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Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and

typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain

distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is

sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise

functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million

connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched

typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification

in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75%

specificity for a total accuracy of 79% (P = 1.1 � 10�7). In subjects 520 years of age, the classifier performed at 89% accuracy

(P = 5.4 � 10�7). In a replication dataset consisting of 21 individuals from six families with both affected and unaffected

siblings, the classifier performed at 71% accuracy (91% accuracy for subjects 520 years of age). Classification scores in
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subjects with autism were significantly correlated with the Social Responsiveness Scale (P = 0.05), verbal IQ (P = 0.02) and the

Autism Diagnostic Observation Schedule-Generic’s combined social and communication subscores (P = 0.05). An analysis of

informative connections demonstrated that region of interest pairs with strongest correlation values were most abnormal in

autism. Negatively correlated region of interest pairs showed higher correlation in autism (less anticorrelation), possibly rep-

resenting weaker inhibitory connections, particularly for long connections (Euclidean distance 410 cm). Brain regions showing

greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula.

Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects dimin-

ishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of

the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity

magnetic resonance imaging diagnostic assay for autism.

Keywords: autism spectrum disorders; resting state functional MRI; brain development; functional MRI; functional connectivity MRI

Abbreviations: ADI-R = Autism Diagnostic Interview-Revised; ADOS-G = Autism Diagnostic Observation Schedule-Generic;
BOLD = blood oxygen level-dependent

Introduction
One of the most replicated abnormalities in brain imaging studies

of autism has been underconnectivity of distributed brain networks

(Brock et al., 2002; Belmonte et al., 2004a, b; Just et al., 2004;

Courchesne and Pierce, 2005; Geschwind and Levitt, 2007;

Hughes, 2007; Casanova and Trippe, 2009; Muller et al., 2011).

Most reports of underconnectivity in autism have focused on spe-

cific brain regions or networks, including regions underlying lan-

guage (Just et al., 2004; Kana et al., 2006; Jones et al., 2010),

working memory (Koshino et al., 2005, 2008; Kana et al., 2007),

motor function (Mostofsky et al., 2009), theory of mind (Mason

et al., 2008), executive function (Just et al., 2007), long-range

anterior–posterior connections (Cherkassky et al., 2006; Kana

et al., 2009), interhemispheric connections (Anderson et al.,

2011b; Dinstein et al., 2011), visual attention (Belmonte et al.,

2010), the default mode network (Kennedy et al., 2006; Kennedy

and Courchesne, 2008a, b; Lombardo et al., 2009; Monk et al.,

2009; Weng et al., 2009; Assaf et al., 2010), response inhibition

(Lee et al., 2009), visuospatial function (Villalobos et al., 2005;

Damarla et al., 2010), corticostriatal connections (Di Martino

et al., 2008, 2009) and facial recognition (Kleinhans et al.,

2008; Koshino et al., 2008). The underlying hypothesis supported

by these studies is a theory of connectivity characterized by local

over-connectivity but long-distance underconnectivity in autism

(Just et al., 2004; Courchesne and Pierce, 2005; Geschwind and

Levitt, 2007; Rippon et al., 2007; Casanova and Trippe, 2009).

Abnormal brain connectivity in autism occurs in a context of

white matter microstructural abnormalities and neuropathological

changes that are consistent with disordered connectivity. Increased

cellular density in cortical minicolumns with reduced lateral inhib-

ition (Casanova et al., 2009; Casanova and Trippe, 2009) and

abnormal white matter anisotropy in diffusion tensor imaging stu-

dies (Alexander et al., 2007; Brito et al., 2009; Cheung et al.,

2009; Fletcher et al., 2010; Lange et al., 2010; Shukla et al.,

2010, 2011) are both consistent with abnormal density and arbor-

ization of white matter projection fibres in autism.

Yet, despite extensive evidence that autism is in some funda-

mental way a disorder of brain connectivity, a cohesive framework

for describing the distribution of connectivity abnormalities is lack-

ing (Muller et al., 2011). It remains unclear whether connectivity

disturbances involve preferentially specific brain regions or tract

lengths, the extent to which excitatory and inhibitory connections

are involved, at what ages in development disturbances arise or

may normalize and whether connectivity abnormalities are related

to the heterogeneous functional deficits in autism spectrum

patients.

The extent to which single-subject connectivity measurements

may assist in clinical diagnosis, given the well-characterized noise

in functional connectivity measurements, is also unclear. Test–

retest studies have shown limited reproducibility that improves

with increased imaging time (Shehzad et al., 2009; Zuo et al.,

2009; Van Dijk et al., 2010; Anderson et al., 2011d). Despite

these apparent limitations, useful diagnostic information has

been obtained from even short blood oxygen level-dependent

(BOLD) sequences, such as characterization of subject age

(Dosenbach et al., 2010) and classification of dementia (Chen

et al., 2011). In this study, we used a data-driven approach to

characterize whole-brain functional connectivity abnormalities in a

dataset of adolescents and young adults with autism and typically

developing controls, and to determine whether these abnormalities

could accurately classify individual subjects with autism.

Materials and methods

Participant selection

Training sample

Forty high-functioning adolescent and young adult males with autism

were compared with 40 male typically developing control volunteers,

group-matched by age and performance IQ. Subjects were selected

from a sample of 53 subjects with autism and 43 typically developing

control subjects by selecting the subset of autism subjects with highest

performance IQ, and control subjects with lowest performance IQ in

the sample. The participants had no history of hearing problems; all

had English as their first language. Subject characteristics are displayed

in Table 1.
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Replication sample

An additional 21 subjects from six families, each with at least one

member with an autism spectrum disorder, which included eight indi-

viduals with an autism spectrum disorder and 13 siblings without

an autism spectrum disorder, were examined. The sample included

nine females and 12 males ranging in age from 7 to 32 years of

age. Three subjects that could have potentially been included in the

replication sample were excluded because they were already included

in the training sample.

All experiments were undertaken with the understanding and writ-

ten consent of each subject, with the approval of the University of

Utah Institutional Review Board, and in compliance with the national

legislation and the Code of Ethical Principles for Medical Research

Involving Human Subjects of the World Medical Association.

Diagnosis and exclusion criteria
Lifetime diagnosis of autism was established by the Autism Diagnostic

Interview-Revised (ADI-R) (Lord et al., 1994), Autism Diagnostic

Observation Schedule-Generic (ADOS-G) (Lord et al., 2000),

DSM-IV (American Psychiatric Association, 1994) and ICD-10 criteria.

The diagnosis was established by an autism expert (J.E.L.) using the

ADOS-G and DSM-IV/ICD-10 criteria in two subjects and using the

ADI-R and DSM-IV/ICD-10 criteria in one subject from the training

sample. Six training sample subjects and two replication sample sub-

jects met lifetime diagnostic criteria for pervasive developmental dis-

order not otherwise specified, and all others met diagnosis of autism.

Individuals with medical causes of autism (identified by history,

Fragile-X gene testing, karyotype and examination) were excluded.

Assessments
All participants underwent tests of IQ, language and neuropsycho-

logical function and were assessed with a standardized psychiatric

interview (Leyfer et al., 2006). Most controls were also assessed

with the ADOS-G (Lord et al., 2000) to confirm typical development.

Four control subjects that were not assessed with the ADOS-G had

Social Responsiveness Scale total scores 555 to confirm typical devel-

opment (Duvall et al., 2007). Controls with any history of develop-

mental, learning, cognitive, neurological or neuropsychiatric conditions

were excluded. One control subject reported a single minor bout of

depression.

Handedness

The Edinburgh Handedness Inventory (Oldfield, 1971), a standardized

assessment of hand preference, was obtained for each subject. This

inventory consists of a numerical score between �100 and + 100,

where �100 represents strong left-handedness and + 100 represents

strong right-handedness.

IQ

Verbal IQ and performance IQ were measured with the Wechsler

Adult Intelligence Scale, WAIS III (n = 41) (Wechsler, 1997), the

Wechsler Intelligence Scale for Children, WISC III (n = 4) (Wechsler,

1991), the Wechsler Abbreviated Scale of Intelligence, WASI (n = 6)

Table 1 Characterization of control (n = 40 in training sample and n = 13 in the replication sample) and autism (n = 40 in
the training sample and n = 8 in the replication sample) populations

Autism Control P

n Mean (SD) (range) n Mean (SD) (range)

Training sample

Gender 40 males 40 males

Age 40 22.7 (7.4) (12 to 42) 40 21.6 (7.4) (8 to 39) 0.49

EHI 40 58.2 (53.4) (�93 to 100) 39 71.2 (28.3) (�27 to 100) 0.18

VIQ 40 107.9 (18.9) (63 to 139) 40 113.5 (12.7) (90 to 140) 0.13

PIQ 40 106.2 (13.6) (81 to 133) 40 111.8 12.1 (88 to 135) 0.06

SRS 39 97.3 (31.0) (26 to 151) 39 13.6 (11.6) (0 to 51) 1.1E-25

ADOS S + C 39 12.8 (3.8) (6 to 21) 35 1.0 (1.27) (0 to 4) 1.0E-26

ADI-R Soc 38 19.0 (6.7) (9 to 39)

ADI-R Com 38 14.0 (4.8) (6 to 24)

ADI-R RSB 38 6.9 (2.3) (2 to 12)

Replication sample

Gender 6 males, 2 females 6 males, 7 females

Age 8 16.1 (3.6) (11 to 22) 13 20.8 (8.0) (7 to 32)

EHI

VIQ 6 88.8 (21.1) (60 to 113) 12 108.1 (14.7) (75 to 126)

PIQ 6 93.8 (17.6) (64 to 112) 12 113.4 (15.2) (89 to 135)

SRS 2 66.5 (3.5) (64 to 69) 13 16.0 (11.7) (3 to 45)

ADOS S + C 7 11.0 (4.8) (5 to 18)

ADI-R Soc 7 18.0 (6.1) (11 to 28)

ADI-R Com 7 14.0 (7.0) (5 to 24)

ADI-R RSB 7 5.0 (1.7) (2 to 7)

EHI = Edinburgh Handedness Inventory; PIQ = performance IQ; SRS = Social Responsiveness Scale; VIQ = verbal IQ.
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(Wechsler, 1999) or the Differential Abilities Scale (n = 29) (Elliott,

1990).

Social function

The Social Responsiveness Scale is a standardized, quantitative,

65-item questionnaire with a four-point rating scale that measures

social impairments characteristic of autism spectrum disorders

(Constantino and Todd, 2003). Higher total raw scores indicate that

the subject is less socially responsive.

Functional magnetic resonance imaging
acquisition
Images were acquired on Siemens 3 Tesla Trio scanner. The scanning

protocol consisted of initial 1 mm isotropic magnetization-prepared

rapid acquisition with gradient echo (MPRAGE) acquisition for an ana-

tomic template. BOLD echoplanar images (repetition time = 2.0 s, echo

time = 28 ms, GRAPPA parallel acquisition with acceleration factor = 2,

40 slices at 3 mm slice thickness, 64 � 64 matrix) were obtained

during the 8-min resting state scan (240 volumes), where subjects

were instructed to ‘Keep your eyes open and relax. Remain awake

and try to let thoughts pass through your mind without focusing on

anything in particular’. Prospective motion correction was performed

during BOLD imaging.

Functional magnetic resonance imaging
post-processing and statistical analysis
Offline post-processing was performed in MATLAB (Mathworks) using

SPM8 (Wellcome Trust) software. Initial slice timing correction was

performed to adjust for interleaved slice acquisition. A field map

sequence was acquired for each subject for distortion correction, and

all images were motion corrected using realign and unwarp proced-

ures. There were no significant differences between the groups in head

motion when maximal translational and maximal rotational head

deviation was measured for each subject (two-tailed t-test: transla-

tional P = 0.37, rotational P = 0.73). BOLD images were coregistered

to the MPRAGE anatomic image sequence for each subject. All images

were normalized to the Montreal Neurological Institute (MNI) tem-

plate brain (T1.nii in SPM8), with manual inspection of appropriate

normalization in all subjects.

To correct for BOLD signal attributable to physiological noise such

as heart rate and respiration, we used a regression algorithm using

time series from voxels in the facial soft tissues, CSF and white

matter to correct for artefactual correlations in the BOLD data (Fox

et al., 2009). No global signal regression was performed, to avoid

introducing artefactual anticorrelations in the data (Murphy et al.,

2009; Anderson et al., 2011c).

Scalp and facial soft tissues, CSF and white matter signal regression

was performed after automated grey matter, white matter and CSF

segmentation of each subject’s MPRAGE volume using SPM8. These

segmented images were inspected manually to confirm appropriate

identification of tissue components. The CSF time series for each sub-

ject was measured from the lateral ventricles. This was obtained from

selecting voxels from the CSF segmented image for each subject within

the bounding box defined by MNI coordinates: �355 x5 35,

�605 y5 30, 05 z5 30. White matter time series for each subject

were obtained from the mean time series of voxels within two regions

of interest in the bilateral centrum semiovale (MNI coordinates: left:

x = �27, y = �7, z = 30; right: x = 27, y = �7, z = 30, each region of

interest had a 10-mm radius). Before extracting the white matter time

series, an exclusive mask was performed with the grey matter seg-

mented image from each subject to eliminate voxels containing grey

matter. A soft tissue mask of the facial and scalp soft tissues was used

as previously described (Anderson et al., 2011c). The mean soft tissue,

CSF and white matter time series were then used as regressors in a

general linear model (glmfit.m in MATLAB Statistics Toolbox) for the

BOLD time series at each voxel in the brain, and the best fit was

subtracted from the voxel’s time series data, producing the signal-

corrected time series images. Each voxel’s time series was bandpass

filtered with a frequency window of 0.001–0.1 Hz (Cordes et al.,

2001) and linearly detrended to correct for scanner drift. No smooth-

ing was performed. These images were used for subsequent analysis.

Region of interest selection
Regions of interest (n = 7266) were selected to form a lattice covering

the grey matter. A grey matter restriction mask was obtained by se-

lecting voxels at 3 � 3 � 3 mm resolution where the SPM8 grey.nii

image showed intensity 40.3. Beginning with the right, inferior, pos-

terior corner of the image, voxels were retained in the image if they

were 55 mm Euclidean distance from previously retained voxels. This

yielded 7266 seed voxels, each separated by at least 5 mm. The grey

matter restriction mask was then parcellated into 7266 regions of

interest, based on which of the seed voxels was closest to any given

voxel in the restriction mask. MNI coordinates of the 7266 seed voxels

are tabulated in Supplementary Table 1. The resulting non-overlapping

regions of interest averaged 4.9 � 1.3 standard deviation (SD) voxels

in size for 3 mm isotropic voxels.

For each subject, the post-processed BOLD time series was averaged

from the voxels in each of the 7266 regions of interest. Pearson’s

correlation coefficients were calculated for each pair of voxels to

obtain a 7266 � 7266 correlation matrix (26 393 745 connections per

subject), and all correlation values were converted using Fisher Z-trans-

formation (Lowe et al., 1998; Kennedy and Courchesne, 2008a; Fox

et al., 2009; Murphy et al., 2009).

Calculation of functional connectivity
magnetic resonance imaging
classification scores
A leave-one-out classifier was used to generate a classification score

for each of the 40 autism and 40 control subjects. Each of the subjects

in turn was excluded from the analysis, and for the remaining 79 sub-

jects, the subset of connections for which the autism and control sam-

ples were significantly different in a two-tailed t-test for a specified

P-value was identified. Because of the large number of connections,

we attempted to exclude connections for which differences between

autism and control samples were driven by an outlier. We therefore

repeated this analysis after leaving out each of the remaining 79 sub-

jects in turn, and retained connections that still differed between the

two groups in a two-tailed t-test at the same specified P-value, no

matter which additional subject was left out.

Once this subset of connections was identified for each left-out

subject and each P-value tested, a classification score for the left-out-

subject was calculated. For each connection in the subset, a linear

fit was performed separately for autism and control samples from

the 79 subjects remaining for that connection with subject age. An

age-adjusted expected autism value and expected control value were

determined by interpolating these best fit lines for the age of the

subject that was left out. The Fisher-transformed correlation value

for this connection for the left-out subject was then subtracted from
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the expected autism value and the expected control value, and the

difference was recorded. The mean of all such differences for the

subset of connections tested was recorded as the functional connect-

ivity MRI classification score for the left-out subject. A positive score

indicated that the subject was more similar across the subset of con-

nections to the remaining autism subjects; a negative score indicated

the subject was more similar to the remaining control subjects. This

entire procedure was repeated, leaving out each subject in turn, for all

26 393 745 connections in the dataset, as well as for subsets of con-

nections selected by the P-values 0.001, 0.0001, 0.00 001 and

0.000 001.

Replication in an independent dataset
of families
An optimum P-value of 0.001 was selected, and the subset of connec-

tions was identified to apply to a replication dataset. Each of the 80 sub-

jects was left out in turn, and connections for which a two-tailed t-test

was significant at uncorrected P5 0.001, no matter which subject was

left out, was used for further analysis, yielding 58 908 connections.

The 21 subjects in the replication sample were scanned using iden-

tical procedures, with resting BOLD data processed in the same

manner as above. An age-adjusted classification score was obtained

in the same manner as described above for each of these 21 subjects

compared with the 80 reference subjects. The same set of 58 908

connections described above was used for each of the 21 subjects.

Results
Classification scores for each of 40 autism and 40 typically devel-

oping subjects were calculated from a subset of the 26 393 745

connections between 7266 regions of interest. The subset was

determined by a single P-value after leaving out one test subject

at a time. A different set of connections was used for classification

of each left-out subject, since defining the set of connections using

all subjects could potentially introduce invalid bias.

Classification results for P = 0.001 are shown in Fig. 1A. A

receiver operating characteristic (ROC) curve was calculated to

estimate the ideal discriminant threshold, which was set at a func-

tional connectivity MRI classification score of 0.008 (Fig. 1B). For

this threshold, the classifier successfully predicted 30/40 control

subjects (75%) and 33/40 autism subjects (83%), with a total

accuracy of 63/80 (79%). To establish what results might be ex-

pected by chance from a binary classification algorithm, we eval-

uated a binomial distribution for 80 subjects. The probability of a

79% or better accuracy classification in 80 subjects based on

random assignment is 1.13 � 10�7. A two-tailed t-test of classifi-

cation scores between autism and control samples was significant-

ly different between the samples at P = 1.6 � 10�7. Classification

was more accurate for younger subjects: for subjects 520 years of

age, the classifier predicted 83% sensitivity (15/18 autism sub-

jects), 95% specificity (18/19 control subjects) for 89% total ac-

curacy (33/37, P = 5.4 � 10�7).

We applied this same classification algorithm with the same

discriminant threshold to the independent replication sample,

including eight individuals with an autism spectrum disorder and

13 unaffected siblings. The classifier performed at 75% sensi-

tivity (6/8 autism spectrum disorder subjects), 69% specificity

(9/13 control subjects) and 71% total accuracy (P = 0.039,

Fig. 1C). The classifier again performed better on subjects

520 of age, with 83% sensitivity (5/6 autism spectrum disorder

subjects), 100% specificity (5/5 control subjects) and 91% total

accuracy (P = 0.006).

Figure 1 Accuracy of the leave-one-out classifier in the training

dataset and replication in an independent sample of families.

(A) Scatter plot showing classification scores for leave-one-out

classifier in the training dataset for connections selected by

P50.001. (B) Receiver operating characteristic (ROC) curve

showing the optimal compromise between the true positive

rate and false positive rate that was the basis for the discriminant

threshold. (C) Scatter plot showing classification in the

replication sample.
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There is an inherent trade-off in using more connections in the

classifier, which mitigates the noise in individual measurements,

and using connections more specifically abnormal in autism. To

evaluate an optimal number of connections, we performed classi-

fication separately using all 26.4 million connections, and using a

P-value for connection selection ranging from 0.001 to 0.000 001.

Results shown in Fig. 2 were calculated with the optimal discrim-

inant threshold specific for each P-value.

Using all connections, specificity performed only at chance, indi-

cating that the classifier was unable to reliably detect control sub-

jects. Regardless of the discriminant threshold used, accuracy

was lower than for any of the classifiers using a more specific

subset of connections. Classification using a P-value of 0.001

and 0.0001 yielded equivalent sensitivity, specificity and accuracy.

For P = 0.001, a mean of 89 411 � 5389 SD connections was used

to classify each subject.

The set of connections that was used for classifying the replica-

tion sample included 58 908 connections, obtained from the set of

all connections satisfying P50.001 between remaining autism

and control subjects no matter which two subjects were left out.

If only one subject was left out, there were 91 851 connections

satisfying P5 0.001 for remaining subjects. For connections that

no longer satisfied P50.001 when a second subject was left out,

these subjects were equally distributed between autism (50.5%)

and control (49.5%) groups, with no significant difference in the

frequency of ‘outliers’ between the two groups (P = 0.85). The set

of 58 908 connections obtained from leaving out any two subjects

was considered the subset of most informative connections in sub-

sequent analyses. For P = 0.0001, an average of 15 976 � 1409

connections was used for classification. For P = 0.00 001, an aver-

age of 2535 � 357 connections was used. For P = 0.000 001, an

average of 340 � 67 connections was used.

The set of 58 908 most informative connections showed prefer-

ential involvement of specific brain regions, illustrated in Fig. 3. To

evaluate whether some regions were significantly more repre-

sented in the set of informative connections, we considered a

null hypothesis that all regions would be equally likely to be in-

volved and performed permutation testing. By randomly assigning

regions to 10 000 sets of 58 908 connections, we evaluated how

many individual unordered pairs within the set of connections

could contain the region as one of the two elements of the pair.

For 95% of the 10 000 trials, no region was represented 433

times, so we took this as our threshold for significant over-

representation in the sample. The brain regions that were dispro-

portionately represented in the informative sample included re-

gions of the bilateral fusiform gyrus, default mode network

(posterior cingulate, medial prefrontal, bilateral temporoparietal

junction, bilateral inferior temporal), bilateral anterior insula, bilat-

eral superior parietal lobule and right orbitofrontal cortex.

A high spatial resolution array of connections allows the oppor-

tunity to cluster connections based on features such as connection

length and strength to determine if specific types of connections

(correlated, anticorrelated, long, short) inform the classifier differ-

ently with respect to autism and control samples. For connection

strength, we used the mean Fisher-transformed correlation across all

80 subjects and grouped connections into 45 bins of 0.05, ranging

from �0.35 to 1.85. For Euclidean distance between the centroids

of the regions of interest, we measured distance in millimetres,

acknowledging that this is only an approximate metric of connection

distance, given that two regions of interest close together in contra-

lateral occipital lobe, for example, may in fact be a much longer

connection than the metric would indicate. Connections were

binned into 32 bins of 5 mm, ranging from 10 to 165 mm.

Figure 4A shows the mean t-score between autism and control

subjects for connections within each 2D bin. The distribution

showed a clear topological pattern, with most negative t-statistics

in the most positively correlated connections ranging from 10 to

150 mm distance (blue region). In contrast, mean t-scores were

positive (indicating higher correlation values in autism) for negative-

ly correlated sets of connections, particularly for long connections.

We evaluated the per cent of all connections in Fig. 4B that

were included in the 58 908 subset of most informative connec-

tions to the classifier, and found that the red and orange shaded

area from 50 to 100 mm between the regions of interest and with

Fisher-transformed correlation values 40.5 were overwhelmingly

the most informative to the classifier. A secondary peak, however,

included connections where subjects with autism had greater cor-

relation. This is equivalent to less anticorrelation for negatively

correlated connections, since most of these connections were

either negatively correlated or on the negative end of the distri-

bution. The distributions between informative connections that

showed higher versus lower correlation in autism were markedly

different as a function both of path length and correlation strength

(Fig. 4C and D).

To determine the extent to which our classification measure-

ments corresponded to phenotypic properties of the samples, we

correlated the functional connectivity MRI classification scores

with verbal IQ, performance IQ, Social Responsiveness Scale,

ADOS-G (social + communication) and ADI-R (communication)

shown in Fig. 5. The classification scores in control subjects were

not significantly correlated to any of the phenotypic

Figure 2 Dependence of classification accuracy on the subset of

connections used. Sensitivity, specificity and total accuracy for

the classifier is shown for all connections and for the subset of

connections selected by a two-tailed t-test with P-values 0.001,

0.0001, 0.00 001 and 0.000 001. Horizontal lines show what per

cent of subjects out of 40 would need to be classified correctly

to achieve the specified P-value, and apply to sensitivity and

specificity bars only.
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measurements. But in autism subjects, Social Responsiveness Scale,

verbal IQ and ADOS-G’s combined social and communication

subscores were significantly correlated with the classification scores.

Lower classification scores (more easily classified as autism) were

associated with lower verbal IQ, higher Social Responsiveness

Scale and higher ADOS-G scores (greater social impairment

and disease severity). ADI-R also showed negative correlation

with the classification score (more abnormal ADI-R values were

more easily classified as autism) for each of the three ADI-R sub-

tests, although none of these results achieved statistical

Figure 3 Brain regions most informative for classification. Shaded regions represent regions of interest disproportionately represented

among informative connections, with colour scale representing the number of occurrences of the region of interest among the 58 908

most informative connections. Permutation testing demonstrated that if connections were randomly selected from the regions of interest,

no region would be represented 433 times in 95% of simulations.
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significance (ADI-R social: r = �0.13, P = 0.41; ADI-R communi-

cation r = �0.22, P = 0.14; ADI-R repetitive and stereotyped be-

haviours r = �0.12, P = 0.45).

Discussion
We present data from a high spatial resolution array of connect-

ivity measurements that can distinguish subjects with autism from

typically developing controls with relatively high sensitivity and

specificity. Classification accuracy was replicated in an independ-

ent dataset by distinguishing individuals with an autism spectrum

disorder from their unaffected siblings. Datasets from families with

affected and unaffected siblings were chosen for replication be-

cause this cohort may be a more realistic clinical diagnostic popu-

lation, and because it could provide information on whether

connectivity abnormalities in autism are shared by unaffected

family members. This data-driven approach to classification yielded

subsets of connections that were most informative in distinguish-

ing autism and control subjects, and allowed characterization of

whole-brain patterns of abnormal connectivity in autism that may

inform pathophysiology, genetic and molecular mechanisms for

autism, and the neural basis for clinical heterogeneity in autism.

Spatial distribution of abnormal
connectivity
A survey of the most informative connections to the classifier

identified a spatially heterogeneous distribution of abnormal con-

nectivity. Brain regions that were significantly over-represented

among abnormal connections in autism included the default

mode network, superior parietal lobule, anterior insula and fusi-

form gyrus. Previous studies have identified abnormal connectivity

within the default mode network in autism (Kennedy et al., 2006;

Kennedy and Courchesne, 2008a, b; Lombardo et al., 2009;

Monk et al., 2009; Weng et al., 2009; Assaf et al., 2010).

Task-based approaches have also identified abnormal function of

the default mode network in autism, with failure to deactivate

during attentionally demanding tasks (Kennedy et al., 2006).

Abnormal connectivity involving the superior parietal lobule, par-

ticularly along the intraparietal sulcus and anterior superior insula

Figure 4 Connectivity differences in autism related to distance between brain regions and strength of correlation. (A) All connections

were grouped into bins based on the distance in millimetre between the regions of interest (ROIs) versus the mean Fisher-transformed

correlation across all 80 subjects. Within each bin, the two-tailed, two-sample t-score comparing autism and control subjects was averaged

across the connections in the bin. Negative correlations were higher in subjects with autism (less anticorrelated), particularly between more

distant regions. Strong positive correlations between brain regions were higher in control subjects. (B) Per cent of connections within each

bin that were among the 58 908 most informative. (C) Distribution of informative connections with a positive versus negative t-score as a

function of mean Fisher-transformed correlation across all subjects. (D) Distribution of informative connections with a positive versus

negative t-score as a function of Euclidean distance.
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as we observe, may also represent disordered connectivity within

the attention control network.

Given a hypothesis where the default mode and attention

control networks may compete for attentional resources between

internal and external stimuli (Fox et al., 2005), our findings

and those in the studies above may be consistent with a pheno-

typic pattern of impaired communication within and between the

default mode and attention control networks. This would be con-

sistent with a clinical pattern wherein internal dialogue and narra-

tive associated with activity in the default mode network (Gusnard

et al., 2001; Mason et al., 2007; Troiani et al., 2008; Wilson

et al., 2008; Yarkoni et al., 2008; Whitney et al., 2009) may be

interrupted by intrusive external stimuli by failure to inhibit the

attention control network. Alternately, attention to external stimuli

associated with activity in the attention control network (Corbetta

and Shulman, 2002; Fox et al., 2005, 2006; Anderson et al.,

2010) may be abnormally interrupted by internal dialogue by a

failure to adequately suppress the default mode network.

The anterior insulae are among the most consistently identified

brain regions associated with social processing networks and have

Figure 5 Relationship between functional connectivity classification score and clinical covariates. Scatter plots and best linear fit are

shown for functional connectivity MRI classification score as a function of (A) Social Responsiveness Scale, (B) verbal IQ, (C) performance

IQ, (D) ADI-R, (E) ADOS-G (social + communication) in autism and control samples. Significant relationships are annotated by correlation

values and P-values above the plots.
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demonstrated consistent hypoactivity in task-related functional

MRI studies in autism (Uddin and Menon, 2009). The anterior

superior insula is also a core component of the novelty detection

or salience network involved in identification of novel or relevant

stimuli across sensory modalities (Seeley et al., 2007). The left

frontoinsular region was specifically hypoactive in subjects with

autism in a study of novelty detection using an auditory oddball

paradigm (Gomot et al., 2006).

The fusiform gyrus has also been the subject of previously iden-

tified abnormality in brain imaging studies of autism (Pierce and

Redcay, 2008; Corbett et al., 2009). Decreased functional con-

nectivity of the fusiform gyrus to frontal regions has been reported

in autism during facial processing tasks (Kleinhans et al., 2008;

Koshino et al., 2008). A post-mortem study showed decreased

numbers of neurons specifically in the fusiform gyrus in autism

(van Kooten et al., 2008).

Inter-region of interest distance and
abnormal connectivity
Multiple prior reports have presented findings in support of a

model of long-range underconnectivity and short-range overcon-

nectivity in autism (Casanova and Trippe, 2009), yet functional

connectivity studies have not previously defined ‘long-range’ or

‘short-range’ in terms of path length. A study of regional homo-

geneity in autism, where a voxel is compared with its immediate

neighbours, showed decreased temporal correlation in autism

(Paakki et al., 2010) in most brain regions known to be abnormal

in autism, although a few regions showed increased regional

homogeneity. Our data indicate that positively correlated connec-

tions, even among the most short-range connections we mea-

sured, only 1–2 cm distant and presumably mediated by cortical

U-fibres or short-range horizontal connections, already exhibit

decreased connectivity in autism. Although we do not evaluate

the hypothesis of local overconnectivity directly, our data con-

strain such local overconnectivity to subcentimetre spatial scales.

It has been proposed that very short-range overconnectivity

(or underconnectivity), by disrupting local network entropy and

information capacity, may lead to long-range underconnectivity

during development in autism (Belmonte et al., 2004b). Such a

hypothesis would be most consistent with our data if overconnec-

tivity due to impaired synaptic pruning was at the columnar level,

rather than at longer spatial extents by U-fibres or inter-regional

cortico-cortical connections.

The only connections we observed that measured systematically

higher in functional connectivity in autism were predominantly

negatively correlated connections, particularly long-distance nega-

tive correlations. As such, it is possible that these connections also

represent ‘underconnectivity’ in autism, but of long-range inhibi-

tory connections. By utilizing a high spatial resolution array of

connections, our data are less susceptible to averaging of posi-

tively and negatively correlated connections between larger re-

gions of interest or networks that may represent a source for

disagreement in the literature about a general underconnectivity

theory of autism (Muller et al., 2011).

Connection strength and abnormal
connectivity
We also observed characteristic patterns in the distribution of

strength of correlation between brain regions, and differences be-

tween autism and control samples. Specifically, we found that the

most informative connections in distinguishing the samples were in

the most strongly correlated brain regions. This may represent a

bias towards connections that correspond to anatomic mono-

synaptic pathways, for which measurements of functional con-

nectivity may be more precise or less influenced by shared

inputs from other sources or indirect multisynaptic pathways that

could combine excitatory and inhibitory components.

Phenotypic correlation of abnormal
connectivity
Functional MRI classification scores were significantly correlated in

subjects with autism, but not control subjects, to verbal IQ, ADOS

(social + communication) and Social Responsiveness Scale meas-

urements. For individuals with autism, these measurements are

particularly instructive because they correspond to core diagnostic

and phenotypic abnormalities in autism, verbal language impair-

ment and abnormal social interaction. Other studies have also

found connections between phenotypic metrics and functional

connectivity in autism, for example, in a study of cingulo-insular

connectivity (Di Martino et al., 2009) and a study of visual attention

(Belmonte et al., 2010), which also found that unaffected siblings

showed connectivity patterns that resembled control subjects rather

than affected siblings, consistent with our results. The correlation of

disease severity and functional connectivity indicates that connect-

ivity abnormalities may be directly involved in the pathophysiology.

Methodological considerations
A recent meta-analysis of functional connectivity studies in autism

identified widely heterogeneous methodological details that may

underlie differing results obtained by the studies (Muller et al.,

2011). Methodological details were also mentioned by Jones

et al. (2010) particularly related to global signal regression as a

possible source of divergent results. The widespread use of re-

gressing the global signal from the time series at each voxel prior

to measuring functional connectivity (Fox et al., 2009; Murphy

et al., 2009) has been shown to improve anatomic specificity of

functional connections by mitigating physiological noise, but also

introduces large anticorrelations. This has been shown to be

related to subtracting components of large distributed networks

from voxels to the extent that the voxel itself is in a large network

(Anderson et al., 2011c). This is problematic for studies involving

neurodevelopmental or neuropathological groups, because spa-

tially heterogeneous differences in connectivity are distributed to

other brain regions, possibly limiting specificity. Particularly when

evaluating large numbers of connections, the use of global signal

regression may complicate attempts to resolve differences in spe-

cific types of connections and their relationship to disease patho-

physiology. Therefore, we have used only regression to regions of

interest in the white matter, CSF and facial soft tissues, and only
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after excluding any grey matter voxels in proximity to the regions

from which regressors were obtained (Anderson et al., 2011c).

We also did not detect any systematic differences in group head

motion between our subjects with autism and control samples.

Study limitations
Further study will be necessary to assess how well the classifier we

propose will generalize to younger ages (younger than 8 for con-

trols and younger than 12 for autism spectrum disorder), cogni-

tively lower functioning children and data collected across sites or

with different scan sequence parameters. Nevertheless, it is reas-

suring that our classifier performed better for subjects 520 years

of age, suggesting that younger age ranges may have more salient

differences between autism and control subjects. Moreover, a

recent study has found abnormal interhemispheric connectivity

even in sleep for subjects as young as toddlers, suggesting that

extension to very young ages may be possible (Dinstein et al.,

2011). We note that the broad age range used in the study

may limit generalizability as well, and a larger sample of

age-specific training datasets may serve to improve accuracy of

the classifier, particularly in younger age ranges where connectiv-

ity is evolving through childhood and adolescence (Fair et al.,

2007). The classifier needs to be developed to better distinguish

individuals with autism spectrum disorder from typically develop-

ing individuals, provide more useful information than diagnosis

alone and very important for clinical utility, discriminate individuals

with autism from patients with other developmental and neuro-

psychiatric disorders (Lainhart and Lange, 2011). In our results,

unaffected family members were classified similarly to other con-

trol subjects, which might limit the utility of functional connectivity

MRI classification in identifying intermediate phenotypes.

Accurate image-based diagnosis may be enhanced by combin-

ing this technique with multimodal classification schemes that in-

volve diffusion tensor imaging (Lange et al., 2010), structural

imaging (Ecker et al., 2010a, b; Jiao et al., 2010) and neuro-

physiological measurements that by themselves show quite good

autism classification ability. Longer BOLD imaging times may also

improve diagnostic accuracy (Anderson et al., 2011a, d). Given

the large number of connections studied, each with considerable

measurement noise, a larger training database will likely increase

accuracy as well. Finally, we note that Euclidean distance is a poor

substitute for more accurate path length measurements, and many

of the connections tested may not correspond to monosynaptic

pathways or well-defined anatomic circuits. Future studies might

clarify whether more accurate path length measurements for con-

nections such as that may be obtained with diffusion tensor

tractography and restricting connections to those with plausible

anatomic substrates may improve accuracy of the classifier.

Conclusion
Diagnostic accuracy of a functional connectivity MRI classification

algorithm was 79% in a training dataset of individuals with autism

and typically developing controls and 71% in a replication dataset

of individuals with autism and their unaffected siblings, and

classification scores were correlated with measures of verbal and

social impairment in autism subjects. For subjects 520 years of

age, accuracy improved to 89% in the training dataset and 91%

in the replication dataset. Informative connections were seen in

areas of the default mode network, anterior insula, fusiform gyrus

and superior parietal lobule, all loci consistently found to be

abnormal in imaging studies of autism. Most informative connec-

tions were between brain regions with highest correlation, with a

smaller number of negatively correlated connections where sub-

jects with autism had higher correlation (less anticorrelation),

especially for long-range connections. These findings are consist-

ent with a general underconnectivity theory of autism, including

weaker long-range inhibitory connections.
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