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Biological soft tissues and cells may be subjected to mechanical as well as chemical
(osmotic) loading under their natural physiological environment or various experimental
conditions. The interaction of mechanical and chemical effects may be very significant
under some of these conditions, yet the highly nonlinear nature of the set of governing
equations describing these mechanisms poses a challenge for the modeling of such phe-
nomena. This study formulated and implemented a finite element algorithm for analyzing
mechanochemical events in neutral deformable porous media under finite deformation.
The algorithm employed the framework of mixture theory to model the porous permeable
solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and sol-
ute. A special emphasis was placed on solute-solid matrix interactions, such as solute
exclusion from a fraction of the matrix pore space (solubility) and frictional momentum
exchange that produces solute hindrance and pumping under certain dynamic loading
conditions. The finite element formulation implemented full coupling of mechanical and
chemical effects, providing a framework where material properties and response func-
tions may depend on solid matrix strain as well as solute concentration. The implementa-
tion was validated using selected canonical problems for which analytical or alternative
numerical solutions exist. This finite element code includes a number of unique features
that enhance the modeling of mechanochemical phenomena in biological tissues. The
code is available in the public domain, open source finite element program FEBio
(http:==mrl.sci.utah.edu=software). [DOI: 10.1115/1.4004810]

1 Introduction

Biological tissues and cells may be modeled as porous media
consisting of a solid matrix and an interstitial fluid. This fluid is
generally a water-based solution containing solutes of various
molecular weights. In many applications the transport of solutes is
of specific interest, as these solutes may be involved in a variety
of biological processes. Solute transport in a free solution (in the
absence of a solid matrix) is characterized by the frictional inter-
actions between the solute and the solvent, as manifested in the
classical mechanisms of diffusion and convection [1]. In the pres-
ence of a porous solid matrix, further interactions take place
between the solute and the solid. These interactions give rise to
additional diffusion and convection effects [2], as well as solute
exclusion from some of the pore space as a result of steric volume
and short-range electrostatic interactions [2–4]. When the porous
medium is deformable, as in the case of cells and soft tissues, the
interactions of the solute with the solid matrix may be signifi-
cantly dependent on the state of strain [5–7]. Therefore, the ability
to model solute transport in a deformable porous medium repre-
sents an important tool for biomedical engineers.

Solute transport in porous deformable media has been an
intense subject of analysis in the biomechanics literature over the
last two decades. A particular emphasis has been placed on the
transport of ions in a charged, deformable solid matrix, as embod-

ied in the triphasic theory of Lai et al. [8], the quadriphasic theory
of Huyghe and Janssen [9], and the multielectrolyte theory of Gu
et al. [10]. These investigations have often focused on mechano-
electrochemical phenomena arising from the transport of charged
species within a charged matrix, such as streaming and diffusion
potentials and currents [11,12], Donnan osmotic swelling
[8–10,13], and phenomena such as reverse osmosis [14]. Finite
element implementations of charged porous media have been pre-
sented by several authors, which are applicable to infinitesimal
deformations [15–20] and finite deformations [21]. Other investi-
gators have used the analogy between thermal diffusion and solute
transport to simulate a triphasic medium under infinitesimal defor-
mation [22], or have constrained their finite element analyses to
modeling the equilibrium response to Donnan osmotic swelling
under finite deformation [23,24].

The neutral transport of solutes in porous deformable media has
not been addressed as extensively as the transport of monovalent
counterions in a charged matrix. Sengers et al. [25] formulated a
finite element implementation of a biphasic (uncharged) medium,
undergoing finite deformation, with solute transport and biosyn-
thesis. Steck et al. [26] and Zhang and Szeri [27] used a commer-
cial finite element code to combine mass (solute) transport with a
poroelastic analysis using a two-stage solution procedure.

The objective of this study was to develop a finite element
implementation of neutral solute transport in deformable porous
media that incorporates a number of important phenomena at the
interface of mechanics and physical chemistry: (1) Transport in
deformable anisotropic media [28–31], including strain-induced
alterations in permeability and diffusivity [6,7,32–34] and strain-
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induced anisotropy [35]. (2) Momentum exchange between sol-
utes and the solid matrix, which is responsible for increased hin-
drance to transport [2,36] as well as enhanced convection under
dynamic loading [37–40]. (3) Changes in tissue and cell volume
due to alterations in their osmotic environment [5,41–43]. (4) Par-
tial solute exclusion from pore spaces due to steric volume and
short-range electrostatic effects [2–4], which may depend on solid
matrix deformation [5,6] and solute concentration [44,45]. (5)
Deviation of the physicochemical responses of solutions from
ideal behavior with varying solute concentration [46,47] and solid
matrix deformation.

All of these modeling features were implemented into FEBio, a
free, open-source finite element code available to the general pub-
lic (http:==mrl.sci.utah.edu=software).

2 Finite Element Implementation

2.1 Mixture Framework. The governing equations are
based on the framework of mixture theory [48,49]. Only a single
solute is considered for notational simplicity, although extension
to multiple solutes is straightforward. Various forms of the gov-
erning equations have been presented in the literature
[27,38,41,50,51], though a presentation that incorporates all the
desired features of this implementation has not been reported pre-
viously and is thus detailed here.

The fundamental assumptions adopted in this treatment are
quasi-static conditions for linear momentum balance, intrinsic
incompressibility of all constituents (invariant true densities), iso-
thermal conditions, negligible volume fraction of solute relative to
the solid and solvent, and negligible effects of solute and solvent
viscosities (friction within constituents) relative to frictional inter-
actions between constituents. These are standard assumptions for
studies in biological tissues and cells. The incorporation of phe-
nomena such as the action of external body forces or chemical
reactions between constituents is relegated to future studies.

The various constituents of a mixture may be generically
denoted by a superscript a or b. In the current implementation the
three constituents of the mixture are the porous-permeable solid
matrix (a ¼ s), the solvent (a ¼ w), and the solute (a ¼ u). The
motion of the solid matrix is described by the displacement vector
u, the pressure of the interstitial fluid (solventþ solute) is p, and
the solute concentration (on a solution-volume basis) is c.

2.2 Balance of Momentum. The total (or mixture) stress
may be described by the Cauchy stress tensor T ¼ �pIþ Te,
where I is the identity tensor and Te is the stress arising from the
strain in the porous solid matrix. The solid matrix is compressible
since the volume of pores changes as interstitial fluid enters or
leaves the matrix. Under the conditions outlined above, the bal-
ance of linear momentum for the mixture reduces to

div T ¼ �grad pþ div Te ¼ 0 (2.1)

Similarly, the equations of balance of linear momentum for the
solvent and solute are given by

�qwgrad ~lw þ fws � vs � vwð Þ þ fwu � vu � vwð Þ ¼ 0

�qugrad ~lu þ fus � vs � vuð Þ þ fuw � vw � vuð Þ ¼ 0
(2.2)

where qa is the apparent density (mass of a per volume of the
mixture), ~la is the mechanochemical potential, and va is the ve-
locity of constituent a; fab is the diffusive drag tensor between
constituents a and b representing momentum exchange via fric-
tional interactions, which satisfies fba ¼ fab. An important feature
of (2.2) is the incorporation of a momentum exchange term
between the solute and solid matrix, fus� vs � vuð Þ, which is often
neglected in other treatments but plays an important role for
describing solid-solute interactions [38–40]. These momentum
equations show that the driving force for the transport of solvent

or solute is the gradient in its mechanochemical potential, which
is resisted by frictional interactions with other constituents.

The mechanochemical potential is the sum of the mechanical
and chemical potentials. The chemical potential la of a represents
the rate at which the mixture free energy changes with increasing
mass of a. The mechanical potential represents the rate at which
the mixture free energy density changes with increasing volumet-
ric strain of a. In a mixture of intrinsically incompressible constit-
uents, where the volumetric strain is idealized to be zero, this
potential is given by p� p0ð Þ=qa

T , where qa
T is the invariant true

density of a (mass of a per volume of a), and p0 is some arbitrarily
set reference pressure.

From classical physical chemistry, the general form of a constitu-
tive relation for the chemical potential is la ¼ la

0 hð Þ
þ Rh=Mað Þ ln aa [46], where R is the universal gas constant, h is the
absolute temperature, Ma is the molecular weight (invariant), and aa

is the activity of constituent a (a nondimensional quantity that repre-
sents a measure of the effective concentration of a); la

0 hð Þ is the
chemical potential at some arbitrary reference state, at a given temper-
ature. For solutes, physical chemistry treatments let au ¼ cc=c0,
where c0 is the solute concentration in some standard reference state
(an invariant, typically c0 ¼ 1 M), and c is the nondimensional activ-
ity coefficient, which generally depends on the current state (e.g., con-
centration) but reduces to unity under the assumption of ideal
physicochemical behavior [46]. Since this representation is strictly
valid for free solutions only, whereas solutes may be partially
excluded from some of the interstitial space of a porous solid matrix,
Mauck et al. [38] extended this representation of the solute activity to
let au ¼ cc=jc0, where the solubility j represents the fraction of the
pore space which is accessible to the solute (0 < j � 1). In this
extended form it becomes clear that even under ideal behavior
(c ¼ 1), the solute activity may be affected by the solubility. Indeed,
for neutral solutes, the solubility also represents the partition coeffi-
cient of the solute between the tissue and external bath [3,4].

When accounting for the fact that the solute volume fraction is
negligible compared to the solvent volume fraction [46,52], the
general expressions for the mechanochemical potentials ~lw and ~lu

take the form

~lw ¼ lw
0 hð Þ þ 1

qw
T

p� p0 � RhUcð Þ
~lu ¼ lu

0 hð Þ þ Rh
M ln cc

jc0

(2.3)

where U is the osmotic coefficient (a nondimensional function of
solute concentration and solid strain) which deviates from unity
under nonideal physicochemical behavior. Therefore, a complete
description of the physicochemical state of solvent and solute
requires constitutive relations for U and the effective solubility
~j ¼ j=c.

2.3 Balance of Mass. It is also necessary to satisfy the bal-
ance of mass for each of the constituents. In the absence of chemi-
cal reactions the statement of balance of mass for constituent a
reduces to

@qa

@t
þ div qavað Þ ¼ 0 (2.4)

The apparent density qa may be related to the true density qa
T via

qa ¼ uaqa
T , where ua is the volume fraction of a in the mixture.

Due to mixture saturation (no voids), the volume fractions add up
to unity; since the solute volume fraction is considered negligible
(uu � us; uw), it follows that ua � us þ uw ¼ 1. Since qa

T of an
incompressible constituent is invariant in space and time, these
relations may be combined to produce the mixture balance of
mass relation,

div vs þ wð Þ ¼ 0 (2.5)
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where w ¼ uw vw � vsð Þ is the volumetric flux of solvent relative
to the solid. The balance of mass for the solute may also be writ-
ten as

@ uwcð Þ
@t

þ div jþ uwcvsð Þ ¼ 0 (2.6)

where j ¼ uwc vu � vsð Þ is the molar flux of solute relative to the
solid. This relation is obtained by recognizing that the solute appa-
rent density is related to its concentration (moles per solution vol-
ume) via qu ¼ 1� usð ÞMc � uwMc. The mass balance for the
solid matrix requires that qsJ should remain constant, where
J ¼ det F and F ¼ Iþ Grad u is the deformation gradient of the
solid matrix. Therefore, since qs ¼ usqs

T and qs
T is invariant, it

follows that

us ¼ us
r

J
(2.7)

where us
r is the solid volume fraction in the reference state.

2.4 Flux Relations. Inverting the momentum balance equa-
tions in (2.3), it is now possible to relate the solvent and solute
fluxes to the driving forces according to

w ¼ �~k � qw
T grad ~lw þMc d

d0
� grad ~lu

� �
j ¼ d � � M

Rh uwc grad ~lu þ c
d0

w
� � (2.8)

where d is the solute diffusivity tensor in the mixture
(solidþ solution) and d0 is its (isotropic) diffusivity in free solu-
tion. ~k is the second-order hydraulic permeability tensor of the so-
lution (solventþ solute) through the porous solid matrix, which
depends explicitly on concentration according to

~k ¼ k�1 þ Rhc

uwd0

I� d

d0

� �� ��1

(2.9)

where k represents the hydraulic permeability tensor of the sol-
vent through the solid matrix. The permeability and diffusivity
tensors are related to the diffusive drag tensors appearing in (2.2)
according to

k ¼ uwð Þ2 fwsð Þ�1

d0 ¼ Rhuwc fuwð Þ�1 � d0I

d ¼ Rhuwc fus þ fuwð Þ�1
(2.10)

though these explicit relationships are not needed here since k, d,
and d0 may be directly specified in a particular analysis. Since the
axiom of entropy inequality requires that the tensors fab be posi-
tive semidefinite (see Appendix of [35]), it follows that d0 must be
greater than or equal to the largest eigenvalue of d. Constitutive
relations are needed for these transport properties, which relate
them to the solid matrix strain [7,34,35,53–55] and solute concen-
tration. Note that the relations in (2.8) represent generalizations of
Darcy’s law for fluid permeation through porous media, and
Fick’s law for solute diffusion in porous media or free solution.

2.5 Continuous Variables. In principle, the objective of the
finite element analysis is to solve for the three unknowns u, p, and
c using the partial differential equations that enforce mixture mo-
mentum balance in (2.1), mixture mass balance in (2.5), and sol-
ute mass balance in (2.6). The remaining solvent and solute
momentum balances in (2.8) and solid mass balance in (2.7) have
been reduced to algebraic equations that may be substituted into
the three partial differential equations as needed. Solving these
equations requires the application of suitable boundary conditions
that are consistent with mass, momentum and energy balances

across boundary surfaces or interfaces. When defining boundaries
or interfaces on the solid matrix, whose outward unit normal is n,
mass and momentum balance relations demonstrate that the mix-
ture traction t ¼ T � n and normal flux components wn ¼ w � n
and jn ¼ j � n must be continuous across the interface [52,56].
Therefore, t, wn, and jn may be prescribed as boundary conditions.

Combining momentum and energy balances across an interface
also demonstrates that ~lw and ~lu must be continuous [52,57],
implying that these mechanochemical potentials may be
prescribed as boundary conditions. However, because of the arbi-
trariness of the reference states lw

0 , lu
0, p0, and c0, and the ill-

conditioning of the logarithm function in the limit of small solute
concentration, the mechanochemical potentials do not represent
practical choices for primary variables in a finite element imple-
mentation. An examination of (2.3) also shows that continuity of
these potentials across an interface does not imply continuity of
the fluid pressure p or solute concentration c. Therefore, pressure
and concentration are also unsuitable as nodal variables in a finite
element analysis and they must be replaced by alternative choices.
Based on the similar reasoning presented by Sun et al. [17], an ex-
amination of the expressions in (2.3) shows that continuity may
be enforced by using

~p ¼ p� Rh Uc
~c ¼ c

~j
(2.11)

where ~p is the effective fluid pressure and ~c is the effective solute
concentration in the mixture. Note that ~p represents that part of
the fluid pressure which does not result from osmotic effects
(since the term RhUc may be viewed as the osmotic pressure
contribution to p); and ~c is a straightforward measure of the solute
activity, since au ¼ ~c=c0. Therefore these alternative variables
have clear physical meanings.

Since the unknowns are now given by u, ~p, and ~c, the governing
partial differential equations may be rewritten in the form

�grad ~pþ RhU~j~cð Þ þ div Te ¼ 0

div vs þ wð Þ ¼ 0
@ uw ~j~cð Þ

@t þ div jþ uw ~j~cvsð Þ ¼ 0

(2.12)

where

w ¼ �~k � grad ~pþ Rh ~j
d0

d grad ~c
� �

j ¼ ~jd � �uwgrad ~cþ ~c
d0

w
� �

~k ¼ k�1 þ Rh
uw

~j~c
d0

I� d
d0

� �h i�1

uw ¼ 1� us
r

J

(2.13)

Constitutive equations are needed to relate Te, k, d, d0, ~j, and U
to the solid matrix strain and effective solute concentration.

2.6 Principle of Virtual Work. The virtual work integral for
this problem is given by

dW ¼ �
Ð

bdv � div Tdv

�
Ð

bd~p div vs þ wð Þ dv

�
Ð

bd~c @ uw ~j~cð Þ
@t þ div jþ uw ~j~cvsð Þ

h i
dv

(2.14)

where dv is the virtual velocity of the solid, d~p is the virtual effec-
tive fluid pressure, and d~c is the virtual molar energy of the solute;
b represents the mixture domain in the spatial frame and dv is an
elemental mixture volume in b. In the last integral of dW, note that

@ uw ~j~cð Þ
@t

þ div uw ~j~cvsð Þ ¼ 1

J

Ds

Dt
Juw ~j~cð Þ (2.15)
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where Dsf=Dt � @f=@tþ vs � grad f is the material time derivative
of a scalar function f in the spatial frame, following the solid.
Similarly, note that div vs ¼ J�1 DsJ=Dtð Þ. Using the divergence
theorem, the virtual work integral may be separated into internal
and external contributions dW ¼ dWint � dWext, where

dWint ¼
Ð

bT : dDsdvþ
Ð

b w � grad d~p� d~p
J

DsJ
Dt

� �
dv

þ
Ð

b j � grad d~c� d~c
J

Ds

Dt Juw ~j~cð Þ
� 	

dv

dWext ¼
Ð
@b dv � tþ d~pwn þ d~cjnð Þ da

(2.16)

with dWext being evaluated on the domains boundary surface @b.
In the first expression dDs ¼ grad dvþ gradTdv


 �
=2 represents

the virtual solid rate of deformation.
To solve this nonlinear system using an iterative Newton

scheme, the virtual work must be linearized at trial solutions,
along increments in u, ~p, and ~c,

dW þ DdW Du½ � þ DdW D~p½ � þ DdW D~c½ � � 0 (2.17)

where, for any function f qð Þ, Df Dq½ � represents the directional de-
rivative of f along Dq [58]. To operate the directional derivative
on the integrand of dWint, it is first necessary to convert the inte-
grals from the spatial to the material domain [58]:

dWint ¼
Ð

BS : d _EdV þ
Ð

B W � Grad d~p� d~p @J
@t


 �
dV

þ
Ð

B J � Grad d~c� d~c @
@t Juw ~j~cð Þ

� 	
dV

(2.18)

where B represents the mixture domain in the material frame, dV
is an elemental mixture volume in B, and

S ¼ JF�1 � T � F�T ; d _E ¼ FT � dDs � F
W ¼ JF�1 � w; J ¼ JF�1 � j (2.19)

These relations show that the second Piola-Kirchhoff stress tensor
S, and material flux vectors W and J, are, respectively, related to
T, w, and j by the Piola transformations for tensors and vectors
[58,59]. Substituting (2.13) into (2.19) produces

W ¼ �~K � Grad ~pþ Rh ~j
d0

J�1C � D � Grad ~c
� �

J ¼ ~jD � �uwGrad ~cþ ~c
d0

J�1C �W
� � (2.20)

where C ¼ FT � F is the right Cauchy-Green deformation tensor;
~K and D are the material representations of the permeability and
diffusivity tensors, related to ~k and d via the Piola transformation,

~K ¼ JF�1 � ~k � F�T

D ¼ JF�1 � d � F�T (2.21)

The linearization of dWint is rather involved and a summary of the
resulting lengthy expressions is provided in Appendix A. In con-
sideration of the dearth of experimental data relating ~j and U to
the complete state of solid matrix strain (such as C), this imple-
mentation assumes that the dependence of these functions on the
strain is restricted to a dependence on the relative volume
J ¼ det Cð Þ1=2

. Furthermore, it is assumed that the free solution
diffusivity d0 is independent of the strain.

The linearization of dWext is described in Appendix B. Follow-
ing the linearization procedure, the resulting expressions may be
discretized by nodally interpolating u, ~p, and ~c over finite ele-
ments, producing a set of equations in matrix form, as described
in Appendix C.

2.7 Implementation. The formulation presented in this study
is implemented in the FEBio open-source finite element code
(FEBio, http:==mrl.sci.utah.edu=software) by introducing an

additional module dedicated to solute transport in deformable porous
media. The code is written in the Cþþ object-oriented program-
ming language, which employs classes to describe data structures
and associated functions. Classes are implemented to describe mate-
rial functions for Te, k, d (and d0), ~j, and U, which allow the formu-
lation of any desired constitutive relation for these functions of C
and ~c, along with corresponding derivatives of these functions with
respect to C and ~c. The implementation accepts essential boundary
conditions on u, ~p, and ~c, or natural boundary conditions on t, wn,
and jn; initial conditions may also be specified for ~p and ~c. Analysis
results for pressure and concentration may be displayed either as ~p
and ~c, or as p and c by inverting the relations of (2.11).

3 Validations

To validate the numerical solutions from the finite element
implementation, analyses were performed for which alternative
solutions were available, either from analytical solutions or alter-
native numerical schemes. In most cases these solutions were lim-
ited to the range of infinitesimal strains; therefore additional
illustrations are also provided where large deformations were
induced. An additional purpose of these validations was to illus-
trate fundamental phenomena encompassed in this implementa-
tion, including standard Fickian diffusion problems, osmotically
induced solid matrix deformations, effects of solute partitioning
(~j < 1), and solute concentration enhancement under deforma-
tional loading. Though the code was formulated to allow strain
and concentration-dependent constitutive relations for k, d, U,
and ~j, only the simplest constitutive models (constant properties)
were adopted for the purpose of numerical validations, since the
primary concern of this study did not revolve around the specific
form of such constitutive relations.

3.1 Fickian Diffusion Consider a cylindrical disk of a porous
material, with radius a and height h, placed in a large, well-stirred
bath containing a solute with concentration c	. A cylindrical coor-
dinate system r; zð Þ is employed to describe the axisymmetric ge-
ometry. The bottom of the disk (z ¼ 0) rests on a rigid
impermeable substrate. Over time, the solute diffuses from the
bath into the porous disk, across its lateral (r ¼ a) and top (z ¼ h)
surfaces. If the deformation of the solid matrix is negligible (if the
matrix is rigid, or if the osmotic pressure difference produced by
the solute concentration is negligible in comparison to the stiff-
ness of the solid matrix), standard Fickian diffusion [1] takes
place and the resulting solute concentration in the porous material
is given by the axisymmetric solution to the two-dimensional dif-
fusion equation:

c r; z; tð Þ ¼ c	 1� 4

p

X1
m¼0

X1
n¼0

�1ð Þn

cmJ1 cmð Þ nþ 1
2


 � J0 cm

r

a

� �(

cos nþ 1

2

� �
p

z

h

� �
exp �dk2

mnt

 �� (3.1)

where d is the solute diffusivity in the porous medium, J0 and J1

are Bessel functions of the first kind, of order 0 and 1,
respectively,

k2
mn ¼ nþ 1

2

� �
p
h

� �2

þ cm

a

� �2

(3.2)

and cm is the mth root of J0 cð Þ.
A 3D finite element model of a quarter disk is shown in Fig. 1,

with a ¼ 1 mm and h ¼ 1 mm. Mesh biasing was employed to
capture narrow boundary layers in solute concentration near the
lateral and top surfaces; the mesh employed 20 increments along
r, 20 along z, and 20 along the circumferential direction, for a
total of 8000 elements. The solid matrix was described by a neo-
Hookean elastic solid with a Young’s modulus of 10 MPa and
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Poisson’s ratio of 0:3. The diffusivity tensor was taken to be iso-
tropic, d ¼ dI, with d ¼ 10�3 mm2=s; the free diffusivity was
also prescribed to be d0 ¼ d. The hydraulic permeability was
given by k ¼ kI, with k ¼ 1 mm4=N � s. It was also assumed that
~j ¼ 1, U ¼ 1, and us

r ¼ 0:2 An external bath concentration of
c	 ¼ 1 mM was prescribed on the lateral and top surfaces; simi-
larly, the ambient fluid pressure in the bath was assumed to be
p	 ¼ 0. Therefore, in the finite element model, the boundary con-
ditions were t ¼ 0 and, according to (2.11), ~p ¼ �Rhc	 and
~c ¼ c	. The initial pressure and concentration in the disk
were, respectively, set to ~p ¼ 0 and ~c ¼ 0. For these conditions,
the osmotic pressure difference between the bath and the
disk never exceeded Rhc	 ¼ 2:5
 10�3 MPa (given that
R ¼ 8:314
 10�6 mJ=nmol � K and assuming that h ¼ 298 K), a
value negligible relative to the solid matrix modulus. Conse-
quently, only variations in concentration were significant in this
analysis, consistent with the premise of classical Fickian diffu-
sion. Surface plots of the analytical and finite element solutions
for the solute concentration in the r; zð Þ domain, at two represen-
tative time points, verified agreement between the two solutions
(Fig. 2).

3.2 Osmotic Loading of a Spherical Gel. Osmotic loading
(sometimes called osmotic shock) represents the process of sub-
jecting a porous medium to a change in ambient solute concentra-
tion. In a prior study, Albro et al. [5] reported experimental
measurements for osmotic loading of spherical alginate gels
immersed in a solution containing dextran molecules. Results
showed the gel initially shrunk, before slowly recovering to a
steady-state volume smaller than its initial (reference) value in a
solute-free bath. Under the assumption of infinitesimal deforma-
tions of a linear isotropic elastic solid matrix, they provided a set
of coupled, nonlinear partial differential equations to solve for the
radial deformation and solute concentration in the gel. These
equations were solved numerically using a finite difference
scheme. Their solution was employed here for comparison with
the finite element implementation.

A finite element model of one-eighth of a sphere, of radius
a ¼ 0:6 mm, was used for this analysis [Fig. 3(a)]. A uniform
mesh distribution, with 40 elements, was employed along the ra-
dial direction, to match the finite difference mesh; a total of 7680
elements comprised the entire finite element mesh. For both solu-
tions schemes, the following material properties were used: A
solid matrix with a Young’s modulus of 6
 10�3 MPa and Pois-

son’s ratio of 0; us
r ¼ 0:04, ~j ¼ 1, U ¼ 1; the permeability and

diffusivity were isotropic, with k ¼ 8
 10�2 mm4=N � s,
d ¼ 2:75
 10�4 mm2=s, and d0 ¼ 3:9
 10�4 mm2=s.

For the comparison with the finite difference solution, an exter-
nal bath concentration of c	 ¼ 6
 10�3 mM was prescribed on
the spherical surface, with the ambient pressure set to p	 ¼ 0.
Thus, ~c ¼ c	 and ~p ¼ �Rhc	, and the initial osmotic pressure dif-
ference (1:5
 10�5 MPa) remained small in comparison to the
Young’s modulus, as required for the infinitesimal strain solution
of the finite difference analysis. Results for the radial displace-
ment u [Fig. 3(b)] and solute concentration c [Fig. 3(c)], as a func-
tion of the radial position r and selected times t, verified
agreement between the two solutions.

To further illustrate the significant influence of osmotic loading
and solubility on solid matrix deformation, the finite element anal-
ysis was also repeated with c	 ¼ 6 mM and ~j ¼ 0:986, and the
solid matrix was modeled as neo-Hookean under finite deforma-
tion. The resulting initial osmotic pressure difference
(Rhc	 ¼ 1:5
 10�2 MPa) was significantly greater than the
Young’s modulus of the solid matrix. Results from the finite ele-
ment analysis demonstrate that the gel volume decreased consid-
erably upon the application of the osmotic load (Fig. 4), due to the
exudation of interstitial fluid. However, as the average solute con-
centration in the gel increased monotonically with solute influx,
the solvent flux reversed direction and the gel volume recovered
until reaching a steady state. The steady-state volume was smaller
than the initial volume V0, because the steady-state solute

Fig. 1 Finite element mesh for 2D axisymmetric Fickian
diffusion

Fig. 2 2D axisymmetric Fickian diffusion, showing finite ele-
ment results (symbol) and analytical solution (surface), at two
representative time steps: (a) t ¼ 4:64 s; (b) t ¼ 72:08 s.
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concentration in the gel, ~jc	, did not match the external bath con-
centration, thereby maintaining a small osmotic pressure differ-
ence of magnitude Rh 1� ~jð Þ c	 ¼ 2:1
 10�4 MPa on the gel.

3.3 Concentration Enhancement Under Step
Compression. Just as osmotic loading may cause matrix defor-
mation, deformational loading may produce solute transport.
Mauck et al. [38] performed a finite difference analysis which

demonstrated that, for certain combinations of material properties,
dynamic deformational loading of a cylindrical disk of a porous
tissue or gel may pump solute from the external bath into the disk
to achieve concentrations in excess of the value in the bath. This
theoretical prediction was verified in subsequent experimental
studies that examined dextran and transferrin uptake in agarose
and cartilage disks [39,60], further validated with a direct compar-
ison of experiments and theory [40].

The numerical scheme for solving the coupled partial differen-
tial equations for this infinitesimal strain analysis [38,40] was
employed here for comparison with the finite element implemen-
tation. A finite element mesh of a quarter disk (radius 2 mm,
height 2:3 mm) was used, with 500 uniform increments along the
radial direction (to match the axisymmetric finite difference anal-
ysis), one increment along the height, and 12 increments along the
circumference, for a total of 6000 elements in the mesh. The solid
matrix was ascribed a Young’s modulus of 0:43 MPa and Pois-
son’s ratio of 0; the isotropic hydraulic permeability was
k ¼ 3:6
 10�3 mm4=N � s; the solute diffusivities were
d ¼ 1:2
 10�6 mm2=s in the disk and d0 ¼ 3:7
 10�5 mm2=s in
free solution; the remaining properties were us

r ¼ 0:098, ~j ¼ 1,
and U ¼ 1. The analysis assumed that the disk was initially equili-
brated in a bath with solute concentration c	. Since ~j ¼ 1 in this
problem, the initial effective concentration in the disk was ~c ¼ c	;
assuming an ambient pressure p	 ¼ 0, the initial effective pressure
in the disk was ~p ¼ �Rhc	 (the initial osmotic pressure difference
between the bath and disk was zero). The bath concentration was
not altered in this analysis. A uniform axial engineering strain e0

was prescribed across the disk, to simulate compression with fric-
tionless, impermeable, smooth, loading platens.

Fig. 3 Osmotic loading of a spherical gel, under infinitesimal strain conditions,
comparing the finite element solution (symbol) to the finite difference solution
(solid curve) at representative time points. (a) Finite element geometry and mesh.
(b) Radial displacement of the solid matrix. (c) Solute concentration.

Fig. 4 Relative volume V=V0 and average effective solute con-
centration ~cavg during osmotic loading of a spherical gel, under
finite strain conditions. V=V0 initially decreases as a result of
solvent outflux; as the effective solute concentration in the gel
slowly increases by diffusion from the bath, solvent flows back
into the gel and V=V0 recovers to a steady-state value less than
unity (since ~j<1).
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For comparison with the infinitesimal strain analysis employing
the finite difference scheme, a value of e0 ¼ �0:001 was pre-
scribed over a short ramp time of 0:01 s, then maintained constant
until a steady state response was achieved. Since the resulting
solid matrix deformation was nearly indistinguishable from the
analytical solution for unconfined compression of a biphasic mate-
rial [61], only the solute concentration results are presented here.
The radial distribution in solute concentration is displayed for var-
ious time points in Fig. 5, showing agreement between the finite
element and finite difference solutions. The solute concentration
was observed to spike initially at the radial edge of the disk; over
time, solute concentration rose throughout the disk, before slowly
subsiding back to the bath concentration at steady state.

To illustrate the response under larger deformations, the analy-
sis was repeated with e0 ¼ �0:2, all other parameters remaining
the same. The radial profile of the solute concentration remained
qualitatively similar to the infinitesimal strain response (not
shown); however the magnitude of solute concentration increased
considerably under this larger prescribed strain, as illustrated in
the temporal response of the concentration averaged over the
entire disk (Fig. 6).

4 Discussion

This study reports the finite element implementation of mecha-
nochemical phenomena in deformable porous media undergoing
finite deformation. Though prior custom-written finite element
implementations of related frameworks have been presented in
the literature, several have focused on the mechano-electrochemi-
cal phenomena associated with the transport of monovalent coun-
terions in a charged solid matrix, generally under infinitesimal
strains [15–20] and, in a few cases, under finite deformation [21].
Finite element studies of neutral solute transport in deformable
porous media have also been formulated [50], but have mostly
relied on iterative solving of thermal and poroelastic transport in
commercial codes [26,27]; however, Sengers et al. [25] provided
a custom-written implementation, valid under finite deformation,
which also modeled transport and biosynthesis.

A primary distinction with all these prior studies is that the cur-
rent implementation incorporated the concept of solubility (or sol-
ute partitioning), embodied in ~j, and solute-solid frictional
interactions, embodied in the nonzero term fus [or alternatively, in
the explicit distinction between the solute diffusivity tensor d in
the mixture versus d0 ¼ d0I in free solution, see (2.10)]. Solute
partitioning [3,4] is a well-recognized phenomenon in biological
tissues and gels, which is manifested by a smaller solute concen-
tration in the porous medium relative to the surrounding bath,
under steady-state conditions. This partitioning may occur both as

a result of steric volume exclusion from a fraction of the pore
space as well as long-range electrostatic interactions [2], therefore
the solubility strictly equals the partition coefficient only in the
absence of long-range electrostatic interactions (neutral solute in
charged matrix, charged solute in neutral matrix, or a neutral=neu-
tral combination). Experimental findings have demonstrated that
this partitioning may vary with the state of solid matrix strain
[5,6] as well as solute concentration [44,45]. Furthermore, parti-
tioning may also explain partial volume recovery responses, in
gels [5] and cells [43] subjected to osmotic loading, as a result of
passive transport mechanisms rather than active regulatory proc-
esses as usually assumed in cells [62]. Partial volume recovery
was illustrated in the problem of osmotic loading of a spherical
gel (Fig. 4), which reproduced prior experimental findings [5].
Therefore, a finite element framework that incorporates a strain
and concentration-dependent solubility ~j provides a valuable
extension of prior implementations that can extend the range of
modeling features.

It is also well known experimentally that solute diffusivity in a
porous medium is generally slower than in free solution [2] (also
see the cartilage-related literature review in the study of Mauck et
al. [38]). This reduction in diffusivity has long been physically
attributed to the additional transport hindrance imparted by the
solid matrix. Mauck et al. [38] explicitly accounted for nonzero
frictional interaction between solute and solvent and showed that
a dynamically loaded solid matrix may pump solute into the po-
rous medium as a result of this solute-solid momentum exchange.
These predictions were subsequently confirmed experimentally in
a series of studies that provided direct evidence for this mecha-
nism [39,40,60]. Therefore, solute-solid interactions represent an
important mechanism, especially when the solid may undergo
dynamic deformation, that should be incorporated into a general
finite element framework of solute transport in deformable porous
media. The phenomenon of solute concentration enhancement
was illustrated in the problem of step compression of a disk ini-
tially equilibrated in a solute bath (Figs. 5 and 6).

A consequence of modeling a variety of phenomena associated
with solute transport in deformable porous media is that the num-
ber of material functions needed to model the solute behavior
increases. Thus, the current implementation required the specifica-
tion of the diffusivity d in the mixture and d0 in free solution, the
solubility ~j, and the osmotic coefficient U. This stands in contrast
with classical diffusion problems where it is generally required to
only specify a single diffusion coefficient. Of course, this simpli-
fied case could be reproduced in the current framework by letting
d ¼ d0I, ~j ¼ 1, and U ¼ 1, under the assumption of negligible
hindrance between solute and solid, no steric volume exclusion,
and ideal physicochemical behavior. Nevertheless, since these
material functions may generally depend on the solid matrix strain

Fig. 5 Concentration enhancement under a step, infinitesimal,
compression of a disk. The radial distribution of the solute con-
centration, normalized to the bath concentration, is displayed
at selected time points. Finite element results (thick black
curves) are compared to a finite difference solution (thinner
gray curves).

Fig. 6 Concentration enhancement under a step, finite, com-
pression of a disk. The temporal response of the average solute
concentration in the disk (normalized to the bath concentration
c	), shows an initial rise before slowly subsiding back to the ini-
tial, ambient concentration.
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and solute concentration, the derivation of the tangent stiffness
matrix in the finite element implementation becomes considerably
more involved, as suggested by the lengthy expressions presented
in the Appendix. In the Cþþ code employed in the FEBio imple-
mentation, vector and tensor classes were employed to facilitate
the computation of these lengthy expressions by providing lines
of code that closely reproduce the corresponding analytical
expressions, rather than dealing directly with the Cartesian com-
ponents of the vectors and tensors.

The governing equations (2.1)–(2.9) reduce to the framework of
the biphasic theory for modeling solid-fluid mixtures [63], by sim-
ply letting the solute concentration reduce to zero. In the biphasic
theory there is no distinction between the fluid pressure p and the
corresponding effective fluid pressure ~p, as noted from (2.11).
Therefore this biphasic-solute framework is fully compatible with
the simpler biphasic framework that uses u and p as nodal variables,
and FEBio seamlessly integrates models that contain both types of
materials, as well as purely elastic or viscoelastic solids.

The availability of the FEBio source code, and binaries for a
variety of platforms, in the public domain, also facilitates the dis-
semination of this implementation as well as the addition of newly
formulated constitutive relations by the research community at
large. Though the analysis of solute transport and mechanochemi-
cal phenomena in porous media is a classical science, modern der-
ivations and investigations are uncovering interesting mechanisms
and behaviors that enhance our understanding of cell and tissue
physiology. Investigators who need an easier pathway to formu-
late novel constitutive formulations for the behavior of solutes in
deformable porous media may find that the FEBio platform pro-
vides a broad and suitable foundation for this purpose. Future
extensions of FEBio may include the incorporation of external
body forces (e.g., to model solute sedimentation in centrifuges),
chemical reactions with the solid and solvent (including binding
and release kinetics), and active transport (e.g., transport by mo-
lecular motors).
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Appendix A: Linearization of Internal Virtual Work

The virtual work integral dWint in (2.18) may be linearized term by
term along increments in Du, D~p, and D~c using the general form

D

ð
B

FdV

� �
Dq½ � ¼

ð
B

DF Dq½ � dV ¼
ð

b

fdv (A1)

For notational simplicity, the integral sign is omitted and the lin-
earization of each term is presented in the form
DF Dq½ � dV ¼ f dt.

A.1 Linearization Along Du

The linearization of the first term in dWint along Du yields

D S : d _E

 �

Du½ �dV¼ dDs : C : DeþT : gradTDu �graddv

 �� 	

dv

(A2)

where C is the spatial elasticity tensor of the mixture (tensor
dyadic products �, �, and � are described in [64]),

C ¼ Ce � ~pþ RhU~j~cð Þ I� I� 2I�Ið Þ � Rh~cJ
@ U~jð Þ
@J

I� I (A3)

and Ce is the spatial elasticity tensor of the solid matrix,

Ce ¼ J�1 F�Fð Þ : 2
@Se

@C
: FT�FT

 �

(A4)

The linearization of the second term is

D W � Grad d~pð Þ Du½ � dV ¼ grad d~p � w0udv (A5)

where

w0u � J�1F � DW Du½ �
¼ � ~K : De


 �
� grad ~pþ Rh ~j

d0
d � grad ~c

� �
� Rh

d0

~k � J2 @ J�1 ~jð Þ
@J div Duð Þ Iþ 2~jDe

� �
� d � grad ~c

�~j Rh
d0

~k � D : Deð Þ � grad ~c

(A6)

with

~K ¼ J�1 F�Fð Þ : 2 @ ~K
@C

: FT�FT

 �

D ¼ J�1 F�Fð Þ : 2 @D
@C

: FT�FT

 � (A7)

representing the spatial tangents, with respect to the strain, of the
effective permeability and solute diffusivity, respectively. These
fourth-order tensors exhibit minor symmetries but not major sym-
metry, as described in our recent study [35]. Since ~K is given by
substituting (2.13)3 into (2.21)1, the evaluation of ~K is rather
involved and it can be shown that

~K ¼ 2 ~k� I� 2~k�I

 �

� ~k�~k

 �

: G (A8)

where

G ¼ 2 k�1 � I� 2k�1�I

 �

� k�1�k�1

 �

: K
þ Rh~c

d0
J @
@J

~j
uw

� �
I� d

d0

� �
� I

þ Rh~c
d0

~j
uw I� I� 2I�I� 1

d0
D

� � (A9)

and

K ¼ J�1 F�Fð Þ : 2
@K

@C
: FT�FT

 �

(A10)

The next term in dWint linearizes to

�D d~p
@J

@t

� �
Du½ � dV ¼ �d~p div Duð Þ I� gradTDu

� 	

: grad vs þ div Du

�
Þ dv

(A11)

where

Du
�
� Du

Dt
(A12)

and Dt represents the time increment relative to the previous time
point. The next term is given by

D J � Grad d~cð Þ Du½ � dV ¼ grad d~c � j0udv (A13)

where

j0u� J�1F �DJ Du½ � ¼ J @~j
@J divDuð Þdþ ~jD : De

� 	
� �uwgrad ~cþ ~c

d0
w

� �
þ~jd � �us divDuð Þgrad ~cþ ~c

d0
2De� divDuð ÞI½ � �w

n o
þ~j ~c

d0
d �w0u

(A14)
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The last term is

�D u~c@ Juw ~j~cð Þ
@t

h i
Du½ �dV¼�d~c ~c@J

@t
@2 Juw ~jð Þ
@J2 þ@~c

@t
@
@J Juw ~jþ@~j

@~c
~c


 �� 	n o
divDudv�d~c@ Juw ~jð Þ

@J divDuð ÞI�gradTDu
� 	

: gradvsþdivDu
� �

~cdv

(A15)

A.2 Linearization Along D~p

The linearization of the various terms in dWint along D~p yields

D S : d _E

 �

D~p½ � dV ¼ �D~p div dvdv (A16)

D W �Gradd~p�d~p
@J

@t

� �
D~p½ �dV¼�gradd~p �~k �gradD~pdv (A17)

D J � Grad d~c� d~c
@ Juw ~j~cð Þ

@t

� �
D~p½ � dV

¼ � ~j~c

d0

grad d~c � d � ~k � gradD~pdv (A18)

A.3 Linearization Along D~c

The linearization of the first term in dWint along D~c yields

D S : d _E

 �

D~c½ � dV ¼ D~c T0c : dD� Rh
@ U~j~cð Þ
@~c

div dv

� �
dv

(A19)

where

T0c ¼ J�1F � @Se

@~c
� FT (A20)

represents the spatial tangent of the stress with respect to the
effective concentration. The next term is

D W � Grad d~pð Þ D~c½ � dV ¼ grad d~p � w0cdv (A21)

where

w0c � J�1F � DW D~c½ �
¼ �D~c~k0c � grad ~pþ Rh ~j

d0
d � grad ~c

� �
�Rh~k � D~c @

@~c
~j

d0

� �
dþ ~j

d0
d0c

h i
� grad ~cþ ~j

d0
d � grad D~c

n o (A22)

and

~k0c ¼ J�1F � @
~K

@~c
� FT (A23)

is the spatial tangent of the effective hydraulic permeability with
respect to the effective concentration.
The next term reduces to

� D d~p
@J

@t

� �
D~c½ � dV ¼ 0 (A24)

The following term is

D J Grad d~cð Þ D~c½ � dV ¼ grad d~c � j0cdv (A25)

where

j0c � J�1F � Dj0 D~c½ �
¼ D~c @~j

@~c dþ ~jd0c

 �

� �uwgrad ~cþ ~c
d0

w
� �

�uw ~jd � grad D~cþ ~j ~c
d0

d � w0c
(A26)

and

d0c ¼ J�1F � @D

@~c
� FT (A27)

is the spatial tangent of the diffusivity with respect to the effective
concentration.
The last term is

�D @ Juw ~j~cð Þ
@t d~c

h i
D~c½ � dV ¼ �d~c 1

J
@ Juwð Þ
@t

@ ~j~cð Þ
@~c D~cdv
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~c @~j
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D~cdv

(A28)

where

D~c
�
� D~c

Dt
(A29)

Appendix B: Linearization of External Virtual Work

The linearization of dWext in (2.16) depends on whether natural
boundary conditions are prescribed as area densities or total net
values over an area. Thus, in the case when tda (net force), wnda
(net volumetric flow rate), or jnda (net molar flow rate) are pre-
scribed over the elemental area da, there is no variation in dWext

and it follows that DdWext ¼ 0. Alternatively, in the case when t,
wn, or jn are prescribed, the linearization may be performed by
evaluating the integral in the parametric space of the boundary
surface @b, with parametric coordinates g1; g2ð Þ. Accordingly, for
a point x g1; g2ð Þ on @b, surface tangents (covariant basis vectors)
are given by

ga ¼
@x

@ga
a ¼ 1; 2ð Þ (B1)

and the outward unit normal is

n ¼ g1 
 g2

g1 
 g2j j (B2)

The elemental area on @b is da ¼ g1 
 g2j j dg1dg2. Consequently,
the external virtual work integral may be rewritten as

dWext ¼
ð
@b

dv � tþ d~pwn þ d~cjnð Þ g1 
 g2j j dg1dg2 (B3)

The directional derivative of dWext may then be applied directly to
its integrand, since the parametric space is invariant [58].
If we restrict traction boundary conditions to the special case of
normal tractions, then t ¼ tnn where tn is the prescribed normal
traction component. Then it can be shown that the linearization of
dWext along Du produces

D dWextð Þ Du½ � ¼
ð
@b

tndvþ wnd~pnþ jnd~cnð Þ @Du

@g1

 g2

�

þg1 

@Du

@g2

�
dg1dg2

(B4)

The linearizations along D~p and D~c reduce to zero,
D dWextð Þ D~p½ � ¼ 0 and D dWextð Þ D~c½ � ¼ 0.

Appendix C: Discretization

To discretize the virtual work relations, let
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dv ¼
Pm
a¼1

Nadva; Du ¼
Pm
b¼1

NbDub

d~p ¼
Pm
a¼1

Nad~pa; D~p ¼
Pm
b¼1

NbD~pb

d~c ¼
Pm
a¼1

Nad~ca; D~c ¼
Pm
b¼1

NbD~cb

(C1)

where Na represents the interpolation functions over an element,
dva, d~pa, d~ca, Dua, D~pa, and D~ca, respectively, represent the nodal
values of dv, d~p, d~c, Du, D~p, and D~c; m is the number of nodes in
an element.
The discretized form of dWint in (2.16) may be written as

dWint ¼
Xne

e¼1

Xn eð Þ
int

k¼1

WkJg

Xm

a¼1

dva d~pa d~ca½ � �
ru

a

rp
a

rc
a

2
4

3
5 (C2)

where ne is the number of elements in b, n
eð Þ

int is the number of inte-
gration points in the eth element, Wk is the quadrature weight
associated with the kth integration point, and Jg is the Jacobian of
the transformation from the current spatial configuration to the
parametric space of the element. In the above expression,

ru
a ¼ T � grad Na

rp
a ¼ w � grad Na � Na

1
J
@J
@t

rc
a ¼ j � grad Na � Na

1
J
@
@t Juw ~j~cð Þ

(C3)

and it is understood that Jg, ru
a, rp

a , and rc
a are evaluated at the para-

metric coordinates of the kth integration point. Since the paramet-
ric space is invariant, time derivatives are evaluated in a material
frame; for example, the time derivative DsJ x; tð Þ=Dt appearing in
(2.16) becomes @J gk; tð Þ=@t when evaluated at the parametric
coordinates gk of the kth integration point.
Similarly, the discretized form of DdWint ¼ DdWint Du½ � þ DdWint

D~p½ � þ DdWint D~c½ � may be written as
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(C4)

where the terms in the first column are the discretized form of the
linearization along Du:

Kuu
ab ¼ grad Na � C � grad Nb þ grad Na � T � grad Nbð Þ I (C5)

k
pu
ab ¼ wu

b


 �T � grad Na þ Naq
pu
b (C6)

kcu
ab ¼ ju

b


 �T � grad Na þ Naqcu
b (C7)

where

wu
b ¼� grad ~pþRh ~j
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n o

þ~j ~c
d0

d�wu
b

(C9)

q
pu
b ¼ � div vs þ 1

Dt

� �
grad Nb � gradTvs � grad Nb (C10)

qcu
b ¼ � ~c @J

@t
@2 Juw ~jð Þ
@J2 þ @~c

@t
@
@J Juw ~jþ @~j

@~c
~c


 �� 	n o
grad Nb

þ~c @ Juw ~jð Þ
@J q

pu
b

(C11)

The terms in the second column of the stiffness matrix in (C4) are
the discretized form of the linearization along D~p:

k
up
ab ¼ �Nb grad Na; (C12)

kpp
ab ¼ �grad Na � k � grad Nb (C13)

kcp
ab ¼ �

~j~c

d0

grad Nad � ~k � grad Nb (C14)

The terms in the third column of the stiffness matrix in (C4) are
the discretized form of the linearization along D~c:

kuc
ab ¼ Nb T0c � gradNa � Rh

@ U~j~cð Þ
@~c

grad Na

� �
(C15)

kpc
ab ¼ grad Na � wc

b (C16)

kcc
ab ¼ grad Na � jc

b þ Naqc
b (C17)

where

wc
b ¼ �Nb

~k0c � grad ~pþ Rh ~j
d0

d � grad ~c
� �

�Rh~k � Nb
@
@~c

~j
d0

� �
dþ ~j

d0
d0c

h i
� grad ~cþ ~j

d0
d � gradNb

n o (C18)

jc
b ¼ Nb

@~j
@~c dþ ~jd0c

 �

� �uwgrad ~cþ ~c
d0

w
� �

þ~jd � �uwgrad Nb þ ~c
d0

wc
b

� � (C19)

qc
b ¼ �Nb

1
J
@ Juwð Þ
@t

@ ~j~cð Þ
@~c

�Nbuw @2 ~j~cð Þ
@~c2

@~c
@t þ 1

Dt
@ ~j~cð Þ
@~c þ @J

@t
@
@~c

~c @~j
@J


 �h i (C20)

The discretization of dWext in (B3) has the form

dWext ¼
Xne

e¼1

Xn eð Þ
int

k¼1

WkJg

Xm

a¼1

dva d~pa d~ca½ � �
Natnn

Nawn

Najn

2
4

3
5 (C21)

where Jg ¼ g1 
 g2j j. The summation is performed over all sur-
face elements on which these boundary conditions are prescribed.
The discretization of �DdWext has the form

�DdWext¼
Xne

e¼1

Xn eð Þ
int

k¼1

WkJg

Xm

a¼1

Xm

b¼1

dva d~pa d~ca½ ��
Kuu

ab 0 0

k
pu
ab 0 0

kcu
ab 0 0

2
4

3
5� Dub

D~pb

D~cb

2
4

3
5

(C22)

where

Kuu
ab ¼ tnNaA @Nb

@g1 g2 � @Nb

@g2 g1

n o
k

pu
ab ¼ �wnNaA @Nb

@g1 g2 � @Nb

@g2 g1

n o
� n

kcu
ab ¼ �jnNaA @Nb

@g1 g2 � @Nb

@g2 g1

n o
� n

(C23)

In this expression, A vf g is the antisymmetric tensor whose dual
vector is v (such that A vf g � q ¼ v
 q for any vector q).
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