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Soft Shadow Maps:
Efficient Sampling of Light Source Visibility
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Figure 1 Our algorithm computes soft shadows in real-time (left) by replacing the occluders with a discretized version (right),
using information from the shadow map. This scene runs at 84 fps.

Abstract

Shadows, particularly soft shadows, play an important role in the visual perception of a scene by providing visual
cues about the shape and position of objects. Several recent algorithms produce soft shadows at interactive rates,
but they do not scale well with the number of polygons in the scene or only compute the outer penumbra. In this
paper, we present a new algorithm for computing interactive soft shadows on the GPU. Our new approach provides
both inner- and outer-penumbra for a modest computational cost, providing interactive frame-rates for models
with hundreds of thousands of polygons.

Our technique is based on a sampled image of the occluders, as in shadow map techniques. These shadow samples
are used in a novel manner, computing their effect on a second projective shadow texture using fragment programs.
In essence, the fraction of the light source area hidden by each sample is accumulated at each texel position of this
Soft Shadow Map. We include an extensive study of the approximations caused by our algorithm, as well as its
computational costs.
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1. Introduction

Shadows add important visual information to computer-

generated images. The perception of spatial relationships

between objects can be altered or enhanced simply by modi-

fying the shadow shape, orientation, or position [1,2,3]. Soft

shadows, in particular, provide robust contact cues by the

hardening of the shadow due to proximity resulting in a hard

shadow upon contact. The advent of powerful graphics hard-

ware on low-cost computers has led to the emergence of many

interactive soft shadow algorithms (for a detailed study of

these algorithms, please refer to [4]).

In this paper, we introduce a novel method based on shadow

maps to interactively render soft shadows. Our method in-

teractively computes a projective shadow texture, the Soft
Shadow Map (SSM), that incorporates soft shadows based on

light source visibility from receiver objects (see Figure 2).

This texture is then projected onto the scene to provide in-

teractive soft shadows of dynamic objects and dynamic area

light sources.

There are several advantages to our technique when com-

pared to existing interactive soft-shadow algorithms: First,

it is not necessary to compute silhouette edges. Second, the

algorithm is not fill-bound, unlike methods based on shadow

volumes. These properties provide better scaling for occlud-

ing geometry than other GPU based soft shadow techniques

[5,6,7]. Third, unlike some other shadow map based soft

shadow techniques, our algorithm does not dramatically over-

estimate the umbra region [5,6]. Fourth, while other meth-

ods have relied on an interpolation from the umbra to the

non-shadowed region to approximate the penumbra for soft

shadows [8,5,6,9], our method computes the visibility of an

area light source for receivers in the penumbra regions.

Our algorithm also has some limitations when compared

to existing algorithms. First, our algorithm splits scene geom-

etry into occluders and receivers and self-shadowing is not

accounted for. Also, since our algorithm uses shadow maps

to approximate occluder geometry, it inherits the well known

issues with aliasing from shadow map techniques. For large

area light sources, the soft shadows tend to blur the artifacts

but for smaller area light sources, such aliasing is apparent.

We acknowledge that these limitations are important, and

they may prevent the use of our algorithm in some cases.

However, there are many applications such as video games

or immersive environments where the advantages of our al-

gorithm (a very fast framerate, and a convincing soft shadow)

outweigh its limitations. We also think that this new algorithm

could be the start of promising new research.

In the following section, we review previous work on inter-

active computation of soft shadows. In Section 3, we present

the basis of our algorithm, and in the following section, we

provide implementation details. In the next two sections,

we conduct an extensive analysis of our algorithm; first, in

Figure 2: Applying our algorithm (200, 000 polygons, oc-
cluders depth map 256 × 256, displayed at 32 fps).

Section 5, we study the approximations in our soft shadows,

then in Section 6, we study the rendering times of our algo-

rithm. Both studies are done first from a theoretical point of

view, then experimentally. Finally, in Section 7, we conclude

and expose possible future directions for research.

2. Previous Work

Researchers have investigated shadow algorithms for

computer-generated images for nearly three decades. The

reader is referred to a recent state-of-the art report by Hasen-

fratz et al. [4], the overview by Woo et al. [10] and the book

by Akenine-Möller and Haines [11].

The two most common methods for interactively produc-

ing shadows are shadow maps [12] and shadow volumes [13].

Both of these techniques have been extended for soft shad-

ows. In the case of shadow volumes, Assarsson and Akenine-

Möller [7] used penumbra wedges in a technique based on

shadow volumes to produce soft shadows. Their method de-

pends on locating silhouette edges to form the penumbra

wedges. While providing good soft shadows without an over-

estimate of the umbra, the algorithm is fill-limited, particu-

larly when zoomed in on a soft shadow region. Since it is

necessary to compute the silhouette edges at every frame, the

algorithm also suffers from scalability issues when rendering

occluders with large numbers of polygons.

The fill-rate limitation is a well known limitation

of shadow-volume based algorithms. Recent publications

[14,15] have focused on limiting the fill-rate for shadow-

volume algorithms, thus removing this limitation.

On shadow maps, Chan and Durand [6] and Wyman and

Hansen [5] both employed a technique which uses the stan-

dard shadow map method for the umbra region and builds

a map containing an approximate penumbra region that can

be used at run-time to give the appearance, including hard

shadows at contact, of soft shadows. While these methods

provide interactive rendering, both only compute the outer-

penumbra, the part of the penumbra that is outside the hard

shadow. In effect, they are overestimating the umbra region,
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Figure 3: The main steps of our algorithm.

resulting in the incorrect appearance of soft shadows in the

case of large area light sources. These methods also depend

on computing the silhouette edges in object space for each

frame; this requirement limits the scalability for occluders

with large numbers of polygons.

Arvo et al. [8] used an image-space flood-fill method to

produce approximate soft shadows. Their algorithm is image-

based, like ours, but works on a detection of shadow boundary

pixels, followed by several passes to replace the boundary by

a soft shadow, gradually extending the soft shadow at each

pass. The main drawback of their method is that the number of

passes required is proportional to the extent of the penumbra

region, and the rendering time is proportional to the number

of shadow-filling passes.

Guennebaud et al. [16] also used the back projection of

each pixel in the shadow map to compute the soft shadow.

Their method was developed independently of ours, yet is

very similar. The main differences between the two methods

lie in the order of the computations: we compute the soft

shadow in shadow map space, while they compute the soft

shadow in screen space, requiring a search in the shadow

map.

Brabec and Seidel [9] and Kirsch and Doellner [17] use a

shadow map to compute soft shadows, by searching at each

pixel of the shadow map for the nearest boundary pixel, then

interpolating between illumination and shadow as a function

of the distance between this pixel and the boundary pixel

and the distances between the light source, the occluder and

the receiver. Their algorithm requires scanning the shadow

map to look for boundary pixels, a potentially costly step; in

practical implementations they limit the search radius, thus

limiting the actual size of the penumbra region.

Soler and Sillion [18] compute a soft shadow map as

the convolution of two images representing the source and

blocker. Their technique is only accurate for planar and par-

allel objects, although it can be extended using an object

hierarchy. Our technique can be seen as an extension of this

approach, where the convolution is computed for each sample

of an occlusion map, and the results are then combined.

Finally, McCool [19] presented an algorithm merging

shadow volume and shadow map algorithms by detecting

silhouette pixels in the shadow map and computing a shadow

volume based on these pixels. Our algorithm is similar in

that we are computing a shadow volume for each pixel in the

shadow map. However, we never display this shadow volume,

thus avoiding fill-rate issues.

3. Algorithm

3.1. Presentation of the algorithm

Our algorithm assumes a rectangular light source and starts

by separating potential occluders (such as moving characters)

from potential receivers (such as the background in a scene)

(see Figure 3a). We will compute the soft shadows only from

the occluders onto the receivers.

Our algorithm computes a SSM, for each light source: a

texture containing the texelwise percentage of occlusion from

the light source. This soft shadow map is then projected onto

the scene from the position of the light source, to give soft

shadows (see Figure 2).

Our algorithm is an extension of the shadow map algo-

rithm: we start by computing depth buffers of the scene. Un-

like the standard shadow map method, we will need two depth

buffers: one for the occluders (the occluders depth map) and

the other for the receivers.

The occluders depth map depth buffer is used to dis-

cretize the set of occluders (see Figure 3b): each pixel in

this occluder map is converted into a micro patch that cov-

ers the same image area but is is located in a plane paral-

lel to the light source, at a distance corresponding to the

pixel depth. Pixels that are close to the light source are

converted into small rectangles and pixels that are far from

the light source are converted into larger rectangles. At the
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Compute depth map of receivers

Compute depth map of occluders

for all pixels in occluders depth map

Retrieve depth of occluder at this pixel

Compute micro-patch associated with this pixel

Compute extent of penumbra for this micro-patch

for all pixels in penumbra extent for micro-patch
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Add to current percentage in soft shadow map

end
end
Project soft shadow map on the scene

Figure 4: Soft Shadow Map algorithm.

end of this step, we have a discrete representation of the

occluders.

The receiver map depth buffer will be used to provide the

receiver depth, as our algorithm uses the distance between

light source and receiver to compute the soft shadow values.

We compute the soft shadow of each of the micropatches

constituting the discrete representation of the occluders (see

Figure 3c), and sum them into the SSM (see Figure 3d).

This step would be potentially costly, but we achieve it in

a reasonable amount of time with two key points: (1) the

micropatches are parallel to the light source, so computing

their penumbra extent and their percentage of occlusion only

requires a small number of operations and (2) these operations

are computed on the graphics card, exploiting the parallelism

of the GPU engine. The percentage of occlusion from each

micropatch takes into account the relative distances between

the occluders, the receiver and the light source. Our algorithm

introduces several approximations on the actual soft shadow.

These approximations will be discussed in Section 5.

The pseudo-code for our algorithm is given in Figure 4.

In the following subsections, we will review in detail the

individual steps of the algorithm: discretizing the occlud-

ers (Section 3.2), computing the penumbra extent for each

micropatch (Section 3.3) and computing the percentage of

occlusion for each pixel in the SSM (Section 3.4). Specific

implementation details will be given in Section 4.

3.2. Discretizing the occluders

The first step in our algorithm is a discretization of the oc-

cluders. We compute a depth buffer of the occluders, as

seen from the light source, then convert each pixel in this

occluders depth map into the equivalent polygonal mi-

cropatch that lies in a plane parallel to the light source, at the

appropriate depth and occupies the same image plane extent

(see Figure 1).

Occluding patch

Light source

Penumbra
Umbra

Figure 5: The penumbra extent of a micropatch is a rectan-
gular pyramid.

The occluders depth map is axis-aligned with the rectangu-

lar light source and has the same aspect ratio: all micropatches

created in this step are also axis-aligned with the light source

and have the same aspect ratio.

3.3. Computing penumbra extents

Each micropatch in the discretized occluder is potentially

blocking some light between the light source and some

portion of the receiver. To reduce the amount of computa-

tions, we compute the penumbra extent of the micropatches,

and we only compute occlusion values inside these extents.

Since the micropatches are parallel, axis-aligned with the

light source and have the same aspect ratio, the penum-

bra extent of each micropatch is a rectangular pyramid

(see Figure 5). Finding the penumbra extent of the light

source is equivalent to finding the apex O of the pyramid (see

Figure 6a). This reduces to a 2D problem, considering paral-

lel edges (LL′) and (PP′) on both polygons (see Figure 6b).

L

L’

O

P
P’

(a)

L L’

P P’

O

CL

CP

(b)

Figure 6: Finding the apex of the pyramid is reduced to a
2D problem.
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Figure 7: The intersection between the pyramid and the vir-
tual plane is an axis-aligned rectangle.

Since (LL′) and (PP′) are parallel lines, we have:

O L

O P
= O L ′

O P ′ = L L ′

P P ′

This ratio is the same if we consider the centre of each line

segment:

OCL

OCP
= L L ′

P P ′

Since the micropatch and the light source have the same as-

pect ratio, the ratio r = L L ′
P P ′ is the same for both sides of the

micropatch (thus, the penumbra extent of the micropatch is

indeed a pyramid).

We find the apex of the pyramid by applying a scaling to

the center of the micropatch (CP), with respect to the centre

of the light source (CL):

−−→
CL O = r

1 + r
−−−→
CLCP ,

where r is again the ratio r = L L ′
P P ′ .

We now use this pyramid to compute occlusion in the soft

shadow map (see Figure 7). We use a virtual plane, paral-

lel to the light source, to represent this map (which will be

projected onto the scene). The intersection of the penumbra

pyramid with this virtual plane is an axis-aligned rectangle.

We only have to compute the percentage of occlusion inside

this rectangle.

Computing the position and size of the penumbra rectangle

uses the same formulas as for computing the apex of the

pyramid (see Figure 8):

−−−→
CLCR = zR

zO

−−→
CL O

R R′ = L L ′ zR − zO

zO

L L’

R R’

O

CL

CR

zR

zO

Figure 8: Computing the position and extent of the penum-
bra rectangle for each micropatch.

Occluding patch

Light source

Penumbra extent

A =

A

*

Figure 9: We reproject the occluding micropatch onto the
light source and compute the percentage of occlusion.

3.4. Computing the soft shadow map

For all the pixels of the SSM lying inside this penumbra

extent, we compute the percentage of the light source that

is occluded by this micropatch. This percentage of occlu-

sion depends on the relative positions of the light source, the

occluders and the receivers. To compute it, for each pixel

on the receiver inside this extent, we project the occluding

micro-facet back onto the light source [20] (see Figure 9).

The result of this projection is an axis-aligned rectangle; we

need to compute the intersection between this rectangle and

the light source.

Computing this intersection is equivalent to computing the

two intersections between the respective intervals on both

axes. This part of the computation is done on the GPU, using

a fragment program: the penumbra extent is converted into

an axis-aligned quad, which we draw in a float buffer. For

each pixel inside this quad, the fragment program computes

the percentage of occlusion. These percentages are summed

using the blending capability of the graphics card (see

Section 4.2).
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Figure 10: The original algorithm fails for some geometry. The two-pass method gives the correct shadow.

Figure 11: Two-pass shadow computations enhance precision.

3.5. Two-sided soft-shadow maps

As with many other soft shadow computation algorithms [4],

our algorithm exhibits artifacts because we are computing

soft shadows using a single view of the occluder. Shadow

effects linked to parts of the occluder that are not directly

visible from the light source are not visible. In Figure 10(a),

our algorithm only computes the soft shadow for the front

part of the occluder, because the back part of the occluder

does not appear in the occluders depth map. This limitation

is frequent in real-time soft-shadow algorithms [4].

For our algorithm, we have devised an extension that

solves this limitation: we compute two occluders depth maps.

In the first, we discretize the closest, front-facing faces

of the occluders (see Figure 10b). In the second, we dis-

cretize the furthest, back-facing faces of the occluders (see

Figure 10c).

We then compute a SSP for each occluders depth map, and

merge them, using the maximum of each occluders depth

map. The resulting occlusion map has eliminated most arti-

facts (see Figures 10d and 11). Empirically, the cost of the

two-pass algorithm is between 1.6 and 1.8 times the cost of

the one-pass algorithm. Depending on the size of a model

and the quality requirements of a given application, the sec-

ond pass may be worth this extra cost. For example, for an

animated model of less than 100, 000 polygons, the one-

pass algorithm renders at approximately 60 fps. Adding the

second pass drops the framerate to 35 fps — which is still

interactive.

4. Implementation details

4.1. Repartition between CPU and GPU

Our algorithm (see Figure 4) starts by rendering two depth

maps, one for the occluders and one for the receivers; these

depth maps are both computed by the GPU. Then, in order

to generate the penumbra extents for the micropatches, the

occluders depth map is transferred back to the CPU.

On the CPU, we generate the penumbra extents for the mi-

cropatch associated to each non-empty pixel of the occluders

depth map. We then render these penumbra extents, and for

each pixel, we execute a small fragment program to compute

the percentage of occlusion. Computing the percentage of

occlusion at each pixel of the soft shadow map is done on the

GPU (see Section 4.2).

These contributions from each micropatch are added to-

gether; we use for this the blending ability of the GPU: oc-

clusion percentages are rendered into a floating-point buffer

with blending enabled, thus the percentage values for each

micropatch are automatically added to the previously com-

puted percentage values.
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4.2. Computing the intersection

For each pixel of the SSM lying inside the penumbra ex-

tent of a micropatch, we compute the percentage of the

light source that is occluded by this micropatch, by pro-

jecting the occluding micropatch back onto the light source

(see Figure 9). We have to compute the intersection of

two axis-aligned rectangles, which is the product of the

two intersections between the respective intervals on both

axes.

We have therefore reduced our intersection problem from a

2D problem to two separate 1D problems. To further optimize

the computations, we use the SAT instructions in the fragment

program assembly language: without loss of generality, we

can convert the rectangle corresponding to the light source

to [0, 1] × [0, 1]. Each interval intersection becomes the

intersection between one [a, b] interval and [0, 1]. Exploiting

the SAT instruction and swizzling, computing the area of the

intersection between the projection of the occluder [a, b] ×
[c, d] and the light source [0, 1] × [0, 1] only requires three

instructions:

MOV S AT rs, {a, b, c, d}
SUB rs, rs, rs.yxwz

MUL result.color, rs.x, rs.z

Computing the [a, b] × [c, d] intervals requires projecting

the micropatch onto the light source and scaling the projec-

tion. This uses 8 other instructions: six basic operations (ADD,

MUL, SUB), one reciprocal (RCP) and one texture lookup to

get the depth of the receiver. The total length of our fragment

program is therefore 11 instructions, including one texture

lookup.

4.3. Possible improvements

As it stands, our algorithm makes a very light use of GPU

resources: we only execute a very small fragment program,

once for each pixel covered by the penumbra extent, and we

exploit the blending ability for floating point buffers.

The main bottleneck of our algorithm is that the penumbra

extents have to be computed on the CPU. This requires trans-

fering the occluders depth map to the CPU, and looping over

the pixels of the occluders depth map on the CPU. It should

be possible to remove this step by using the render-to-vertex-

buffer function: instead of rendering the occluders depth map,

we would directly render the penumbra extents for each mi-

cropatch into a vertex buffer. This vertex buffer would be

rendered in a second pass, generating the soft shadow map.

5. Error Analysis and comparison

In this section, we analyze our algorithm, its accuracy and

how it compares with the exact soft-shadows. We first study

potential sources of error from a theoretical point of view,

in Section 5.1, then we conduct an experimental analysis,

comparing the soft shadows produced with exact soft shad-

ows, in Section 5.2.

5.1. Theoretical analysis

Our algorithm replaces the occluders with a discretized ver-

sion. This discretization ensures interactive framerates, but

it can also be a source of inaccuracies. From a given point

on the receiver, we are separately estimating occlusion from

several micropatches, and adding these occlusion values to-

gether. We have identified three potential sources of error in

our algorithm:� We are only computing the shadow of the discretized

occluder, not the shadow of the actual occluder. This

source of error will be analyzed in Section 5.1.1.� The reprojections of the micropatches on the light source

may overlap or be disjoined. This cause of error will be

analyzed in Section 5.1.2.� We are adding many small values (the occlusion from

each micropatch) to form a large value (the occlusion

from the entire occluder). If the micropatches are too

small, we run into numerical accuracy issues, especially

with floating-point numbers expressed on 16 bits. This

cause of error will be analysed in Section 5.1.3.

5.1.1. Discretization error

Our algorithm computes the shadow of the discretized oc-

cluder, not the shadow of the actual occluder. The discretized

occluders corresponds to the part of the occluders that is

visible from the camera used to compute the depth buffers,

usually the center of the light source. Although we reproject

each micropatch of the discretized occluder onto the area

light source, we are missing the parts of the occluder that are

not visible from the shadow map camera but are still visible

from some points of the area light source. This is a limitation

that is frequent in real-time soft shadow algorithms [4], es-

pecially algorithms relying on the silhouette of the occluder

as computed from a single point [5,6,7].

We also use a discrete representation based on the shadow

map, not a continuous representation of the occluder. For each

pixel of the shadow map, we are potentially overestimating

or underestimating the actual occluder by at most half a pixel.

If the occluder has one or more edges aligned with the

edges of the shadow map, these discretization errors are of

the same sign over the edge, and add themselves; the worst

case scenario is a square aligned with the axis of the shadow

map.

For more practical occluders the discretization errors

on neighboring micropatches compensate: some of the
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Figure 12: The reprojection of two neighboring mi-
cropatches may overlap.
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Figure 13: Computing the extent of overlap or gap between
two neighboring micropatches.

micropatches overestimate the occluder while others under-

estimate it.

5.1.2. Overlapping reprojections

At any given point on the receiver, the parts of the light source

that are occluded by two neighbouring micropatches should

be joined exactly for our algorithm to compute the exact per-

centage of occlusion on the light source. This is typically

not the case, and these parts may overlap or there may be a

gap between them (Figure 12). The amount of overlap (or

gap) between the occluded parts of the light source depends

on the relative positions of the light source, the occluding

micropatches and the receiver

If we consider the 2D equivalent of this problem (see

Figure 13), with two patches separated by δh and at a dis-

tance zO from the light source, with the receiver being at a

distance zR from the light source, there is a point P0 on the re-

ceiver where there is no overlap between the occluded parts.

As we move away from this point, the overlap increases. For a

point at a distance x from P0, the boundaries of the occluding

micropatches project at abscissa x1 and x2; as the occluding

micropatches and the light source lie in parallel planes, we

have:
x1

x
= zO

zR − zO

x2

x
= zO + δh

zR − zO − δh

The amount of overlap is therefore:

x2 − x1 = x

(
zO

zR − zO
− zO + δh

zR − zO − δh

)

= −x
zRδh

(zR − zO )(zR − zO − δh)

(1)

x itself is limited, since the occlusion area must fall inside the

light source:

|x | <
L

2

zR − zO

zO
(2)

The amount of overlap is therefore limited by:

|x2 − x1| <
L

2

zRδh

zO (zR − zO − δh)
. (3)

Equation 3 represents the error our algorithm makes for

each pair of micropatches. The overall error of our algorithm

is the sum of the modulus of all these errors, for all the mi-

cropatches projecting on the light source at a given point. This

is a conservative estimate, as usually some patches overlap

while others present gaps; the actual sum of the occlusion

values from all the micropatches is closer to the real value

than what our estimation tells (see Section 5.2).

The theoretical error caused by our algorithm depends on

several factors:

Size of the light source: The maximum amount of overlap

(Equation 3) depends directly on the size of the light

source. The larger the light source, the larger the error.

Our practical experiments confirm this.

Distance between micropatches: The maximum amount of

overlap (Equation 3) also depends linearly on δh, the

distance in z between neighboring micropatches. Since

δh depends on the discretization of the occluder, the

error introduced by our algorithm is related to the res-

olution of the bitmap: the smaller the resolution of the

bitmap, the larger the error. Our practical experiments

confirm this, but there is a maximum resolution after

which the error does not decrease.

Note that this source of error is related to the effec-
tive resolution of the bitmap, that is the number of pix-

els used for discretizing the occluder. If the occluder
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Figure 14: Blending with FP16 numbers: if the resolution of the shadow map is too high, numerical issues appear, resulting in
wrong shadows. Using higher accuracy for blending removes this issue (here, FP32 blending was done on the CPU).

occupies only a small portion of the bitmap, the ef-

fective resolution of the bitmap is much smaller than

its actual resolution. Fortunately, the cost of the algo-

rithm is also related to the effective resolution of the

bitmap.

Distance to the light source/the receiver: If the occluder

touches either the light source or the receiver, the

amount of overlap (see Equation 3) goes toward infin-

ity. When the occluder is touching the receiver, the area

where the overlap occurs (as defined by Equation 2)

goes towards 0, thus the error does not appear. When

the occluder is touching the receiver, the actual effect

depends on the shape of the occluder. In some cases,

overlaps and gaps can compensate, resulting in an ac-

ceptable shadow.

5.1.3. Floating-point blending accuracy

Our algorithm adds together many small scale occlusion val-

ues — the occlusion from each micropatch — to compute a

large scale occlusion value — the occlusion from the com-

plete occluder. This addition is done with the blending ability

of the GPU, using blending of floating-point buffers. At the

time of writing, blending is only available in hardware for

16-bits floating-point buffers. As a result, we sometimes en-

counter problems of numerical accuracy.

Figure 14 shows an example of these problems. Unconven-

tionally, increasing the resolution of the shadow map makes

these problems more likely to appear (for a complete study

of floating-point blending accuracy, see Appendix A). The

best workaround is therefore to use relatively low resolution

for the occluders depth map, such as 128 × 128 or 256 ×
256. While this may seem a low resolution compared

to other shadow map algorithms, our shadow map is fo-

cused on the moving occluder (such as a character), not

on the entire scene, so 128 × 128 pixels is usually enough

resolution.

We see this is only as a temporary issue that will disappear

as soon as hardware FP32 blending becomes available on

graphics cards.

5.2. Comparison with ground truth

We ran several tests to experimentally compare the shadows

produced by our algorithm with the actual shadows. The ref-

erence values were computed using occlusion queries, giv-

ing an accurate estimation of the real occlusion of the light

source. In this section, we review the practical differences we

observed.

5.2.1. Experimentation method

For each image, we computed an error metric as thus: for

each pixel in the soft shadow map, we compute the actual

occlusion value (using occlusion queries), and the difference

with the occlusion value computed using our algorithm. We

sum the modulus of the differences, then divide the result by

the total number of pixels lying either in the shadow or in the

penumbra, averaging the error over the actual soft shadow.

We use the number of pixels that are either in shadow or in

penumbra and not the total number of pixels in the occluders

depth map because the soft shadow can occupy only a small

part of the depth map. Dividing by the total number of pixels

in the depth map would therefore underestimate the error.

We have used three different scenes (see Figure 15: a square

polygon parallel to the light source, a Buddha model and a

Bunny model). These scenes exhibit several interesting fea-

tures. The Buddha and Bunny are complex models, with folds

and creases. The Bunny also has important self-occlusion,

and in our scene it is in contact with the ground, providing

information on the behavior of our algorithm in that case.

The square polygon is an illustration of the special case of

occluders aligned with the axes of the occluders depth map.

We have tested both the one-pass and the two-pass versions

of our algorithm. We selected four separate parameters: the

size of the light source, the resolution of the shadow map,

the vertical position of the occluder between the light source

and the receiver and the lateral position of the occluder. For

each parameter, we plot the variation of the error introduced

by our algorithm as a function of the parameter and analyze

the results.
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Figure 15: The test scenes we have used.

Figure 16: Visual comparison of our algorithm with ground truth.
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Figure 17: Variation of the error with respect to the resolution of the shadow map.
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Figure 18: Variation of the error with respect to the size of the light source.

5.2.2. Visual comparison with ground truth

Figure 16 shows a side by side comparison of our algorithm

with ground truth. Even though there are slight differences

with ground truth, our algorithm exhibits the proper behavior

for soft shadows: sharp shadows at places where the object is

close to the ground, a large penumbra zone where the object

is further away from the receiver. Our algorithm visibly com-

putes both the inner and the outer penumbra of the object.

Looking at the picture of the differences (see Figures 16d

and g) between the shadow values computed by our algorithm

and the ground truth values, it appears that the differences lie

mostly on the silhouette of the occluder: since our algorithm

only computes the soft shadow of the discretized object, as

seen from the center of the light source. The actual shape of

the soft shadow depends on subtle effects happening at the

silhouette of the occluder.

5.2.3. Size of the buffer

Figure 17 shows the average difference between the occlu-

sion values computed with our algorithm and the actual oc-

clusion values for our three test scenes, when changing the

resolution of the shadow map. In these figures, the abscissa

is the number of pixels for one side of the shadow map, so

128 corresponds to a 128 × 128 shadow map. For this test,

we used non-power of two textures, in order to have enough

sampling data. We can make several observations by looking

at the data:

Two-pass version: the two-pass version of the algorithm

consistently outperforms the single-pass version, al-

ways giving more accurate results. The only exception

is of course the square polygon: since it has no thick-

ness, the single-pass and two-pass version give the same

results.

Shadow map Resolution: as expected from the theoreti-

cal study (see Section 5.1.2), the error decreases as the

resolution of the shadow map increases. What is inter-

esting is that this effect reaches a limit quite rapidly.

Roughly, increasing the shadow map resolution above

200 pixels does not bring an improvement in qual-

ity. Since the computation costs are related to the

size of the shadow map, shadow map sizes of 200 ×
200 pixels are close to optimal.

The fact that the error does not decrease continuously

as we increase the resolution of the occluders depth

map is a little surprising at first, but can be explained.

It is linked to the silhouette effect. As we have seen in

Figure 16, the error introduced by our algorithm comes

from the boundary of the silhouette of the occluder,

from parts of the occluder that are not visible from the

center of the light source, but visible from other parts of

the light source. Increasing the resolution of the shadow

map does not solve this problem.

The optimal size for the shadow map is related to the

size of the light source. As the light source gets larger,

we can use smaller bitmaps.

Discretization error: the error curve for the square polygon

presents many important spikes. Looking at the results,

it appears that these spikes correspond to discretization

error (see Section 5.1.1). Since the square occluder is

aligned with the axis of the shadow map, it magnifies

discretization error.

5.2.4. Size of the light source

Figure 18 shows the average difference between the occlusion

values computed with our algorithm and the actual occlusion

values when we change the size of the light source for our

three test scenes. The parameter values range from a point

light source (parameter = 0.01) to a very large light source,

approximately as large as the occluder (parameter = 0.2). We

used a bitmap of 128 × 128 pixels for all these tests. We can

make several observations by looking at the data:

Point light sources: the beginning of the curves

(parameter=0.01) corresponds to a point light

source. In that case, the error is quite large. This

corresponds to an error of 1, over the entire shadow
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Figure 19: Variation of the error with respect to the lateral position of the occluder.

 0

 0.05

 0.1

 0.15

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

A
ve

ra
g
e
 e

rr
o

r

Occluder vertical position

single pass
double pass

(a) Square polygon

 0

 0.05

 0.1

 0.15

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

A
ve

ra
g

e
 e

rr
o

r

Occluder vertical position

single pass
double pass

(b) Buddha

 0

 0.05

 0.1

 0.15

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

A
ve

ra
g

e
 e

rr
o

r

Occluder vertical position

single pass
double pass

(c) Bunny

Figure 20: Variation of the error with respect to the vertical position of the occluder.
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Figure 21: Influence of polygon count.

boundary; as we are computing the shadow of the

discretized occluder, we miss the actual shadow

boundary, sometimes by as much as half a pixel. The

result is a large error, but it occurs only at the shadow

boundary.

Light source size: except for the special case of point light

sources, the error increases with the size of the light

source. This is consistent with our theoretical analysis

(see Section 5.1.2).

5.2.5. Occluder moving laterally

Figure 19 shows the average difference between the occlusion

values computed with our algorithm and the actual occlusion

values, when we move the occluder from left to right under

the light source. The parameter corresponds to the position

with respect to the center of the light, with 0 meaning that

the center of the object is aligned with the center of the light.

We used a bitmap of 128 × 128 for all these tests.
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Figure 22: Influence of the size of the occluders depth map.

The error is at its minimum when the occluder is roughly

under the light source, and increases as the occluder moves

laterally. The Buddha and Bunny models are not symmetric,

so their curves are slightly asymmetric, and the minimum

does not correspond exactly to 0.

5.2.6. Occluder moving vertically

Figure 20 shows the average difference between the occlusion

values computed with our algorithm and the actual occlusion

values, when we move the occluder vertically. The smallest

value of the parameter corresponds to an occluder touching

the receiver, and the largest value corresponds to an occluder

touching the light source. We used a bitmap of 128 × 128 for

all these tests.

As predicted by the theory, the error increases as the oc-

cluder approaches the light source (see Section 5.1.2). For

the Bunny, the error reaches 15% when the upper ear touches

the light source.

6. Complexity

The main advantages of our algorithm are its rendering speed

and its scalability. With a typical setup (a modern PC, an oc-

cluders depth map of 128 × 128 pixels, a scene between

50,000 polygons and 300,000 polygons), we achieve fram-

erates between 30 and 150 fps. In this section, we study

the numerical complexity of our algorithm and its rendering

speed. We first conduct a theoretical analysis of the com-

plexity of our algorithm, in Section 6.1, then an experimental

analysis, where we test the variation of the rendering speed

with respect to several parameters: the size of the shadow

map, the number of polygons and the size of the light source

(Section 6.2). Finally, in Section 6.3, we compare the com-

plexity of our algorithm with a state-of-the-art algorithm, Soft

Shadow Volume [7].

6.1. Theoretical complexity

Our algorithm starts by rendering a shadow map and down-

loading it into main memory. This preliminary step has a

linear complexity with respect to the number of polygons

in the scene, and linear with the size of the shadow map,

measured in the total number of pixels.

Then, for each pixel of the shadow map corresponding to

the occluder, we compute its extent in the occlusion map,

and for each pixel of this extent we execute a small fragment

program of 11 instructions, including one texture lookup.

The overall complexity of this second step of the algorithm

is the number of pixels covered by the occluder, multiplied

by the number of pixels covered by the extent for each of

them, multiplied by the cost of the fragment program. This

second step is executed on the GPU, and benefits from the

high-performance and the parallelism of the graphics card.

The worst case situation would be a case where each mi-

cropatch in the shadow map covers a large number of pixels

in the soft shadow map. But this situation corresponds to

an object with a large penumbra zone, and if we have a large

penumbra zone, we can use a lower resolution for the shadow

maps. So we can compensate the cost for the algorithm by

running it with bitmaps of lower resolution.

6.2. Experimental complexity

All measurements in this section were conducted on a

2.4 GHz Pentium4 PC with a GeForce 6800 Ultra graph-

ics card. All framerates and rendering times correspond to

observed framerates, that is the framerate for a user manip-

ulating our system. We are therefore measuring the time it

takes to display the scene and to compute soft shadows, not

just the time it takes to compute soft shadows.

6.2.1. Number of polygons

We studied the influence of the polygon count. Figure 21

shows the observed rendering time (in ms) as a function of

the polygon count, with a constant occluders depth map size

of 128 × 128 pixels. The first thing we note is the speed of
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(a) Bitmap of 642 (184 fps) (b) Ground truth

Figure 23: Large light sources with small bitmaps.

our algorithm: even on a large scene of 340,000 polygons,

we achieve real-time framerates (more than 30 frames per

second). Second, we observe that the rendering time varies

linearly with respect to the number of polygons. That was to

be expected, since we must render the scene twice (once for

the occluders depth map and once for the actual display), and

the time it takes for the graphics card to display a scene varies

linearly with respect to the number of polygons. For smaller

scenes (less than 10,000 polygons, rendering time below

10 ms), some factors other than the polygon count play a

more important role.

6.2.2. Size of occluders depth map

Figure 22 shows the observed rendering times (in ms)

of our algorithm, on a scene with 24,000 polygons (see

Figure 22b), when the size of the occluders depth map

changes. We plotted the rendering time as a function of the

number of pixels in the occluders depth map (that is, the

square of the size of the occluder map) to illustrate the ob-

served linear variation of rendering time with respect to the

total number of pixels.

An occluders depth map of 5122 pixels gives a rendering

time of 150 ms — or 7 fps, too slow for interactive rendering.

An occluders depth map of 1282 or 2562 pixels gives a ren-

dering time of 10 to 50 ms, or 20 to 100 fps, fast enough for

real-time rendering. For a large penumbra region, an occlud-

ers depth map of 1282 pixels qualitatively gives a reasonable

approximation, as in Figure 22(b). For a small penumbra

region, our algorithm behaves like the classical shadow map-

ping algorithm and artifacts can appear with a small occlud-

ers depth map of 1282 pixels; in that case, it is better to use

2562 pixels.

The fact that the rendering time of our algorithm is pro-

portional to the number of pixels in the occluders depth map

confirms that the bottleneck of our algorithm is its transfer

to the CPU. Due to the cost of this transfer, we found that

for some scenes it was actually faster to use textures whose

dimensions are not a power of 2: if the difference in pixel

count is sufficient, the gain in transfer time compensates the

losses in rendering time.

6.2.3. Light source size

Another important parameter is the size of the light source,

compared to the size of the scene itself. A large light source

results in a large penumbra region for each micropatch, re-

sulting in more pixels of the soft shadow map covered, and a

larger computational cost. Figure 24(a) shows the observed

framerate as a function of the size of the light source. We did

the tests with several bitmap resolutions (2562, 1282, 642).

Figure 24(b) shows the error as a function of the size of the

light source, for the same bitmap resolutions.

As you can see from Figure 24(a), rendering time increases

with the size of the light source. What is interesting is the

error introduced by our algorithm (see Figure 24b). The error

logically increases with the size of the light source, and for

small light sources, larger bitmaps result in more accurate

images. But for large light sources, a smaller bitmap will

give a soft shadow of similar quality. A visual comparison of

the soft shadows with a small bitmap and ground truth shows

the small bitmap gives a very acceptable soft shadow (see

Figure 23).

This effect was observed by previous researchers: as the

light source becomes larger, the features in the soft shadow

become blurrier, hence they can be modeled accurately with

a smaller bitmap.

6.3. Comparison with Soft-Shadow Volumes

Finally, we perform a comparison with a state-of-the art algo-

rithm for computing soft shadows, the Soft-Shadow Volumes

by Assarsson and Akenine-Möller [7].

Figure 25 shows the same scene, with soft shadows, com-

puted by both algorithms. We ran the tests with a varying

number of jeeps, to test how both algorithms scale with re-

spect to the number of polygons. Figure 25(c) shows the

rendering times as a function of the number of polygons for

both algorithms. These figures were computed using a win-

dow of 512 × 512 pixels for both algorithms, and with the

two-pass version of our algorithm, with an occluders depth

map resolution of 210 × 210.

Our algorithm scales better with respect to the number of

polygons. On the other hand, soft shadow volumes provide a

better looking shadow (see Figure 25b), closer to the actual

truth.

It is important to remember that the rendering time for

the Soft- Shadow Volumes algorithm varies with the num-

ber of screen pixels covered by the penumbra region. If the

viewpoint is close to a large penumbra region, the render-

ing time becomes much larger. The timings we used for this

comparison correspond to an observer walking around the

scene (as in Figure 25b).
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7. Conclusion and future directions

In this paper, we have presented a new algorithm for com-

puting soft shadows in real-time on dynamic scenes. Our

algorithm is based on the shadow mapping algorithm, and is

entirely image-based. As such, it benefits from the advantages

of image-based algorithms, especially speed.

The largest advantage of our algorithm is its perfor-

mance, hence there remains plenty of computational power

available for performing other tasks, such as interacting

with the user or performing non-graphics processing such

as physics computations within game engines. Probably the

largest limitation of our algorithm is the fact that it does not

compute self-occlusion and it requires a separation between

occluders and receivers. We know that this limitation is very

important, and we plan to remove it in future work, possibly

by using layered depth images.

An important aspect of our algorithm is that we can use

low-resolution shadow maps in places with a large penumbra,

even though we still need higher resolution shadow maps for

places with small penumbra, for example close to the contact

between the occluder and the receiver. An obvious improve-

ment to our algorithm would be the ability to use hierarchi-

cal shadow maps, switching resolutions depending on the

shadow being computed. This work could also be combined

with perspective-corrected shadow maps [21,22,23,24], in or-

der to have higher resolution in places with sharp shadows

close to the viewpoint.

In its current form, our algorithm still requires a transfer of

the occluders depth map from the GPU to the main memory,

and a loop, on the CPU, over all the pixels in the occluders

depth map. We would like to design a GPU only implementa-

tion of our algorithm, using the future render-to-vertex-buffer

capabilities.
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Appendix A: Floating-point blending accuracy

In this section, we review the issues behind the hardware

blending accuracy problems we have encountered and pro-

pose a temporary fix for these issues.

All the accuracy issues are linked to the fact that hardware

blending is, at the time of writing, only available for 16-

bits floating point numbers. NVidia graphics hardware stores

these floating-point numbers using s10e5 format: one bit of

sign, 10 bits of mantissa, 5 bits of exponent, with a bias of

15 for the exponent. The important point for addition is that

the mantissa is stored on 10 bits. As a result, adding a large

number X and a small number ε will give an inaccurate result

if ε < 2−10 X :

X + ε = X if ε < 2−10 X (in FP16)

For example, 2048 + 1 = 2048 (in FP16 format) and 0.5 +
1

2049
= 0.5 (also in FP16 format).

In some cases, the addition of the contribution from all

micropatches will be 1 (meaning complete occlusion of the

light source). As a consequence, we can expect numerical

accuracy issues if some micropatches hide less than 2−10 of

the light source. Because 322 = 210, it means that the width

of the reprojection of one micropatch should be larger than
1
32

of the width of the light source.

This translates easily into conditions for the position of the

occluder:

1

zO
<

1

zR
+ 64 tan α

N L

where L is the width of the light source, N is the resolution of

the bitmap, α is the half-angle of the camera used to generate

the shadow map, zO is the distance between the light source

and the occluder and zR is the distance between the light

source and the receiver.

Bitmap resolution: The most important thing is that in-

creasing N makes this error more likely to appear. This

explains why using a bitmap of 512 × 512 pixels we

see a poor looking shadow, while the 128 × 128 bitmap

gives the correct shadow (see Figure 14).

Light source size: In equation 4, the size of the light source

appears in a product with the resolution of the bitmap. If

the light source is large, the bitmap must be low resolu-

tion in order to avoid FP16 blending errors. Fortunately,

a large light source means a large penumbra for most

occluders, so a low resolution bitmap might be enough

for these penumbra effects.

Occluder position: As the occluder moves closer to

the receiver, the likeliness of blending errors gets

lower.

Camera half-angle: Similarly, increasing the camera half-

angle improves the FP16 blending accuracy.

Basically, all these conditions amount to the same thing:

using less pixels to describe the occluder in the occluders

depth map. While this improves the FP16 blending accu-

racy, it obviously degrades the discretization of the occluder

and also increases the overlapping between reprojections of

neighboring pixels.

In our experiments (see Figure 14) the blending accuracy

problem appears very often when the resolution of the shadow

map is larger than 512 × 512, sometimes with a shadow map

resolution of 256 × 256 and very rarely with a shadow map

resolution of 128 × 128.

The problem will disappear when hardware blending will

become available on higher accuracy floating point num-

bers. FP32 have a mantissa of 23 bits, allowing the use of

micropatches that block less than 2−23 of the light source,

meaning that the width of the back-projection of the mi-

cropatch should be at least larger that 2−11 than the width

of the light source (64 times smaller than the current thresh-

old). Compared with the current method, it would allow

the use of shadow maps with a resolution above 4096 ×
4096.

With FP16 blending only, the best solution is to use a

hierarchical shadow map for soft-shadow computations, as

was suggested by Guennebaud et al. [16]: the low reso-

lution shadow map would be used for large penumbra re-

gions, and the high-resolution shadow map for areas with

hard shadows, e.g. when the occluder and the receiver are in

contact.
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