a specified maximum tolerable MSE in segmentation.

Practical Considerations: The proposed formulation is based on the inde-
pendent variable being the deformed templates in the entire database. However,
multiatlas approaches require only a few most-similar templates (k in kNN) and
registration between the target and thousands of templates in a large database
can be very expensive. Thus, this paper uses an extremely-fast approximate
search for similar templates relying on affine registration followed by spatial
pyramid matching on coded geometry-capturing features (canny edges clustered
and coded based on orientation and curvature) [18]. This implicitly induces a
distance metric in the space of deformed images f , underlying kNN regression.
The fast lookup makes multiatlas schemes viable for large databases. Next, we
compute the optimal deformations, between each selected template and the tar-
get, using constrained diffeomorphic registration using [7].

Clinical Database: We evaluate the proposed methods on a large clin-
ical database obtained from the National Alliance for Medical Image Com-
puting (www.na-mic.org) comprising 186 T1 MR brain images (dimensions ≈
256×256×240; voxel size ≈ 13mm3) with expert segmentations for the caudate,
putamen, thalamus, hippocampus, and globus pallidus in both hemispheres.

3.1 Error Convergence in Multiatlas Segmentation in Brain MRI

We selected 20 random target images f . For each f , we performed 50 random
Monte-Carlo simulations of databases aM , ∀M . We chose k = 10. Figure 1(a)
shows MSE values (divided by the average size of the structure in the database),
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(a) (b)

Fig. 1. MSE Convergence for Subcortical Structures in Brain MR images.
(a) The dots and the error bars show MSE(Mj) and the standard deviation, respec-
tively, (divided by the average true size of structures in database) for k = 10. The
parametric fitted curves are shown by solid lines. Table 1 gives the parameter values.
(b) shows MSEs and fitted curves for the caudate (as an example) for varied k.

Table 1. Parameters indicating difficulty of multiatlas segmentation and the under-
lying convergence behavior (of segmentation MSE with increasing database sizes Mj)
for anatomical structures in brain MR images (using 186 atlases)

Parameters Caudate Globus Pallidus Hippocampus Putamen Thalamus

δ: randomness 0.15 0.26 0.20 0.18 0.11

β: complexity 0.03 0.10 0.06 0.08 0.03

D: dimension 10.1 10.0 10.0 10.0 10.0

and fitted curves, for various database sizes. Corresponding structures in the left
and right brain hemisphere structures are combined.

The size-normalized MSE values relate to Dice, both measuring degree of
(dis)similarity relative to size. While the Dice measure takes values in [0, 1], size-
normalized MSE takes values in [0, η] where η is twice the ratio of (i) the size of
the largest structure in the database to (ii) the average size of the structure in the
database. For example, for thalamus segmentation, using the largest database
M = 186, averaged over 20 target images, Dice = 0.91 and MSE = 0.11.

Table 1 shows the parameters underlying the fitted curves. Values for δ (in-
herent randomness) indicate the lowest possible MSE achievable with k = 10
and the chosen generalized-kNN estimator. Values for β (regression complexity)
and D (intrinsic dimension) indicate (i) the size of databases needed to achieve
small MSEs, e.g. MSE closer to δ, and (ii) the amount of benefit, in terms of
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(a) (b) (c) (d)

Fig. 2. Parameter values per voxel for multiatlas hippocampus segmentation from T1
MR images. (a) MR image, sagittal slice with voxels {v}. (b) δv ≡ inherent random-
ness. (c) βv ≡ complexity of regression function. (d) Dv ≡ intrinsic dimension.

a decrease in MSE, obtained for the cost of an increase in database size. Such
cost-benefit analyses are crucial for designing clinical support systems. Interest-
ingly, the range of our estimates for D, for probabilistic segmentations, is similar
to that found for fuzzy digit images [9] and texture [3,6].

The globus pallidus has probably the weakest boundaries and is the most
difficult to segment (for its very small size) leading to the highest values for
MSE, δ, β, D. The hippocampus is the second most difficult to segment probably
because of its elongated thin shape and small size. The thalamus gives the lowest
MSEs probably due to its large size, despite the part of its boundary next to the
gray matter being quite weak.

Figure 1(b) shows MSEs and fitted curves for the caudate (as an example) for
varied k. Consistent with the theory of kNN-estimator convergence (Section 2),
large k leads to lower MSE for large database sizes M , but can increase MSE
for lower M . Indeed, for the kNN estimator to converge asymptotically to the
true conditional expectation, as M increases, k must increase at an appropriate
rate [8]. Thus, Figure 1(b) is consistent with the regression theory in the sense
that the MSE-minimizing k does depend on the database size M .

Figure 2 shows a hippocampus and parameter values associated with curves
fitted to MSE values obtained at each voxel, i.e. without the summation

∑
v(·)

for δ, β in Equation 10. Zero values for MSE and δ for voxels well inside or
well outside the hippocampus indicate the ease of segmentation for such voxels.
Voxels where the segmentation is the most difficult (highest β, D; high δ) lie
near the hippocampus head (near the amygdala; very low contrast) and the tail
(perhaps larger shape variability leads to inaccurate registration). As described
in Section 2.2, for the chosen kNN estimator and k = 10, α = δ/(1+1/k) = δ/1.1.

3.2 Predicting Error Convergence Using Small Databases of Atlases

Figure 3 shows the results of experiments where we first randomly picked 40 at-
lases from the brain database, then computed MSE values forMj = 10, 20, 30, 40
using the 40-atlas database, and finally fitted the parametric curves for these 4
values ofMj . We then compare these fitted curves to the fitted curves in Figure 1
that were obtained using the full-sized database. Figure 3 shows that the curves
using small-sized databases predict the MSEs at large database sizes quite well.
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Fig. 3. Predicting MSE for Large Database Sizes using Small Databases.
MSEs (dot ≡ mean value; error bar ≡ standard deviation) and fitted curves (dashed
lines; error bars ≡ standard deviation on the fitted curve) using small databases (40
atlases) compared with the fitted curves (solid lines) using large databases in Figure 1.

Table 2. Parameters obtained using small-sized databases (each with 40 atlases)
of brain MR images. The numbers indicate the mean and standard deviation (in
parenthesis) of the parameters over different randomly selected 40-sized atlas databases.

Parameters Caudate Globus Pallidus Hippocampus Putamen Thalamus

δ: randomness 0.15 (0.01) 0.26 (0.01) 0.21 (0.01) 0.19 (0.01) 0.11 (0.01)

β: complexity 0.03 (0.01) 0.08 (0.02) 0.05 (0.01) 0.06 (0.01) 0.04 (0.01)

D: dimension 10.1 (0.05) 10.0 (0.03) 10.0 (0.03) 10.1 (0.06) 10.0 (0.02)

Table 2 shows the mean and standard deviation of the parameters estimated
using random 40-sized databases for brain MR images. It shows that these pa-
rameter estimates, using 40-sized databases, are very close to the parameters
estimated using the full 186-sized database in Table 1.

Figure 3 and Table 2 show that the error-convergence curves as well as the
underlying parameters predicted using small-sized databases are a good approx-
imation to those observed using much larger databases. Thus, small databases,
which require fewer expert segmentations and lesser time and effort to construct,
can be exploited to predict the much-larger database sizes required to achieve a
specified maximum tolerable error in segmentation. Such cost-benefit analysis is
crucial for designing and deploying multiatlas segmentation systems, potentially
comprising a few thousand atlases.
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4 Discussion and Conclusions

This paper presents a new statistical modeling and analysis framework for mea-
suring the difficulty of multiatlas segmentation (for a specific anatomical struc-
ture, imaging modality, registration method, label-fusion strategy, etc.) in terms
of the convergence behavior of segmentation error as a function of database size.
It captures these properties using parameters fundamental to the underlying
nonparametric regression and extends the analysis to give per-voxel estimates.
It shows results using a large clinical database. Furthermore, it shows that small
databases, requiring expert segmentations of only a small number of atlases,
can be exploited to make valid predictions of the (much-larger) database sizes
required to achieve a specified maximum tolerable error in segmentation.

Future work will deal with empirically determining how small can atlas
databases be before they start losing their power of predicting MSE conver-
gence for much larger database sizes. Some preliminary evidence indicates that
the prediction needs significantly fewer atlases (perhaps just 15 or 20) than those
used in this paper. Another interesting aspect unexplored in this paper is the
applicability of the proposed framework to anatomical structures outside the
brain where our initial experiments are quite promising.

The experiments in this paper use simple averaging for label fusion even
though the proposed theoretical framework relies on generalized-kNN regres-
sion and thus allows for generalized weighting schemes. Some recent approaches
to label fusion have found that generalized weighting schemes can perform bet-
ter [16]. In the future, the proposed framework can be exploited to analyze
approaches with sophisticated weighting schemes.

Recent works [2,10,13] in multiatlas segmentation have found improvements
in performance by using local averaging approaches where the tissue probability
at a voxel is determined by using only that information in the (registered) at-
lases which lies within the locality of that voxel. The proposed framework can be
extended to model local label fusion by modeling a separate regression problem
at each voxel in the image, i.e. the set of k nearest neighbors can be different at
each voxel and will be determined by local similarities between the target and
the templates, instead of global similarities proposed in this paper. Indeed, this
is an important part of future work. Nevertheless, this paper makes significant
contributions by establishing a brand new principled theoretical framework for
modeling and analysis. Furthermore, this paper shows how the proposed frame-
work coupled with a small set of atlases (requiring few expert segmentations)
can be utilized to predict the much-larger database sizes (“cost”) required to
achieve a specified maximum tolerable error (“benefit”) in segmentation. Such
“cost-benefit” analysis is crucial for designing and deploying multiatlas segmen-
tation systems comprising, potentially, several hundreds or thousands of atlases.
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