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Figure 1: Our system is composed of many linked views. Structural MRI data is presented in a 3D visualization (top left) whose transfer function
is manipulated using 2D widgets (bottom right). Users may select individual EEG sensors (yellow sphere) in the 3D visualization to explore its
raw signal (bottom left) and time-frequency representation (middle right). The user also interacts with the time-frequency query area (top right)
to generate spectral queries. The time-frequency display and query area are colormapped using an interactive widget (middle left). Combined
with the settings in the parameter dialog, the query is issued and relevant sensors are colored blue according to their correlation with the query.

ABSTRACT

Brain activity data is often collected through the use of electroen-
cephalography (EEG). In this data acquisition modality, the electric
fields generated by neurons are measured at the scalp. Although this
technology is capable of measuring activity from a group of neu-
rons, recent efforts provide evidence that these small neuronal col-
lections communicate with other, distant assemblies in the brain’s
cortex. These collaborative neural assemblies are often found by
examining the EEG record to find shared activity patterns.

In this paper, we present a system that focuses on extracting
and visualizing potential neural activity patterns directly from EEG
data. Using our system, neuroscientists may investigate the spectral
dynamics of signals generated by individual electrodes or groups
of sensors. Additionally, users may interactively generate queries
which are processed to reveal which areas of the brain may exhibit
common activation patterns across time and frequency. The utility
of this system is highlighted in a case study in which it is used to
analyze EEG data collected during a working memory experiment.
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1 INTRODUCTION

Electroencephalography (EEG) is a technology developed to inves-
tigate the alert and working brain by reading the electric fields gen-
erated by small neuron groups in the cortex [29]. Since its first use
in humans in 1924, EEG has had a profound impact on our under-
standing of the brain [9, 41]. The processing and analysis of EEG
data falls into two general categories: time domain analysis and
spectral analysis.

Analysis of EEG data in terms of its signal amplitude has lead
to many discoveries regarding the functional characteristics of vari-
ous areas of the brain [6]. However, exploration of EEG data in the
frequency domain has provided additional insight into brain func-
tion [2]. Although interpreting EEG data in the time domain re-
mains a powerful tool for neuroscientists, we focus on the benefits
and difficulties of spectral analysis. Our system (Figure 1) focuses
on exploring spectral patterns generated by the brain by examining
the collection of time-frequency decompositions generated by an
EEG electrode array.

One important utilization of EEG analysis is for the study of
brain function expressed as coordinated neural activity. Identifi-
cation of these activity patterns allow scientists to develop new
theories regarding neurological disorders [32], overall brain func-
tion [11], as well as identify potential new treatments for devastat-
ing diseases [31].



Determining neural activation patterns sub-serving a specific
brain function is a difficult problem. Functional imaging tech-
niques, such as functional magnetic resonance imaging (fMRI),
have provided insight into areas of the brain that are connected.
fMRI studies remain powerful mechanisms to examine coordina-
tion between different areas of the brain. Buccino et al. pro-
vide just one example of fMRI used to uncover functional connec-
tions within the brain [8]. These functional studies have revealed
that many processes in the brain are spread across cortical regions
throughout the brain, as shown in Figure 2. Unfortunately, fMRI
studies are limited in temporal resolution and, because it measures
metabolic rates, cannot provide insights into spectral dynamics.

Discovering important activity characteristics has several uses
in the field of neuroscience. These relationships may be moni-
tored and manipulated to diagnose and treat psychological disor-
ders, respectively [30]. Additionally, insights generated from ex-
ploring the various functions of different spatio-temporal patterns
from EEG often lead to a better understanding of brain function
that can be exploited to create new and more effective drug therapy
regimens [22]. Finally, understanding the temporal and spectral un-
derpinnings of different brain functions is useful when determining
the processing and analysis parameters used to properly interpret
neurophysiological data.

Ilmoniemi et al. have shown that patterns present in EEG data
may be used to identify potential neural circuits [20]. Our sys-
tem extends this concept by allowing users to query EEG records
using time-frequency patterns of their own design. This querying
paradigm enhances the flexibility of the system, allowing scientists
to explore EEG data in a new way.
Contributions. In this paper, we make the following contributions:

• We demonstrate that the ability to query collections of time-
frequency planes with user-generated examples provides sci-
entists with an effective new tool for the exploration of EEG
data.

• We present a novel technique for the exploration of time-
frequency patterns through the use of filtered, normalized
cross-correlogram images.

• We show that our system enhances the analysis of EEG data
during working memory studies, expediting the validation of
stated hypotheses.

This paper is organized as follows. After a brief discussion of
related work in Section 2, Section 3 discusses the details of our sys-
tem. Section 4 presents the process of generating time-frequency
queries, while Section 5 shows how these queries are used to extract
patterns across EEG data. In Sections 6 and 7 we present features
in the data elucidated by the use of our technique in the context of
a working memory study. A robust discussion of this technique is
found in Sections 8 and 9.

2 RELATED WORK

Due to the maturity of EEG technology, many analysis techniques
have been developed to process the associated signal data. Some
studies use event-related potential (ERP) analysis [25] in which
the processing and interpretation of EEG data occurs in the time
domain. However, many studies forgo ERP analysis and use pro-
cessing techniques in the frequency domain [14]. Insights gained
from the spectral dynamics computed from EEG data have lead to
a richer understanding of overall brain functions [16].

Finding a collection of EEG sensors that record similar activity
is useful for neuroscientists. Often, this analysis consists of form-
ing a graph where the vertices represent individual electrodes and
the edges are generated by examining coherence between its two

Figure 2: Brain activity related to working memory is generated in
more than just one part of the brain. Almost every part of the brain
exhibits various patterns of activation spanning the temporal cortex
(green), the parietal cortex (blue), the frontal cortex (light red) and
the prefrontal cortex (dark red).

nodes. However, these methods are often plagued with visualiza-
tion difficulties, including excessive clutter and computation time.
To address these issues, ten Caat et al. introduced coherence anal-
ysis using data-driven functional units [42].

To begin exploring the rhythms of brain function, raw EEG data
must be processed. Several EEG processing environments have
been created to support spectral analysis of EEG signals. The Mat-
lab package EEGLab [12] is a well-used EEG processing suite pro-
viding powerful tools to neuroscientists. Although EEGLab im-
plements several advanced analysis tools, it is a more general tool
whereas our system focuses on investigating spectral patterns ex-
pressed across multiple EEG electrodes.

Identifying important signals and sources to explore EEG time
series remains an important problem. Ilmoniemi et al. use tran-
scranial magnetic stimulation (TMS) as a known signal for the in-
terrogation of EEG data [20]. However, signal source separation
using independent component analysis (ICA) [45] may also be a
useful mechanism to determine relevant patterns to search for when
exploring EEG data holistically [39].

As recent studies have suggested that the spectral dynamics as-
sociated with neural processes are important, we focus our efforts
in the frequency domain. With the advent of robust time-frequency
decompositions, investigating the evolution of brain activity in the
frequency domain is possible [26,40]. Evidence suggesting that the
spectral dynamics of brain activity is mounting [2, 37]. Blanco et
al. introduced pioneering new methods for time-frequency analysis
for EEG data [5]. In their work, they applied the Gabor transform
to investigate the spectral dynamics of EEG data using robust visu-
alization to enhance their analyses. In this work, we enhance some
of their techniques with interactive visualization and exploration of
both the spectral dynamics as well as the spatial characteristics as-
sociated with EEG. Our system is a step to extend more traditional
spatio-temporal ERP analysis techniques [43] with additional infor-
mation regarding the frequency content of EEG signals.

Aggregating collections of time-frequency planes into a single
concise visualization or analysis is difficult. Dimensionality re-
duction techniques such as Locally Linear Embedding [34] and
IsoMap [44] are able to organize these data into local neighborhood
relationships. However, if only a measure of similarity is required,
Gonzalez and Woods argue that correlation provides an acceptable
estimation of similarity between two different images [17].



Explore EEG Data

Visualize Time-frequency Data
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Figure 3: Our system supports two primary functions: exploring EEG
data and extracting neural circuits. Users interact with the system
primarily to extract and visualize neural circuits. To achieve the best
results, users iteratively refine time-frequency queries and set filter
parameters for the results. Here, yellow ovals represent steps that
users have direct control over.

3 SYSTEM OVERVIEW

Our system is designed to facilitate the exploration of EEG data
with respect to the identification of functionally important time-
frequency patterns. Figure 1 shows the user interface provided by
our application. The choices made during the development of our
system were designed to enhance the application’s intuitive usabil-
ity while maintaining flexibility and functionality.

The general workflow for the use of our system is illustrated in
Figure 3. Our system begins with the user loading EEG and MRI
data. Each EEG sensor is displayed as a sphere in a 3D visual-
ization. In this case, each sensor is rigidly registered to the struc-
tural MRI data. Next, the user sets the upper and lower frequen-
cies to parametrize time-frequency decompositions. The user then
explores both the raw time series data as well as its spectral repre-
sentation. At this time, the user sets a query to issue to the system;
this may be created from a time series present in the EEG collection
or through a brushable canvas. Once the query is defined (Sec. 4),
cross-correlograms are computed between the query and the time-
frequency planes derived from each EEG electrode (Sec. 5). Each
cross-correlogram is an image representing the cross-correlation
statistics of the query and the time-frequency plane being analyzed.
The resulting images are then filtered to provide sensitivity to shifts
in both frequency and time. After filtering, the maximum correla-
tions are displayed by coloring each sensor by its similarity with
the query. Higher correlation values are represented in the final vi-
sualization by more saturated color than lower values. In this way,
coordinated areas of the brain, as seen by the sensor collection, are
highlighted and may influence future processing and analysis pa-
rameters.

4 EEG QUERY BY EXAMPLE

Highlighting patterns of interest is performed in our system through
the use of interactive, user-driven queries. The goal of our query
interface is to allow the user to construct a pattern for which the
system will search for without the need to manipulate a raw time
series. The result of this computation is a measure of similarity
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Figure 4: Creating a time-frequency query. The user interacts pri-
marily with a 2D time-frequency plane in which a circular brush (blue
outline) controls the scalar field being painted. When paint strokes
overlap, their respective values are either additave or subtractive, al-
lowing scientists to gradually change the time-frequency query being
constructed. The time and frequency coordinates along with their
supports of the kernel are displayed during interaction to ensure the
user knows exactly how the query is being manipulated.

between the query and the data from each EEG sensor. However,
in order to use these mechanics, the user must first construct the
appropriate query to use.

4.1 EEG Spectral Dynamics

As more is learned about brain activity patterns, it is becoming
clearer that EEG analysis in the frequency domain is important.
To take advantage of a signal’s frequency content, without losing
its temporal dynamics, we employ a time-frequency decomposition
for all incoming EEG data. While there exist many applicable time-
frequency transforms to choose from, we have chosen to use the S-
Transform [40]. The S-Transform may be thought of as both a gen-
eralization of the Short-Time Fourier Transform and an extension
of the Continuous Wavelet Transform. The transform generates a
complex time-frequency plane by integrating a gaussian window at
each time point as follows:

ST (t, f ) =
∫

∞

−∞

h(τ)
| f |√
2π

e−
(t−τ)2 f 2

2 e−i2π f τ dτ

where h(τ) is the EEG signal, f is frequency, t is a dyadic
translation in time, the first exponential is the gaussian win-
dow function, and the second is a harmonic function. We
use an implementation of the S-Transform provided by the Na-
tional Institute of Mental Health (NIMH) MEG Core Facility
(http://kurage.nimh.nih.gov/meglab/Meg/Stockwell).

4.2 Creating Time-Frequency Queries

The result of the S-Transform is a complex plane composed of pha-
sors at each time-frequency coordinate. By taking the magnitude
of each phasor, we generate an image of spectral power across time
and frequency. Although it is possible to create images of phase
from S-Transformed planes, we restrict ourselves to the better un-
derstood dynamics of power.

Creating time-frequency queries in our system is equivalent to
creating univariate images representing power changes where one
axis is time and the other is frequency. To form a time-frequency
query, users interact with time-frequency images. Allowing interac-
tion with both images derived from the data of a single EEG sensor
as well as images created from a blank canvas affords additional
flexibility to the user. All interactions with queries are performed
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Figure 5: Finding the similarity between an input query and a sen-
sor’s time-frequency data begins with computing the correlation im-
age through convolution. A filter mask is then formed using the user-
controlled sensitivity and lag parameters. This mask is then multi-
plied with the correlation image. The maximum value of this filtered
image represents the filtered similarity between the input query and
sensor data.

on a brushable canvas, allowing users to directly modify the time-
frequency patterns they wish to search for. Figure 4 shows the re-
sult of user interaction to add to and subtract from a time-frequency
query using our painting interface.

To create a query, the user begins with a time-frequency plane
with the same dimensions as the transformed EEG data. Each value
on this plane is initially set to zero. The user adds values to this
scalar field by applying brush strokes similar to the airbrush tool in
popular image editing software. Our system uses a circular gaus-
sian kernel for the brush by default, but provides various brush sizes
and shapes to increase flexibility (Figure 4). The ability to manipu-
late user specified queries provides our system the flexibility to be
used to analyze EEG experiments eliciting a variety of responses
rather than focusing exclusively on the working memory patterns
described by Klimesch [21]. Creating a time-frequency query re-
quires the user to have an idea what patterns are interesting to the
phenomenon being studied.

Allowing users to interact directly with a time-frequency image
enables powerful modification techniques, such as painting with
brushes. This interaction mechanic is ubiquitous across both com-
mercial and open-source image manipulation tools. In addition to
the concepts of brushes and painting common to image editing en-
vironments, global image properties are understood and changed
more easily. Like pictures whose lighting and exposure conditions
can drastically change their appearance, the overall power con-
tained in a time-frequency image can alter the similarity measure
between a query and the EEG input. To account for these differ-
ences, we normalize each image by subtracting its mean from each
element, then dividing that quantity by the image’s standard devi-
ation. This method of normalization prepares the images for simi-
larity computations using normalized cross-correlation.

5 CORRELATION SPACE PATTERN MATCHING

We take advantage of the work by Gonzalez and Nuñez to use
quickly computed cross-correlations as an acceptable measure of
similarity [17]. The notion of using normalized cross correlation as
a means for determining similarity between two images stems from
its use as a global approach for template based pattern matching [7].

Figure 6: Large collections of time-frequency planes may be pro-
jected to a plane to reduce the overall dimensionality of the dataset.
Here, IsoMap has been used to position individual planes while at-
tempting to conserve the relative differences between the various
data points.

To measure similarity, we first compute cross-correlograms for each
pair of time-frequency query and transformed EEG data. We then
filter these images to reduce the impact of template matches outside
the user-specified time and frequency envelopes. Finally, we deter-
mine the similarity by inspecting the filtered cross-correlogram to
extract the maximum value indicating the degree to which the query
matches the EEG data.

5.1 Pairwise Image Cross-Correlograms
Once the user has defined a time-frequency query, we compute
the cross-correlogram of the query with each EEG sensor’s time-
frequency image. The normalized cross-correlogram, C(u,v), may
be computed by introducing normalization terms to the cross-
correlation term discussed by Lewis [23] as follows:

C(u,v) =
1

n−1 ∑
x

∑
y

( f (x,y)− f̄ )(q(x−u,y− v)− q̄)
σ f σq

where f (x,y) is an EEG sensor’s time-frequency image, q(x,y)
is the time-frequency query, f̄ and q̄ are the means of the EEG
and query data respectively, and σ f and σq are the standard devia-
tions of the EEG and query data, respectively. However, by separat-
ing the normalization of each image from the convolution, we can
take advantage of Fourier transforms to compute the cross correla-
tions for the entire image domain. Our system uses the FFTW li-
braries [15] to quickly compute Fourier transforms during this pro-
cess.

5.2 Filtering Cross-Correlogram Images
Once a cross-correlogram image is computed for a query and EEG
time-frequency plane, it must be filtered to ensure that the points
of maximum correlations lie in the appropriate time and frequency
windows. A cross-correlogram is defined on a plane of time and
frequency. However, unlike its inputs, the origin of the cross-
correlogram is at the center of the image. These details gives rise to
the realization that high values of correlation offset from the origin
in the temporal domain represent strong query matches that lag in
time. Likewise, departures from the origin in the other dimension
reflect patterns undergoing frequency drift, that is they appear at
slightly higher or lower frequencies than the query.

To ensure that patterns exhibited in both the query image as well
as in an EEG sensor’s time-frequency representation occur in ap-
propriate time lags and frequency shifts, we allow the user to con-
trol the filtering parameters. The user sets the minimum and maxi-
mum time lag as well as the size of the frequency envelope. These
parameters define a mask used to filter each cross-correlogram. In
Figure 5, we see how an input query and time-frequency image
from an EEG sensor are combined to first form a cross-correlogram.
The user settings define a filter mask that is then multiplied with
the cross-correlogram image to form the filtered cross-correlogram.



Figure 7: Using a data driven query to extract a neural circuit results in an overall high correlation because the query exists exactly in the data.
However, carefully constructed user generated queries may yield similar results. Here, the differences between data driven and user generated
queries are explored. On the left is the result of a user-generated query (top inset), while the rendering on the right is driven by a time-frequency
image from the EEG collection (bottom inset).

Since we multiply the filter mask with the cross-correlogram, we
ensure the range of the filter is [0,1] by composing it as the maxi-
mum of two separable filters. In practice, we have found that linear
(tent) filters in both time and frequency provide appropriate results.

5.3 Computing Similarity

Although the visualization and analysis of small collections of
time-frequency planes is straightforward, examining large groups
remains difficult. To address this problem, techniques such as
IsoMap [44] may be employed as in Figure 6. While organizing
image collections in this way strives to maintain a notion of simi-
larity between neighboring points, fine control over differences is
lost.

The construction and application of the filter mask acts as a
user-specified weighting function specifying acceptable shifts in the
query pattern in both time and frequency. Our solution, using fil-
tered cross-correlogram images, allows us to selectively tune our
filtering process in both the temporal and spectral domains. Once
the filter is parametrized by the user and applied, determining the
degree of similarity between the query and the EEG data is straight-
forward. Because the cross-correlogram is formed by convolution,
we know that the point of highest intensity represents the point of
maximum similarity.

6 SPECTRAL DYNAMICS IN WORKING MEMORY

Working memory, sometimes referred to as short-term memory, is
responsible for temporarily storing and retrieving information. It
has been described as the short-term retention of information that
no longer exists in the environment and the manipulation of this
information for subsequent use in guiding behavior [3, 13]. For
example, memorizing a new telephone number while trying to find
a pen and paper to write it down exercises working memory.

Previous studies have discovered that working memory perfor-
mance is governed by specific oscillation patterns [36]. Of partic-
ular interest are the frequency bands of theta (3–7 Hz) and alpha
(8–13 Hz) [21]. Additional studies have shown that working mem-
ory also relies on a functional neural circuit [19, 35]. These studies
highlight the advantages of coupling circuit-based approaches with
spectral analysis.

Although the brain is a highly distributed system, it is organized
into spatial regions that play roles in various functions. Figure 2
shows that almost all areas of the brain are involved with working
memory processing and performance. Unfortunately, discovering

the precise functional circuitry of the brain is a difficult task. Inves-
tigating cortical areas using more metabolic resources than others
through functional magnetic resonance imaging (fMRI) is a com-
mon technique [8]. However, Ilmoniemi et al. found that using
EEG to track signals induced by transcranial magnetic stimulation
(TMS) uncovered coordinated areas of the brain [20]. This work
relied on using EEG recordings and the locations of the sensors to
investigate the spatio-temporal relationships of coordinated areas of
the brain. This type of analysis strengthens the more complicated
process of localizing the signal’s source on the cortical surface.

7 A STUDY OF WORKING MEMORY

Our system has been used in the analysis of a working memory
experiment similar to that performed by Ilmoniemi et al. [20]. In
this experiment, a verbal working memory task was given to each
participant while 64 channel EEG was collected at 500 Hz using
an Electrical Geodesics GES 300 System (http://www.egi.com).
Repetitive transcranial magnetic stimulation (rTMS) was then ap-
plied to the dorsal lateral prefrontal cortex (DLPFC) in the exper-
imental group, while the control group received sham stimulation,
the simulated application of rTMS. The goal of this experiment was
to explore the effects of rTMS on working memory.

This study of verbal working memory performance was con-
ducted using the Sternberg paradigm as the basic task [38]. The
Sternberg task presents a string of consonants, followed by a brief
(1.5 sec) maintenance period in which nothing is displayed. After
the maintenance period, a single letter is presented. The participant
must determine whether the probe letter was present in the original
string as quickly and accurately as possible.
Measuring Working Memory Performance During the working
memory task, EEG data is collected. Clark et al. have shown
that working memory performance can be predicted from the spec-
tral evolution of the alpha band of frequencies [10]. Similarly,
Klimesch showed that working memory performance may be es-
timated by monitoring the oscillation of theta and alpha frequency
bands [21]. We use the S-Transform [40] to decompose the raw
EEG signal into a complex time-frequency plane to investigate its
spectral evolution.

The collection of time-frequency planes computed from raw
EEG data are further processed to extract energies (phasor magni-
tude) in the theta and alpha band of frequencies, commonly between
3 and 7 Hz and 8 and 13 Hz, respectively. Individual mean alpha
frequencies are computed from EEG collected during a rest period.



Figure 8: Our system helps provide evidence supporting the hypothesis that the application of rTMS enhances the performance of working
memory. Using the query pictured above, we extracted a working memory circuit before stimulation with rTMS (left) and then after (right).
Although the circuit extracted is similar in both cases, the overall similarity measure is markedly different. The expected spectral evolution is
more evident after stimulation.

These individualized measurements are then compared to the same
measures taken during the experiment. As Klimesch points out,
the shifts in the mean frequency and the energy densities indicate
working memory performance during the task [21].
Manipulating Working Memory rTMS has shown the ability to
manipulate the performance of various neural substrates [33]. In
fact, previous work indicates that careful application of TMS may
either enhance or disrupt working memory processes [24, 31]. Our
experimental approach applied 10Hz rTMS to facilitate working
memory performance.

Although the details through which rTMS improves working
memory performance are still unknown, previous studies show that
its effects are robust [31]. Here, we use the application of rTMS
within the study to validate the findings presented by Ilmoniemi et
al. [20]. We then show that our system is capable of using carefully
crafted queries to reproduce the same results without the benefit of
a known, induced signal.
Visualizing Working Memory Performance Although this task
focuses on verbal working memory, prior work shows that verbal
and spatial memory tasks activate similar cortical regions - the pre-
frontal, frontal, parietal and temporal cortices [4, 27]. These works
rely primarily on fMRI and positron emission tomography (PET)
to reveal functionally connected regions of the brain by examining
blood flow and changes in localized metabolism.

To explore EEG data associated with working memory perfor-
mance, queries expressing power in the theta and alpha bands of
frequencies are created. After the user generates and submits a
time-frequency query (Section 4), time-frequency images for each
EEG sensor are correlated with it (Section 5). Following this, the
user interacts with sliders representing the filtering parameters used
to determine sensitivity in the frequency and temporal domains
(See Figure 5). Finally, the maximum value of the filtered cross-
correlogram image is found and used as the similarity of the time
frequency image to the user’s query (Section 5.3).

This filtered cross-correlation measure of similarity is then pre-
sented in the three-dimensional representation of the sensor net-
work registered to an MRI. The degree of similarity is indicated by
blue spheres with highly saturated color representing high levels of
similarity and unsaturated spheres representing low similarity. To

reduce clutter in the final visualization, the user may further filter
the coloring of EEG sensors by thresholding the similarity measures
to display.

The results of the user’s queries represent the similarity of each
EEG sensor’s time-frequency transform with the input query. Fig-
ure 7 shows that cortical regions activated during a working mem-
ory task are extracted using both known patterns found within
the EEG record (data-driven query) as well as user-supplied pat-
terns (user-driven query). The sensor collection is composed of
electrodes over the temporal, parietal, frontal, and prefrontal cor-
tices, validating previous findings by Hampson et al. [19] and Il-
moniemi et al. [20].

Providing evidence to support or refute a hypothesis is one of
the goals of scientific visualization. To this end, our system has
been helpful. One of the stated hypotheses tested in the experiment
was the application of rTMS enhances the performance of work-
ing memory [31]. While this hypothesis is supported by other data
collected and analyzed during the experiment, our visualizations
provide additional evidence.

We formulated a user-generated query based on the spectral dy-
namics of a strong working memory [21]. Issuing this query to both
the pre-stimulation and post-stimulation datasets extracted similar
results. However, as Figure 8 shows, the sensor collection high-
lighted from the post-stimulation data exhibits a stronger similarity
to the query than the pre-stimulation data. Since the query was con-
structed based on the spectral dynamics of an archetypal working
memory system, it is reasonable to conclude that rTMS played a
role in increasing the performance of working memory. This boost
in performance is typified by more energy contained in the theta
and alpha bands [21].

8 RESULTS AND DISCUSSION

Our system has served as a new tool to extract and visualize po-
tential functionally relevant time-frequency patterns as measured
by EEG sensors. While other techniques have been developed
to leverage advances in functional brain imaging modalities such
as fMRI and PET, we use EEG. The ability of our system to ex-
tract relevant patterns existing in data across many EEG electrodes
has been shown by reproducing the work of Ilmoniemi et al. [20].



However, unlike the work of Ilmoniemi et al., our technique does
not depend on the injection of a known source pattern via cur-
rent or magnetic stimulation. The ability of our system to find
arbitrary, or pre-existing, time-frequency patterns through filtered
cross-correlograms sets us apart from existing analysis environ-
ments.

To extend the system, we provided users the ability to create
their own time-frequency queries. In this way, we enable searches
for patterns not induced by external means. To exercise this func-
tionality, we carefully crafted time-frequency queries to reflect the
expected behavior during a working memory task. These user-
generated queries were also able to extract the known neural ac-
tivity patterns subserving verbal working memory processes. How-
ever, it should be mentioned that arbitrary queries may not yield
expected results.

Extracting specific activity patterns relies on exercising the brain
with an appropriate experimental paradigm. For instance, the neural
circuit defining motion planning may not sufficiently be expressed
during a working memory task, and thus, cannot be explored. How-
ever, analysis of EEG data with respect to neural circuits exercised
during the experiment provides neuroscientists with a richer under-
standing of their results.

9 CONCLUSIONS

We have demonstrated that correlating time-frequency images asso-
ciated with EEG data is capable of extracting neural circuits. While
other functional imaging modalities such as fMRI and PET examine
changes in blood flow, our system relies on electric fields generated
at the cortical surface. Although fMRI and PET are technologies
that localize activity in the brain with high fidelity, they suffer from
low temporal resolution. On the other hand, EEG provides high
temporal resolution, but determining the location of signal sources
is a difficult problem currently being researched [18]. These source
localization methods have the potential to help determine which ar-
eas of the brain are responsible for generating the various signals
and how they are connected to one another.

Our system makes extensive use of the importance of the spec-
tral evolution of EEG data. However, identifying appropriate and
robust spectral components is not easy. Shackman et al. present a
method for determining appropriate frequency bands for study [37].
In this work, the authors also advocate for the use of scientific vi-
sualization to assist in the analysis and interpretation of data. Our
system takes steps to advance the visualization and interpretation of
large collections of EEG data.

Our system relies on the ability to compute pair-wise cross-
correlograms. By extending the work by Mueen et al. [28], it may
be possible for our system to more quickly correlate larger time se-
ries from higher density EEG systems. The current implementation
relies on FFTW to create cross-correlograms, limiting the dataset
sizes.

10 FUTURE WORK

Source identification techniques may be able to provide a powerful
tool in the exploration of brain activity. Independent component
analysis (ICA) has long been a tool used by neuroscientists to iden-
tify important waveforms generated in the brain [45]. Since our ap-
plication supports arbitrary time-frequency queries, we may use the
results from ICA to inform our system with relevant query images.
In this way, potential new activity patterns may be identified for ad-
ditional study. This would lead to a more complete understanding
of the various spectral dynamics subserving various tasks.

Our system may provide a good basis for the construction of spa-
tial weighting kernels used to analyze EEG data for higher level
processes. Anderson et al. used gaussian kernels parametrized
to highlight activity from an accepted cortical region associated

(a) (b)

Figure 9: Volumetric datasets have high correlation between adja-
cent slices, giving rise to features that exist in all three dimensions of
the volume. Here, a synthetic dataset composed of three concentric
spheres (a) is shown. By re-ordering slices in this symmetric volume
using a correlation measure with the mid-volume plane as the query
image (b), the symmetry is exploited to form a different volumetric
dataset with high correlation between slices.

with working memory [1]. Extracting sensors associated with spe-
cific time-frequency expression may better inform the use of spatial
weighting strategies.

Additionally, the concept of ordering time-frequency images
through correlation may be applied to three dimensional rendering.
Using correlation to impose an artificial order of two-dimensional
images may allow the visualization of large collections of images.
Figure 9 shows an example of this possibility. Although this type
of application would suffer from well-known disadvantages associ-
ated with volume rendering (occlusion, transfer function specifica-
tion difficulties, etc), it may help to reveal interesting relationships
useful to determine the neural substrates used to perform a complex
task.
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