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Summary

Modern microscope automation permits the collection of vast
amounts of continuous anatomical imagery in both two and
three dimensions. These large data sets present significant
challenges for data storage, access, viewing, annotation and
analysis. The cost and overhead of collecting and storing the
data can be extremely high. Large data sets quickly exceed
an individual’s capability for timely analysis and present
challenges in efficiently applying transforms, if needed. Finally
annotated anatomical data sets can represent a significant
investment of resources and should be easily accessible to the
scientific community. The Viking application was our solution
created to view and annotate a 16.5 TB ultrastructural
retinal connectome volume and we demonstrate its utility
in reconstructing neural networks for a distinctive retinal
amacrine cell class. Viking has several key features. (1) It works
over the internet using HTTP and supports many concurrent
users limited only by hardware. (2) It supports a multi-user,
collaborative annotation strategy. (3) It cleanly demarcates
viewing and analysis from data collection and hosting. (4) It is
capable of applying transformations in real-time. (5) It has an
easily extensible user interface, allowing addition of specialized
modules without rewriting the viewer.

Introduction

Automated microscopy systems, in combination with
automated registration algorithms, are allowing microscopists
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to collect data sets of unprecedented scale. The utility
of this ability is typified by descriptive studies of neural
connectivity, which is the assembly of neural connectomes.
Neural features span six to nine orders of magnitude. Axons
can extend from 10 to 106 µm; dendritic arbors can subtend
less than 10 µm or over 1000 µm; single cells may make
one or thousands of connections and interact with 1–12
different classes of target cells; individual synapses and gap
junctions subtend 0.1–1 µm, and anatomical pairings can
be validated only with resolutions of 2 nm or better. Our
lab focuses on retinal networks and our first small neural
volume (RC1) required capturing large amounts of serial
section transmission electron microscopy data (Anderson
et al., 2009): about 341 000 images, at 16 megapixels
each. Browsing and annotating the myriad features of such
massive data sets, as well as summarizing attributes and
relationships in human-understandable forms, are substantial
computational undertakings. We present our solution, Viking,
in the context of our retinal connectivity work tracing the AII
amacrine cell of the retina.

The development of Viking began shortly before the capture
of the RC1 data set and it was ready for use upon completion
of capture. Viking addressed several core problems. After
capturing the raw data we used the NCR Toolset (publicly
available at http://sci.utah.edu/software.html) to calculate
transformations for positioning tiles into canonical images,
and for aligning images as a volume. The NCR Toolset did
not include a viewer. The NCR Toolset does export assembled,
transformed images, but the immense size of a single canonical
image (10–20 GB downsampled to 8-bits) is too large for
32-bit image formats, incompatible with commercial tools,
and doubles the storage footprint. Even for 32-bit compliant
images the export process is time-consuming, as each pixel
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must be mapped. Furthermore, when producing images
aligned into the volume, every pixel must be cascaded
through each intermediate slice-to-slice (stos) transform, and
this process becomes progressively slower as the number of
transforms (size of the volume) increases. Beyond the need to
view full-resolution images, we needed to rapidly monitor and
debug data acquisition or transformation errors. At the time
we began acquisition of RC1, the NCR Toolset had been tested
on smaller volumes, but it was not known whether the tools
would scale to a volume of over 340 000 tiles. We needed a
data viewer which would accept any transform and apply it to
the original data in real-time using graphical processing unit
speeds.

The second problem was the need for a network-oriented
client–server solution. When volume collection began, the
largest consumer hard drive could store 1 terabyte (TB).
RC1 occupied 16.5 TB after processing so the volume had
to be stored on a central file server and shared. As more
connectomes are acquired, at higher speeds, the ‘enterprise’
scale of connectomics data will outstrip the growth in
commercial desktop hard drive storage in the near term. Our
single TEM is now capable of generating 0.25 TB of processed
images per day and acquisition can be multiplexed across
microscopes. The obvious solution was to expose all images
and transformations via HTTP and have the viewer load the
requested data on demand.

The third problem was annotation. Our tasks included
identifying target cells, tracing processes through the volume,
recording instances of synapses or gap junctions, tagging
novel features emergent in browsing the data and tagging each
cell with the molecular identities acquired from intercalated
optical imaging (Anderson et al., 2009). We use the term
‘tracing’ to describe this activity, and we consider a cell traced
when all of its processes and features have been annotated.
Cells are complex in texture and topology and, as yet, there
is no fully-automated markup strategy for such imagery.
Even if such tools existed, they would still require human
validation (Mishchenko, 2009). There is no escaping the need
for fast, robust, shared annotation tools. A rough estimate
of the time required to annotate RC1 shows that, even if
a single human could locate and mark each feature on a
conventional computer display at an inhumanly fast rate of ten
per minute, annotating an estimated 107 structures (e.g. every
subsegment of every process) would require at least 5.7 work
years. Conversely, the use of network-compliant viewers and
annotation means that small teams of analysts can easily trim
work times by 10-fold. Another accelerating feature of our
particular approach to connectomics we incorporated into
our viewer is the use of computational molecular phenotyping
(Marc & Jones, 2002). By using molecular signals to classify
cells, we may not have to trace every cell in a volume,
but rather only a representative set from each cell class.
The annotation system also required flexibility. Our focus on
circuitry should not limit the annotation systems applicability

to other problem areas as these issues are not unique to neural
cells. Both serial section transmission electron microscopy and
viewers like Viking can be powerful adjuncts to the study of
complex heterocellular tissues in general.

As analysts mark up a data set, they should be able to
benefit from each other’s work. For example, discovering
annotations of a nearby interacting cell provides context for
probable markup sites in a cell of interest. For users who
wish to construct models, connectivity data should reside
in a single database that also provides a venue to cross-
validate annotations. Any annotation effort on this scale
quickly produces at least 105–106 annotations that need to be
summarized in a human-understandable format. Use of SQL
database designs provided a powerful query language as the
foundation for more sophisticated visualization and reporting
tools. We concluded the scale of connectomics data mandated
a multi-user, collaborative annotation strategy with the data
stored in an enterprise-scale SQL database.

Viking is our solution to these problems. It uses a multi-
tiered architecture consisting of viewer and analysis clients
using HTTP to communicate with an image server and a WSDL
compliant web server which in turn populates a backend SQL
database (Fig. 1). It provides several key features. (1) It works
over the internet using HTTP and supports many concurrent
users limited only by hardware. (2) It supports a multi-user,
collaborative annotation strategy. (3) It cleanly demarcates
viewing and analysis from data collection and hosting. (4) It is
capable of applying transformations in real-time. (5) It has an
easily extensible user interface, allowing addition of specialized
modules without rewriting the viewer.

Materials and methods

Language

Unless otherwise noted, software was written in Microsoft
C# using Visual Studio 2008. SQL Server Express 2008 was
used to store annotations. XNA 3.0 was used for image
rendering. The Windows Communications Foundation was
used for the web service. Matlab 2009b was used to visualize
cell morphology. Python 2.6 scripts were used to invoke the
NCR Toolset.

Data

Our first retinal connectome volume (RC1) is a 33 µm
tall, 0.25-mm-diameter image cylinder. It consists of 371
individual sections, of which 341 were captured as ≈1000
transmission electron microscope (TEM) images each at a
resolution of 2.18 nm per pixel, plus 27 scaled optical images
tagged for molecule markers. Eight images cap the column at
each end and 11 are evenly spaced, 30 sections apart, within.
We refer to the acquisition process as automated TEM (ATEM).
RC1 occupied 16.5 TB of storage after processing.
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Fig. 1. Overview of NCR Toolset and Viking systems. Viking provides a scalable environment for concurrent annotation, based on a three-tier architecture.
Top-tier processing of the original data and database maintenance are performed on-site and need not be placed on the internet. Images, transforms, and
a web services definition language (WSDL) interface form the middle tier to which a variety of client applications can be targeted. Client software includes
our viewing/annotation client and visualization web site. Method calls between layers are stateless. Tiered designs allow modification of a layer without
changes to the others, so long as the interfaces unchanged. Modular elements can be re-engineered if a new component is needed.

The area and volume to be captured in any study are
scaled by the complexity of the neural elements involved. In
principal, each region of brain has a canonical element that
contains copies of all cell classes required for its fundamental
information processing operations (Anderson et al., 2009).
Similarly, canonical functional elements can be defined for
other continuous domain tissues (liver, kidney). The canonical
element serves as a reference for the completeness of any
sample. In neural systems, the size of a canonical element
varies with brain region and may not even be known for
some areas. In serial section transmission electron microscopy,
the volume element is cut into thin slices (≈70 nm in RC1),

each containing a canonical area subtending the canonical
element. We refer to that area as a canonical image and it
is built from hundreds to thousands of image tiles. When we
refer to a slice below, we really mean the canonical area for
that slice, because the physical tissue section is much larger
than the captured canonical area. Reassembling the volume
from tiles and slices is a major undertaking. Our automatic
solutions involve a series of algorithms implemented in
the NCR Toolset (publicly available at http://sci.utah.
edu/software.html). The NCR Toolset generates two
transformations for each slice. The mosaic transformation
describes where tiles fit inside a slice. The stos transformation
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describes how to register the entire slice mosaic to an adjacent
slice.

Volume description

Volumes are described by an XML file on the server. This file
lists every slice in the volume, URLs for both mosaic and stos
transformations (if present) and the URL where image data
can be located. This allows a volume to be load-balanced
across multiple systems, although we currently house the
entire volume on a single system. The XML file also contains
the URL for the web service used to annotate the data, allowing
each volume to be annotated independently or to have multiple
databases if needed. The XML definition is flexible enough to
allow display of any tiled image data that follows a predictable
naming convention. We have used Viking to view bright field,
confocal, fluorescent and fundoscopic images.

Transformations

The first task Viking faces is creating a slice-to-volume
transformation for each slice from the available stos
transforms. How these transforms are generated is described
briefly in Anderson et al. (2009) and in detail in Tasdizen et al.
(in review). Each stos transform defines a grid of control points
evenly spaced across the warped slice with a corresponding
grid of points positioned on the stationary control slice. Viking
designates a slice as the reference slice or origin for the volume
and generates transforms required to register all other slices
onto it (Fig. 2).

Currently, the lowest numbered slice in the series typically
serves as the volume origin but, in theory, specifying an origin
in the centre of the volume could reduce accumulated warps
from transformation errors. The current volume is derived
from 371 physical slices, of which 341 were able to be digitized.
The minimal distortion produced by registering our entire
volume to slice 1 (Anderson et al., 2009) suggests that volumes
of at least 700 slices are easily possible.

Different levels of refinement are available for volume
registration. When using the NCR Toolset, multiple stos
registration passes are made using 32× (32-fold), 16×
and 8× downscaled mosaics as increasingly high-quality
input. Each pass builds upon the previous registration. When

traversing each 2-fold scaling, we maintain the spacing of
grid points, resulting in a 4-fold increase in the number
of registration points with each increase in resolution. This
allows larger coarse adjustments followed by fine local
refinements. Typically, we find the 16× registration produces
high enough quality that we rarely use the 8× data due to
slower startup times.

The viewer

Viking allows viewing of a single slice at a time (Figs 3–5).
The highly anisotropic voxels produced by ATEM, and the
lack of need for a true volume rendering to extract synaptic
networks, led us to the simple solution of displaying one slice of
the volume at a time, and flipping through them like pages in a
book. Viking performs real-time transformation of the original
tiles using the fast texture mapping abilities of graphical
processing units. This involves mapping each tile into slice
space and then mapping into the volume space. We use the
transform’s mapped points placed evenly on the source tile grid
as the u,v texture coordinates and map those points into either
the slice or volume space to determine the tile’s position. A
cached Delaunay triangulation generates the required triangle
mesh. As a result Viking can quickly switch between different
transforms generated from any stage in the pipeline, because
this only involves swapping out the vertices used for rendering.
This real-time transformation ability strongly distinguishes
Viking from previous viewers.

Tile images are loaded directly into texture memory as 8-bit
greyscale images and are downloaded over HTTP as needed.
Viking calculates the visible area and the downscale level for
the camera’s current window position, then determines which
tiles are visible and the resolution required to display the data.
Tiles not already in memory are loaded from a local disk cache,
if available. Otherwise an HTTP request is made for the correct
tile from the web server. This is a common strategy used
in internet-enabled viewers. (Mikula et al., 2007; Wernecke,
2008; Google, 2010)

Optimal performance of the NCR Toolset requires the
original overlapping image tiles to be downscaled by factors
of two and stored in an image pyramid. Viking is capable of
displaying the volume using these tiles to verify the output of
the tools. However, this is not an efficient structure for network

Fig. 2. Transform addition. To create a volume for three slices, we begin with two stos transforms mapping slice 2 to slice 1 (2 → 1) (A,B) and slice 3 to
slice 2 (3 → 2) (C,D). Initial transforms are constructed by placing an even grid of mapped points on the slice to be transformed (B,D). Control points are
located on the control slice by the NCR Toolset (A,C). Viking loads the transforms and creates a slice-to-volume transform by mapping control points on
slice 2 from the 3 → 2 transform onto the 2 → 1 transform (E). In some cases, control points cannot not be mapped because they fall outside the defined
grid transform. When this occurs, each line connecting the point to its neighbours, determined by Delaunay triangulation, is tested to see if it intersects
with the edge of the grid transform (F). The mapped coordinates are moved along the corresponding line by the same relative distance (H). The mapped
control points create a new set of control points which define the 3 → 1 transform (G), which would be the slice-to-volume transform for slice 3 (G,H).
After a small number of slices are transformed into a volume the mapped coordinates converge to a circular shape.
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Fig. 3. The Viking interface modes. (A) The Slice mode, selected at left tab window, allows selection of the slice to view in the right data window.
Panning, zooming, and navigating forward or back a slice are mouse actions. Navigation is aided by keystroke shortcuts. This is a low-resolution
(124 nm per pixel) view of an array of annotated cells (blue and green circles) in the inner nuclear layer of rabbit retinal connectome volume RC1.
Individual structures (e.g. cells) all have Property Sheets for metadata logging and user guidance. (B) The Structure Type mode enables the annotation
process. This is a high-resolution (6.6 nm per pixel) view of annotated processes and synapses. Figure 5 describes the annotation process. Property Sheets
also have dynamically updated Location panels to guide navigation along a structure in X pixel, Y pixel Z slice space.
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Fig. 4. Multi-resolution and multi-channel support. (A,B) Low-magnification views of slice 61 (A) which contains a GABA overlay (red) captured with a
100× oil objective overlayed on the adjacent TEM section (cyan) and slice 152 (B) which contains a Glycine (green) overlayed on TEM (magenta). Note
cell bodies containing GABA/Glycine are easily identified. (C,D) High-resolution views of from slice 182 w/GABA (C) and slice 152 with a Glycine overlay
(D). Many fine processes can be identified as containing glycine or GABA. Brighter light microscopy overlays indicate higher concentrations of the target
small molecule.

viewing because the size of the images varies with the degree
of downscaling, and the tiles have a 15% overlap, requiring
download of redundant information. At full resolution a
single screen could require downloading four 16 MB tiles
and the lowest resolution requires downloading a thousand
64 × 64 pixel tiles, each making its own HTTP request. To
resolve this problem Viking supports a second image pyramid
configuration where all tiles at all levels of the pyramid have
a fixed size (currently 256 × 256 pixels) and do not overlap.
There is, thus, an upper bound placed on the number of tiles
required to cover the screen and the small tile size allows
rapid loading of textures over the network. Assembly of the
optimized tiles from raw data is, itself, an unoptimized process
requiring about 3 h of processing time for a 16 GB slice on
an eight-core 3Ghz Mac Pro. However, the process need only
be run once and further slice-to-volume transformations are
done in real-time.

Multi-channel and multi-resolution image support

Viking supports multi-channel and multi-resolution data by
allowing any number of image pyramids to be associated with
a slice and not requiring that image pyramids have the same
number of levels. Users may overlay any number of sections
and channels, assigning each a colour which are currently
blended using simple addition of RGB values.

This feature is important for tracing because it allows
us to incorporate non-TEM slices into TEM volumes.
During the construction of RC1, sections capping and
interleaved through the volume were collected onto glass

slides and probed with antibodies against small molecules:
4-aminobutyrate (GABA), glycine, glutamate, glutamine, 4-
amino-guanidobutane (agmatine), aspartate and taurine.
Signals were detected with secondary antibodies conjugated to
1.4 nm gold particles and visualized using silver intensification
(Marc & Jones, 2002). Images were captured on a Leica DMR
microscope with Surveyor montaging software (Objective
Imaging, Cambridge, U.K.), oversampled at 73 nm per pixel
resolution. The optical images were aligned into mosaics using
the NCR Toolset and manually registered (ir-tweak, NCR
Toolset) to the nearest adjacent TEM slice, after the TEM slice
was downsampled by a factor of 32 (70 nm per pixel). The
registered image was exported and divided into a 256×256
image pyramid and included in the volume as an additional
channel for the TEM slice with maximum available resolution
of 70 nm per pixel. In future volumes, optical microscopy slices
will be assigned their own slice number (a design oversight
in RC1) and use their own slice-to-slice transformation so
the original images are warped into the volume. The volume
description file optionally defines the default visible channels
on a per-section or per-volume level. The RC1 configuration
overlays EM images with the small molecule imagery when
such data is available allowing the users to identify whether
a cell they are tracing contains a given small molecule
(Fig. 4).

The Module system

The drawback to placing the transformation mathematics
in the viewer is the difficulty of creating viewers for other

C© 2010 The Authors
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Fig. 5. Tracking workflow in Viking. (A,B) Viking screen captures show unmarked EM images of two adjacent serial slices numbered 152 (A) and 153
(B). A long amacrine cell (AC) process passes horizontally along the bottom of both images. It is broken into two isolated segments on slice 153. (C)
Annotation of slice 152 shows the AC process as structure C5303 (small blue circle) with two associated postsynaptic densities where input is received
from unlabeled conventional synapses. Triangles indicate the locations of annotations on adjacent slices. Yellow lines indicate links between locations.
(D–F) Progressive annotations of slice 153. (D) The left-hand segment of amacrine cell is annotated C5303, but the right-hand segment is not. (E) The
user extends the tracking of C5303 by dragging a line from the existing location on the adjacent slice (triangle) which creates a new location (right-hand
blue circle), a link line (yellow) and an entry in the LocationLinks table linking them. The user then creates a structure for the post-synaptic density
(orange circle) and associates it with C5303 (fine white link line). (F) At a later time, a user tracks cell C6184 and finds that it forms the presynaptic part
of the synapse annotated in (E). A conventional synapse structure (red circle) is created for the presynaptic side and linked to both C6184 and the paired
postsynaptic structure with a drag–drop operation.

specialized tasks. To address this, Viking uses an extension
module system built upon NET reflection. At startup, Viking
checks a directory for DLL files and examines them for types
exposing specific attributes and interfaces. Any objects found
are added to the user interface. If no modules are found
Viking functions only as a viewer. The entire annotation
system described later is included in Viking as an optional
module. The user workflow for annotations is described in
Fig. 5.

The annotation server

The annotation database is stored on a Microsoft SQLExpress
2008 server and exposed via HTTP using a Windows
Communication Foundation web service on Internet
Information Server. This service exposes a number of methods
to read and write annotations invokable via simple object
access protocol. For example, when Viking loads a slice it

invokes a method on the web service that returns either all
annotations on the slice and adjacent slices, or all annotations
that have changed if the slice was visited previously. The web
service returns plain text XML strings with objects formatted
in Java Script Object Notation for compatibility with different
software clients. This meets future needs of sharing databases
(Amari et al., 2002).

The annotation database

The annotation schema was designed to be flexible and not
restricted to neural network markups. This allows users to
survey and choose from existing rich ontologies (Martone
et al., 2008) or define their own. We accomplished this by
allowing users to place annotations in both graph and tree
data structures. Significant tables contain XML ‘Tag’ columns
to provide a structured mechanism for extending entities with
user-defined attributes. Figure 6 shows a high-level overview

C© 2010 The Authors
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Fig. 6. The Viking annotation database SQL schema. Each box contains
the table name (top panel), a list of columns (right panel), and whether the
column serves as a key in the database (left panel). The functions of these
tables are described in the Annotation Database portion of the methods.
Primary keys are noted with PK, Foreign keys are denoted with FK. Column
names listed in bold are required fields. Relations (lines) between tables
are shown using Crow’s foot notation.

of the database schema. Column names are indicated in italics
text with parenthesis.

The structure type table. This table describes the types
(classes) of biological structures that will be tracked through
the volume. It exposes an optional parent field (ParentID)
so relationships can be enforced. For instance, Cell is a top-
level structure type in RC1. We also have a Presynaptic
Ribbon Synapse structure type, but it is a child of the cell
type (cell.ribbon). This informs the Viking client that ribbon
annotations can only exist in association with a parent cell.
The Viking client provides an interface to edit this table so
users can define their own ontology.

The structure table. This table describes instances of each
structure type. Each structure is assigned a unique identifier
(ID). Each structure has a type (TypeID). The type determines
if the structure is required to point to a parent structure
(ParentID) if that relationship is specified in the StructureType
tree. Thus, an instance of our ribbon synapse type would have
a unique ID, and the ParentID field would specify which cell
it belonged to. As a structure may span many slices in the
volume, we do not store geometry or position information in
this table.

The location table. The location table describes where
structures appear on specific slices. Tracing a cell ID through
the volume involves populating this table with the all locations
for that cell ID. All locations are stored in slice space
(X,Y,Z), not volume space. This prevents future refinements of

the slice-to-volume transformation from corrupting existing
annotations in the database. As Viking loads the locations
for each slice, they are transformed to the volume space.
However the last valid Volume position is cached in the
database (VolumeX, VolumeY) to simplify the creation of
visualization tools that should not be required to implement
the transformations. Locations can be currently described as
points or circles (Radius, TypeCode). Masks and polygons are
planned enhancements (Vertices, Closed), although they have
performance implications in a multi-user environment. When
users track a process off the edge of the volume or reach a dead
end flags are set to indicate this (OffEdge, Terminal).

The location links table. This table stores adjacency
information for cell ID locations (A,B) so that graphs of the
physical layout and connectedness of any structure can be
constructed. This table is essential, as cells have processes
which frequently bifurcate and make dozens of different
appearances on a single slice. This also allows us to model
which location belongs to which process, and permits queries
such as travel distance between two locations. It is also used
for three-dimensional renderings of annotated structures. At a
finer scale, synaptic connections are extended structures, not
merely points, and subtend characteristic areas and volumes.
This is an important parameter, as synaptic strength can
be classified by the volume of presynaptic vesicles or area
of postsynaptic specialization (Kasai et al., 2003; Sheng &
Hoogenraad, 2007).

The structure links table. This table stores structure
connections regardless of physical location, and the resulting
graph describes these relationships. Each link has a source
(SourceID) and a target (TargetID). Links can be directional.
In our schema, cells are not connected in this table directly.
Rather, they contain child structures which may be connected.
We defined several connective structure types for cells:
presynaptic (conventional, ribbon), postsynaptic densities
and gap junctions (nominally bidirectional for markup).
Each connection is built from two half-connections, typically
identified separately at markup time. This is only the
schema convention we have adopted. Users are capable of
defining their own ontologies that may or may not restrict
which structures can be linked. A natural extension of this
concept to heterocellular tissues in general would include
child structures such as zonulae occludens or adherens,
desmosomes, endothelial fenestrations, and extracellular
matrix domains.

Analysis

As the database is populated with morphology and
connectivity information it becomes essential that we
transform the data to human understandable formats.
Morphology visualization is Matlab based, while graph
visualizations are hosted on a web page which retrieves
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annotations via the web service. This approach conveniently
partitions analysis tools from the data, promotes the wide
dissemination of results, and allows third parties to perform
their own analysis without storing the data.

Morphology

The Location and LocationLinks tables encode graphs of the
physical locations of structures in the volume from which
morphology can be visualized (Fig. 7). We used Matlab 2009b
(www.mathworks.com), Matlab Database Toolbox, and the
Matlab Compiler to create a command-line tool, VikingPlot,
which is passed a set of StructureIDs at startup. VikingPlot
then queries the database for the locations of each structure
and any child structures. Each location is converted in a
circle of vertices. Polygon faces are created using Matlab’s
‘patch’ command to connected locations as defined by the
LocationLinks table. This creates a cylinder between each
connected location. If a location has fewer than two links,
a sphere is rendered to cap the cylinder. We use this tool to
visualize morphology as we annotate the database in near
real-time, displaying large networks of cells and examining
the stratification of synapses and gap junctions in different
cell classes. However, this tool is again applicable to any
complex cell shape. A web-based morphology rendering tool
is in development. The graph visualization web page also
supports displaying cells as stick diagrams. Process branch
points and terminations serve as nodes and the Euclidean
distance between them is calculated to determine edge length.

This allows questions of synaptic spacing or cable properties
to be addressed.

Networks

The penultimate product of a connectome project is a network
diagram, formally represented as a cyclic, directed multigraph
with cells as vertices and synapses/gap junctions as arcs
(edges). We automate generation of our network diagrams
from the annotation database using the Structures and
StructureLinks tables (Fig. 8). The visualization web page
allows the user to request the connectivity graph for a
structure. A graph is then constructed containing all edges
and structures within a user-defined number of hops from
the requested structure. The layout is generated by GraphViz
(Gansner & North, 1999). A scalable vector graphics file is
generated for web-viewing or editing. Users can hover over
any edge in the graph to retrieve a list of structures responsible
for the edge. This enables quick verification or image export in
the Viking viewer. For our project, this is one kind of summary
display that represents terabytes of raw data as a lightweight,
publishable figure. Once again, these tools can be generalized
for other tissues by generating adjacency graphs or network
graphs of adhesion patterns.

Results

We have used the Viking system to map substantial portions
of the scotopic network of the mammalian retina (Kolb &

Fig. 7. Rendering of cells in VikingPlot. Selected neurons connected in an AII amacrine cell network were rendered with the VikingPlot, demonstrating
their approximate morphologies in vertical (A) and horizontal (B) orientations. The AII amacrine cells are numbered 476, 514, 2610 and 3679 in Fig. 8,
which shows the connectivity graph. Cell classes are colour coded. AII amacrine cells are shades of yellow. ON Bipolar cells are shades of green. OFF
BCs are shades of blue. Rod bipolar cells are shades of purple. Unidentified processes are white. A long OFF α ganglion cell dendrite (C5150) entering
from the right in (A) is coded red-orange. A process containing peptide vesicles (C6406) also enters from the right (A) slightly below and is colour light
orange.
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Fig. 8. Automatic generation of network graphs. The visualization web query (see ‘Materials and methods’) for cells connected to AII amacrine cell 476
by three or fewer hops produces a directed graph with an automated ‘pretty’ layout for human interpretation. Nodes are colour coded according to cell
type or are grey if type has not been assigned. Solitary numbers indicate that the graph continues past the requested hop limit. Edges are directed: green
arrows represent ribbon synapses, red T-bars represent conventional synapses, yellow double headed arrows represent gap junctions. Labels: BC, bipolar
cell; GC, ganglion cell; AC, amacrine cell; GBC, glycine immunopositive bipolar cell; PROCESS, element not yet classified.

Famiglietti, 1975; Strettoi et al., 1990; Strettoi et al., 1992)
by tracing five neighbouring AII amacrine cells; related rod
bipolar, coupled ON cone bipolar and OFF cone bipolar cells;
target OFF centre ganglion cells; related amacrine cells and
their inputs, cascading to a range of connected cells (Figs 3,
5, 7, 8). The RC1 annotation database currently stores over
200 000 locations and over 8000 structures (including cells,
synapses, gap junctions, etc.). While Viking was created to
view and annotate RC1, it is currently used as the primary
viewer for 10–30 GB images produced as the routine output
of a general high-throughput TEM facility. This has been a
very productive, successful environment for cell biological
and neuroscience research and discovery. In the process, user
feedback motivated design changes. Since data viewers tend to

converge on similar design patterns we will share the rationale
and outcomes of our decisions.

Real-time transformation

Making the viewer perform real-time image transformation
may seem an unnecessary burden, but provides several
advantages. The alternative would be to write the warped
image files in advance (a nontrivial task) and have the
viewer read the finished images. Although this would lead
to faster performance when navigating a finished volume,
real-time transformation allows us to preview the volume
while it is being constructed. For example, occasionally slices
are placed on a grid upside down, so the resulting images
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have to be flipped. Sometimes the reported order of the slices
is incorrect and this is discovered only after annotation.
Occasionally, prospective improvements to algorithms in the
NCR Toolset to improve the registration quality need to be
tested, and we thus regenerate the stos transformations.
Slices with occasional tears, folds or other defects may make
them unsuitable for pairwise stos alignment and we need to
substitute alternate, defect-free slices as pairwise references.
As stos transforms are cascaded to create the slice-to-volume
transforms, correcting the registration of one slice in mid-
volume would mean regenerating all images downstream
of the repair. Without real-time transformation, the entire
volume would have to be reconstructed ab initio, taking
6 weeks using optimized multi-threaded CPU-based code on
our current build machine (8-core 3Ghz Mac Pro). Real-time
transformation addresses all of these problems by allowing us
to examine the transformations generated by each stage of the
pipeline. Viking allows us to identify, isolate and correct the
causes of errors. Further, extensions to a volume in the form of
re-imaging at higher resolution, different grid tilts or mapping
outside the original capture field can best be accommodated
with real-time transformation. Using real-time warping means
that any changes are automatically instantiated by Viking on
start-up.

A second major advantage to having the transformations
available to the viewer is flexibility in annotation. We store all
locations in slice space, not volume space. This allows us to
change or improve volume transformation without breaking
existing annotations. It also allows us to display annotations
correctly even if the slice is not transformed into the volume.
The database stores the last calculated volume position to
facilitate data export to other applications.

Speed

The speed at which users can annotate the volume is critical.
Key factors include the time to load images into memory
over a network and the physical manipulation of controls to
create annotations. Viking has been a work-in-progress and
the speed with which users can view the volume is constantly
improving. We have gradually incorporated a number of
common optimizations, such as asynchronous loading of
annotations, only loading annotations which have changed
since the last visit, and caching of transformations and tiles.
At this time a user can fully trace one complex cell per day and
several simple ones (e.g. rod bipolar cells).

Our approach to network tracing also requires us to
address the ergonomics of annotation. By initially limiting
ourselves to annotations using circles, we allowed the
users to extend structures with only two mouse clicks.
We use a drag-and-drop convention for extending, linking
and resizing annotations. Although circles produce rather
coarse visualizations, they create a good approximation of
structure dimensions for modelling (indeed likely better than

most models can accommodate) and do not hinder network
discovery in any way. As we began our tracing efforts it also
became clear that users needed to be able to navigate the
volume quickly. Viking provides a mechanism to jump to any
X,Y,Z coordinate using copy and paste keys, or by entering
coordinates into a location dialog. We are also able to search
within Viking for any location of interest on a structure.

Easy navigation facilitates tracing cells. Typically, users
open a property dialogue for the structure they are tracing
and, as a complicated structure is traversed (such as a dendritic
arbor), they record the coordinates of branch nodes and follow
a path. When the first path is exhausted, they jump back to the
node and follow a second path. When a branch terminates,
the user sets a flag. Users can also use the property page
for a structure to see a list of all locations for a structure
and double-click any location to jump to it. This is useful
when trying to locate a specific structure in a slice with
hundreds of annotations. Terminal locations that have not
been explicitly flagged are searchable, providing a mechanism
to detect unmapped or overlooked processes.

The collaborative annotation database

The annotation database is becoming increasingly useful as a
resource for exploring new research questions. Beyond basic
queries for the connectedness or non-connectedness of cells,
the graph-like layout of the annotations (Fig. 8) make it
an excellent output for modelling applications or generating
concrete summaries (Fig. 9). Other queries may address
contacts or structures not directly involved in signalling and
information processing, but whose heterocellular patterning
may be clues to developmental rules, such as desmosomes, or
homeostatic roles, such as intracellular organelles. Viking’s
markup schema is flexible and allows us to create new child
structures which become important biological markers. For
example, the non-neural Müller cells of the retina contain a
novel organelle (a packet of organized smooth endoplasmic
reticulum) and its spatial distribution and dimensions within
the Müller cell became a critical question. Viking serves as
a general tool of discovery and annotation for histomics: the
analysis of ultrastructural relationships within any tissue.

The collaborative annotation database is an essential
resource of validated (e.g. human-validated) data for training
of automated tracing systems. As an example, it was trivial
to query the database for over 1000 examples of ribbon
synapses it contains. We passed those coordinates to the batch
image export function of Viking to create a library of validated
training images for an automatic feature recognition project.

HTTP-based collaboration

Viking’s multi-tiered architecture scales well with additional
hardware and care was taken during implementation to
support a large number of users. Methods invoked across
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Fig. 9. Network summary. Using automated network graphs, connectivity data were further condensed to present the connectivity of multiple AII

amacrine cells as a single human-interpretable summary. Combining CMP, morphological and ATEM connectivity observations makes it possible to
classify cells in the observed network by multiple techniques in the same data set.

tiers are stateless, allowing each request to be handled
independently and irrespective of order which facilities load
distribution. Although we have not had the means to
perform large scalability tests over the last year, we have
routinely had three users annotating simultaneously and have
tested with six workstations concurrently running the Viking
client and accessing volume RC1 without any user noticing
performance limitations. This includes concurrent use by
local and international annotators. The multi-user approach
is key for accelerating discovery with manual tracing. It is
not uncommon for one investigator to find a connection to
a cell previously traced by a collaborator. We can also re-
trace cells for validation. Tracing a new process through
a densely annotated region is much faster, as it eliminates
candidates for a process as it traverses a tangle of fine structures
in a slice transition or it identifies incipient connection
sites.

The use of a web service allows the decoupling of data and
clients. Both our viewer and visualization web page require
only HTTP and do not require any privileged status such as
a direct database connection to function. The advantages are
that any institution can query our annotations and images

without having to replicate the data. Database replication
needs to be avoided in a collaborative annotation system
because any copies quickly diverge. By using a standard
interface we can also point our visualization tools at the
web services of collaborators using the Viking system with
no installation requirement. As a result, it is easier to share
data and tools between groups as long as interface definitions
are maintained (Amari et al., 2002).

Discussion

Viking is an extensible tool for connectomics analysis and
is generalizable to histomics applications. We sought to
produce a practical viewing and annotation implementation
using existing technologies, so we could begin data mining
immediately. The Viking system is not the first and will not be
the last software written for anatomical data. Brainmaps.org
provides an excellent internet viewer for mesoscale anatomical
data including annotation support (Mikula et al., 2007).
Although Viking was developed independently, these tools
are nevertheless examples of convergent development, in
which similar designs emerged for sharing large-scale image
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data over the internet. Reconstruct is a richer environment
for single-user tracing of individual structures at the
ultrastructural scale (Fiala, 2005). Viking’s strengths are
real-time transformation of images, a user-defined annotation
ontology, high annotation throughput and public interfaces
which allow anyone to create clients to read images or edit
annotations. Creation of a web service client is automated in
many programming environments, such as Matlab and Visual
Studio.

We chose to use circles as structural elements in annotation.
We avoided the use of user-defined image masks, as this would
have been too slow (at least by a factor of 10) for mapping
networks from both the ergonomic and computational
perspectives. We were not willing to slow annotation, because
our focus was networks. Structure rendering, of course, is
a different objective. There are also engineering challenges
in implementing masks for a multi-user environment. For
example, associating a full-resolution bit-mask with each
location in the database at 1:1000 compression would require
a 2 MB download to retrieve a fully masked slice if the viewer
was zoomed out. With good heuristics it would be possible to
retrieve a subset, but additional time is required to decompress
and manage textures. Even so, we recognize image masks as
an important tool which we are working towards. With the
RC1 database in a state of rich annotation, masks will permit a
new, more precise class of biological queries, such as classifying
synaptic topologies or measuring organelle dimensions. We
plan to allow user-guided automation, perhaps relying on the

user to generate an initial masks, which is propagated to later
slices and refit.

With a robust user-guided annotation in place, we can now
explore semi-automated annotation. Although a new grand
challenge in connectomics is automated markup, generating
the primary connectome data set was enough of a challenge
itself that adding dependencies on automated tracing systems
made no sense. Proof-reading semi-automated annotations
can be nearly as slow as manual markup (Mishchenko, 2009).
Greater automation of tracing appears possible and would
be an important step in speeding analysis. However, subsets
of the problem domain vary greatly in difficulty. Automated
tracing of bipolar cell axons down to their target levels in the
inner plexiform layer is fairly simple. Automated tracing of
fine amacrine processes as they traverse laterally through the
volume or labelling oblique synapse orientations (Fig. 10) are
much harder tasks.

We have found that manual tracking of fine oblique features
is rarely difficult. TEM images are projection images, where
electrons pass through the entire slice imaging features at
all depths. By contrast, back-scattered electron signals, such
as those produced by block-face scanning electron and ion
beam milling platforms, contain little depth information. For
TEM, importantly, the challenge of automatic or manual
identification of oblique synapses is not significantly improved
using finer Z resolution obtained with thinner sections which
lower contrast and spread the identification task across more
slices. In critical cases we could, in principle, acquire a

Fig. 10. Serial slices demonstrating the challenges in automated tracking. Oblique orientation synapses are common. Four adjacent 70 nm slices in
the RC1 volume illustrate the problem, which cannot be solved by making slices thinner. (A) In slice 232, a bipolar cell process (cyan) is centred in
the frame, with two ribbon (r) synapses. There are actually four oblique synapses in this series. We track only one. Scale for (A–D), 500 nm. (B) On
slice 231, a central dark patch represents the bipolar cell’s postsynaptic density (white arrow) to an amacrine cell input. (C) In slice 230, the amacrine
cell process (orange) emerges in the centre of the contact zone (white arrow) along with its array of presynaptic projection densities (inset box, yellow
circles, scale, 250 nm). The membranes between the amacrine cell and bipolar cell pass through the slice obliquely and appear as a dark circular
smudges (black arrow). Presynaptic vesicles appear in the centre of the patch. (D) Slice 229 contains the amacrine cell process (orange) with its cluster of
presynaptic vesicles (white arrow) rimmed by the bipolar cell (cyan). (E) An orthogonal view of the four-slice partitioning of a conventional synapse with
the bipolar cell (cyan) postsynaptic density (POST) in slice B, the amacrine cell (orange) presynaptic projections (PRE) in slice C, and vesicles (circles) in
slice D.
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tomographic image series of a process in question to track
an oblique process, but in practice we have never needed to do
this.

Viking’s annotation database provides a wealth of expert
knowledge for testing and annotation. The modular nature of
the viewer also makes it a good platform for experimentation.
Although acknowledging that are other ‘grand challenge’
automated tracing data sets exists, dense synaptic systems
such as retina offer a maximally complex problem domain.
Thus, we have used Viking to export a full resolution test
series for tracking from the RC1 data set (Fig. 11). The
tracking challenge data set 514_ipl has a resolution of
2.18 nm and is composed of ninety 8192 × 8192 64 MB
subslices from slices 126–219. A 5 GB LZW compressed
data set and key guide images are publicly available
at http://prometheus.med.utah.edu/∼marclab/connectome_
tracking_2009.html.

We will release the Viking viewer and web visualization
tools as a resource to access our connectome in the third
quarter of 2010 (available at http://connectomes.utah.edu).
By doing this we hope to decouple the collection and storage of

Fig. 11. A keyframe image for the RC1 514_ipl tracking challenge. Six
cells have been manually masked off and they are numbered in order of
difficulty, with cell #1 being the easiest to track. The goal is to track the
labelled cells from any starting section to the edges of the challenge volume.
The challenge volume was exported from Viking at full resolution and
starts at slice 126 (location X 48888, Y 48888) in the inner plexiform layer
of the retina, centred on AII amacrine cell C514 (green). Selected processes
are colour coded to guide initiation of tracking (yellow, Müller cell; blue,
bipolar cell 1; cyan, bipolar cell 2; red, amacrine cell; purple, ganglion
cell). A selection of some (not all) representative conventional (boxes) and
ribbon (circles) synapses is also provided. The image is 17.8 µm wide.

data from the discovery and analysis components allowing the
entire scientific community to benefit from connectome data
sets. Similar to the proliferation of genome and transcriptome
mining tools (e.g. Mungall et al., 2002), we hope to promote
a wide variety of online tools from many groups. We will also
transfer the RC1 data set to user-supplied media on request.

Concurrent use of the annotation database brings up issues
of how conflicting updates are resolved. This is a large topic
and most of the functionality is implemented by underlying
software libraries. We considered how to handle conflicting
inserts, updates and delete actions. For the insert case we
simply allowed the duplication. If two users trace the same
cell they would notice the conflicting activity quickly because
slice annotations are updated each time the user switches
slices or presses the refresh key. If two users trace the same
cell at the same rate loading slices at exactly the same time,
it is possible to have a duplicate tracing. In reality one user
will always be slightly faster and the slower user would see
the annotations appear over the cell they were tracing and
know they should delete their progress within a slice or two.
Duplicate annotations are also easily identified automatically
by searching for overlapping annotations. For the conflicting
update case we took a common approach of including a version
timestamp column on tables with update operations. If the row
version has changed between the time a users performs the
query and submits the update to a row a message is displayed
and the changes are rejected. When masks are adopted we plan
to adopt the convention that each pixel can only belong to a
single structure and treat conflicts as conflicting updates. The
final case is deletion. If user A deletes a location or structure
which user B is attempting to update or link with an error
message is displayed.

Including the small molecule imagery in the RC1 volume
is a boon to both understanding both network organization
and error checking annotations. Small molecules diffuse
throughout intracellular space. They permit users to validate
that the same molecular signature is present in the process they
are tracing and that a mistake has not been made. This can
also benefit automated tracking and error detection strategies
by providing an independent method to measure correctness.

One of our long-term goals, shared with many other
groups, is to relieve the analysis bottleneck of large
data sets by enabling citizen science: massive community
annotation of data volumes. Similar to space science
efforts such as GalaxyZoo for analysis of Sloan Deep Sky
Survey data (Schawinski et al., 2009), and the NASA/JPL-
Caltech/Microsoft project BeAMartian (NASA et al., 2010)
that hosts Mars image data for citizen markup, future
progress in neuroscience (and perhaps bioscience in general)
will depend on reifications driven by annotations. We
acknowledge that perhaps in the end only neuroanatomists
will be motivated to trace circuits, however the features to
support a community of anatomists, such as user identity
and change logging, are identical to the features to support
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a community of volunteers or paid workers. There are not
and will never be enough analysts in all the neuroscience labs
worldwide to carry out the critical annotations one might
envision. The number possible of connection topologies in
any brain region is so diverse that only measured ground
truth will suffice (Anderson et al., 2009) and the diversity
of brain regions, genetic models, disease-related rewiring
topologies and therapeutic models is overwhelming. This
venture could easily engage exabyte to zettabyte data scales.
The only practical way forward in these early days of
connectomics research, even with semi-automated markup
is to make data sets public and enable community markup.
This would make it possible to enlist the aid of advocacy
groups for diseases such as Alzheimer’s and epilepsy, as well
as a spectrum of cognitive disorders with developmental or
environmental origins. Citizen science has several attractive
features, new to hypothesis-driven science perhaps, but
intrinsic to database-enabled systems like Viking. First, no
participant in markup, analysis, reification or other use of
the data has to physically own the database. This is a major
economic issue and represents the ultimate form of data
sharing. Secondly, overlapping annotations of the same data
set opens the possibility for self-correction, especially when
emergent models can be viewed by many specialists. In a
similar way, scientific bias or even outright fraud becomes
virtually impossible. This radically changes the way perhaps
all forms of scientific investigation might be done in the
future, with validation coming not from the slow process of
peer-review but rather from rapid, anonymous exploration
of data sets. One objection might be that only specialists
are qualified to annotate databases. We have found that to
be untrue. Undergraduates and other novice analysts with
little or no neuroscience training can readily learn to perform
annotation based on visual recognition alone, especially when
validated by an experienced analyst early on. The very positive
experience of the Galaxy Zoo effort to use citizen science
engaging over 160 000 users to classify astronomical objects
(Schawinski et al., 2009) is consistent with ours. Furthermore,
we have found that naı̈ve analysts can discover features that
experienced observers do not, perhaps due to bias or narrow
focus.
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