Hardware-Assisted Point-Based Volume Rendering of Tetrahedral Meshes

Erik W. Anderson, Steven P. Callahan, Carlos E. Scheidegger, John M. Schreiner, and Cldudio T. Silva
Scientific Computing and Imaging Institute, University of Utah

Figure 1. Our novel point-based volume rendering technique is faster than the current state of the art
while still generating high quality images. Left to right: baseline image rendered with HAVS; PBVR with
unshaped footprints, circular footprints and ellipsoidal footprints, respectively. Lower half (PBVR) show
the difference to the baseline exact image. Notice the increasing level of fidelity.

Abstract

Unstructured volume grids are ubiquitous in scientific
computing, and have received substantial interest from the
scientific visualization community. In this paper, we take
a point-based approach to rendering unstructured grids.
In particular, we present a novel method of approximat-
ing these irregular elements with point-based primitives
amenable to existing hardware acceleration techniques. To
improve interactivity to large datasets, we have adapted a
level-of-detail strategy. We use a well-known quantitative
metric to analyze the image quality achieved by the final
rendering.

1. Introduction

In this paper, we address the problem of interactively vi-
sualizing large, unstructured tetrahedral meshes. Our pro-
posed technique renders each tetrahedron in the mesh as
a single point. Approximating the tetrahedra in the mesh
in this way is fast, and when combined with point reshap-
ing methods, this technique produces high-quality render-
ings of large datasets at interactive rates.

There are many advantages to point-based rendering
techniques. Many datasets contain tetrahedra that, after pro-
jection, represent sub-pixel sized areas. Due to the inclu-
sion of connectivity information associated with rendering

triangular or quadrilateral primitives, these tetrahedra are
not optimally rendered. By representing these tetrahedra
with single points, sub-pixel sized primitives can be ren-
dered accurately using less data. Thus, rendering is often
performed faster when using point-based techniques. In ad-
dition, difficulties such as storage and indexing additional
datastructures associated with dynamic level-of-detail for
large datasets are substantially reduced. Our technique is
flexible as it is not limited to vertex-centered data, but can
be applied easily to large cell-centered data as well. In spite
of its advantages, point-based rendering presents several
sources of error that are addressed in this paper.

Contributions The results of this work add several unique
insights to the point-based rendering community. In this pa-
per, we present the following contributions:

e A novel point-based approach for rendering unstruc-
tured tetrahedral meshes with either vertex- or cell-
centered data

e Through the use of a compact point representation, this
method eliminates the need to process and store con-
nectivity information, while easing the implementation
of level-of-detail strategies.

e We introduce point reshaping using a GPU raycasting
technique to minimize tetrahedron approximation er-
ror.

e Through the direct compositing of the point fragments
in hardware shaders, we avoid the need for convolution
operations used in existing splatting techniques [6].

This paper is organized as follows. After a brief dis-
cussion of related work in Section 2, Section 3 outlines
our approach to point-based volume rendering of tetrahe-
dral meshes, including the required preprocessing. Section
4 discusses our level-of-detail methodology, including per-
formance and quality metrics. The results of our method are
shown in Section 5 while a discussion of the work and con-
clusions are described in Sections 6 and 7.

2. Previous Work

Since the first hardware accelerated volume rendering
techniques for unstructured grids were presented, many new
and innovative methods for volume rendering have pro-
duced compelling results. Silva et al. and Kriiger and West-
ermann both provide comprehensive surveys of GPU-based
techniques [11, 22]. By taking advantage of newly devel-
oped graphics processing units (GPUs), these hardware ac-
celerated techniques are able to achieve interactive frame
rates for moderately sized datasets.

Much work has been done to take advantage of the ever-
expanding range of capabilities being introduced by mod-
ern graphics processors. Many methods have been devel-
oped to accelerate the projection of mesh elements for use
in both iso-surface and volume rendering [20, 25]. The op-
timization of the projection, or splatting operator, has since
been the intensely studied [16].

The work done by Mao et al. and Laur et al. [12, 15]
forms a basis for the work of Museth and Lombeyda, Tet-
Splat [17]. TetSpalt is representative of methods by which
unstructured grids are processed in order to partition vol-
umes for rendering. In these works, methods for splat-
ting volumes are used in conjunction with a hierarchical
data representation to achieve high framerates. While these
splatting techniques have been able to take advantage of in-
novations in graphics hardware, raycasting techniques have
also made similar adaptations. Weiler et al. and Bernar-
don et al. presented methods relying heavily on the GPU
to perform raycasting operations used in volume render-
ing [2,24]. Additionally, Callahan et al. introduced Hard-
ware Assisted Visibility Sorting (HAVS) [5] allowing the
correct compositing of fragments generated by rendering
tetrahedral faces directly.

Although Georgii and Westernmann use the GPU to re-
construct tetrahedral elements from single vertices [10],
our approach differs in several fundamental ways. While
Georgii et al. reconstruct a triangle strip used to represent a
complete tetrahedron, we approximate the tetrahedron with
a single point and generate no additional geometry. Further-
more, this method relies on functionality currently available
only in Microsoft DirectX 10 and compliant hardware [1].

Pre-Processing

GPU Processing Per Frame

-~

| Find transform per-tetrahedron |

| Find tetrahedra centroids I B R

1/

Host Processing Per Frame

| Resize points |

Fragment Program

| Reshape points |

| Sort points based on viewpoint I |Composite fragments|

\

| Determine LOD Parameters l

Figure 2. Algorithm overview.

Our method makes no such assumptions regarding the op-
erating system or hardware architecture.

Level-of-detail strategies for use with the volume render-
ing of unstructured tetrahedral meshes is a difficult prob-
lem. Cignoni ef al. manipulated the underlying geometry of
a given mesh in order in response to the time required to ren-
der the mesh [7]. Sampling the original mesh to form new
representations of it more amenable to level-of-detail strate-
gies is another approach to this problem. Leven et al. sam-
ple and voxelize the original mesh [13] whereas Callahan et
al. present a method by which importance sampling of the
underlying geometry [4] is used to achieve interactive fram-
erates.

Point-based representations of underlying meshes has
also been well-studied [3, 18, 21]. Point-based rendering
techniques have traditionally used convolution kernels to
help mitigate errors associated with representing a full tetra-
hedron with a single point [27] with much research devoted
to improving the performance characteristics and approxi-
mation elements used in them [6, 26].

3. Algorithm Overview

Our volume rendering approach relies on the represen-
tation of complex tetrahedral meshes by simple approxima-
tions of the elements comprising the mesh. As illustrated
in Figure 2, this algorithm can be broken down into three
distinct components: pre-processing of the mesh, per-frame
processing on the CPU, and per-frame processing on the
GPU. After forming our approximation elements by finding
a representative transform and scalar value for each point
in a pre-processing step, the mesh is processed on a per-
frame basis. The CPU first sorts the points front-to-back
by the tetrahedra centroids based on the current viewpoint
and then determines the level-of-detail to use in the current
frame. The GPU’s vertex program then uses information in
the transform associated with the point being rendered to
re-size it to ensure that the tetrahedron is adequately repre-
sented. Then, the fragment program culls fragments based

on the shape of the approximating element using a tech-
nique reminiscent of Blinn et al. [14]. Then, one fragment
is kept in a texture and used to composite the ray-gap be-
tween the two fragments using a pre-integrated table [9].
The error associated with over-representation of a tetrahe-
dron is thus mitigated by compositing fragment distances
instead of applying pre-assigned values for alpha.

3.1. Preprocessing the Tetrahedral Mesh

To produce a final rendering of a dataset at interactive
framerates with the best possible visual quality, the input
tetrahedral mesh must be preprocessed. As we will show,
each tetrahedron can be approximated with exactly one
affine transformation from a unit tetrahedron defined on the
standard 3-dimensional basis to any given tetrahedron. The
reference tetrahedron’s barycenter is also transformed by
the same affine transformation to a vertex, v, describing the
location of the point object representing the associated tetra-
hedron.

Since an entire tetrahedron is being represented by a sin-
gle point, we must assign this point a value based on the
scalar field being described by the underlying geometry. For
vertex-centered data, the mean of the scalar values at each
vertex is assigned to v; otherwise, the cell value is assigned.
While this method does not account for the distance of the
vertices from the point representing them, we have found
that in practice it adequately approximates a general, well-
formed tetrahedron.

Because graphics point primitives (GL_POINT) are ras-
terized as squares they must be shaped to better approxi-
mate the tetrahedra they represent in order to improve image
quality. The shaping is accomplished by general represen-
tative transformations for each tetrahdron. This additional
information allows the GPU to reshape the point primitive
in the fragment shader.

In order to generate this transformation, we define a reg-
ular tetrahedron centered at the origin such that it is in-
scribed in the unit sphere (we call this regular tetrahedron
&). We then find a transformation 7" such that T'(6) = o.
This transformation takes the unit tetrahedron to a given
tetrahedron as shown in Figure 5.

3.2. Rendering the Points

As the method we present produces an approximation of
the true tetrahedral mesh, we strive to reduce the approxi-
mation error in order to create an adequate rendering. Be-
low we discuss the various methods of footprint generation.
Each final footprint shows a tradeoff between final image
quality and rendering speed. In all of the following footprint
generation techniques, point sizes are generated by taking
the size of the tetrahedron and the distance from the view-
point into account.

Circular footprints. As can be seen in Figure 1, generat-
ing footprints without regard to the shape of the tetrahedron

Figure 3. For adaptive meshes, many ele-
ments are subpixel sized. The top image
shows HAVS, the middle image shows ellip-
soidal projection of the tetrahedra, and the
bottom image uses green pixels to show sub-
pixel element locations.

produces a high degree of error resulting from overdraw. Al-
though the method by which we generate the point size is
unchanged from that of the unshaped points, in order to re-
shape the point into a circle we must inform the fragment
program of the radius of the circle we wish to form and
its location in screen-space. These data must be sent down
the pipeline, as fragments being processed by the fragment
shader no longer contain information about the generating
primitive. By passing the center of the point and radius to
the fragment program via texture coordinates, the program
is made aware of all data required to properly rasterize the
tetrahedron approximation. Culling fragments that fall out-
side the radius of the circle is straightfoward.

Figure 1 shows the image quality improvement by rep-
resenting tetrahedra as circles compared to simple squares,
but even reshaping the points to form circles renders many
fragments unnecessarially.

Ellipsoidal footprints. To reduce overdraw and increase im-
age quality, ellipsoidal footprints are useful. Their smooth
appearance make them good candidates for point-based
level-of-detail (see Section 4). From geometric probability,
we know that for a convex volume A contained in another
convex volume B, the conditional probability that a random
ray that hits B will also hit A is the ratio of surface areas,
sa and sp: p(A|B) = sa/sp [19]. Since s4 is the sur-
face area of the tetrahedron, and hence fixed, we want to
minimize the surface area sp, to maximize the probability.
This defines the best approximating ellipsoid over all view-
points.

Finding the ellipsoid with minimum surface area that en-

Figure 4. Although interior areas of the vol-
ume are rendered with a high degree of ac-
curacy, volume borders are more obviously
affected by the point-based technique being
used. The sf1 dataset (simplified to approx.
3.5M tetrahedra) displays these errors clearly.
Ellipsoidal footprints (top) display more er-
ror than exact footprints (middle) when com-
pared with the exact rendering (bottom).

closes the tetrahedron involves a constrained minimization
over integrals with no closed form. Instead, we find the en-
closing ellipsoid with smallest volume (we will call it the
min-volume ellipsoid). This is a simpler problem, and in
practice, usually generates an ellipsoid with small surface
area.

To find the min-volume ellipsoid, we first note that the
unit sphere is the min-volume ellipsoid for the unit tetra-
hedron . The transformation associated with the tetrahe-
dron in question moves the min-volume ellipsoid for the
unit tetrahedron to an ellipsoid for the represented tetrahe-
dron. The volume of any shape is scaled by the determi-
nant of 7. Since this is a constant for all possible shapes,
it must be the case that T preserves extrema, and so the el-
lipsoid is min-volume. The process is illustrated in Figure
5.

The transform, along with the position of the point in
R3 and its associated scalar value must be transferred to the
GPU in order to properly cull fragments from the rasterized
point. A simple raycaster provides us with a perspective-
correct method for determining the projection of an ellip-
soid. Since the reference space used during ray-casting is
isomorphic to worldspace via the transformation 7, trans-
forming the rays allows us to cull fragments on the GPU
based on a simple ray-sphere intersection. Figure 5 de-
scribes the results of this culling procedure from a raster-
ized square into the projection of a min-volume ellipsoid.

(b)

Figure 5. (a) The transformation taking a unit
tetrahedron to a general tetrahedron also
takes a unit sphere to the min-volume ellip-
soid. (b) Ray-casting on the GPU is efficient
when taking advantage of the representative
transformation.

Exact Projection Footprints. As with ellipsoidal projection,
we note that the transform taking a unit sphere to an enclos-
ing ellipsoid is equivalent to that describing the underlying
tetrahedra. Similarly, an appropriate ray-casting test can be
used in the fragment program to cull fragments leaving only
the exact tetrahedral projection to be rendered.

Several opportunities for optimization are inherent in the
underlying algorithm used to describe the geometry being
rendered. First, the method by which the transformation is
formed allows the tetrahedron being processed to be ex-
pressed as a right-angled tetrahedron. When expressed as
a right-angled tetrahedron, the ray-caster needs only to test
rays against three congruent right triangles in order to prop-
erly shape the tetrahedral projection.

3.3. Compositing the points

As our method for footprint generation does not require
any kernel-based convolution, it can be implemented inde-
pendently of the compositing technique. This provides a
true point-based volume rendering approach that can be eas-
ily implemented for many different compositing algorithms.
In this case, we are using a compositing scheme based on
HAVS [5], in which the incoming fragment is directly com-
posited with the previous fragment. This is possible as the
previous fragment is always stored in a texture so that the
ray-gap can be determined. The scalar values of the front
and back fragments as well as the distance between them are
used to look up into a pre-integrated table [9], then compos-
ited directly into an off-screen framebuffer. Since our ini-
tial drawing primitives can be thought of as screen-aligned

Figure 6. Dynamic level-of-detail of the SPX2
dataset with point resizing. The LOD at each
step represents a percentage of the fragment
count used: (top left) 100% at 5.6 fps, (top
right) 50% at 20 fps, (bottom left) 25% at 50
fps, and (bottom right) 15% at 100 fps. For
dataset details, please see Table 2.

polygons, we need not perform per-fragment depth sorting
as HAVS did, and thus require only a single fragment and its
associated scalar and depth from the compositing step pre-
viously performed. However, as with any volume render-
ing algorithm, depth ordering is important. Fortunately, as
point primitives are rasterized as screen-aligned squares, a
sort by centroid method exactly sorts all approximating el-
ements alleviating the need for per-fragment sorting opera-
tions.

4. Level Of Detail

One of the advantages of using a point-based approach
for rendering is that the lack of connectivity between prim-
itives facilitates dynamically changing data. In particular,
level-of-detail (LOD) approaches become much easier. Re-
cently, Callahan et al. [4] introduced a simple, dynamically-
adjusting LOD algorithm based on a sample-based simpli-
fication of the renderable primitives. Instead of simplifying
the geometry, the algorithm performs importance sampling
of the primitives, which enables dynamic LOD by adjust-
ing the number of primitives rendered at each frame. To re-
duce holes in the resulting image, the boundary geometry
of the mesh is always rendered.

We have adapted this strategy in our point-based volume
renderer by using a purely Monte Carlo approach to impor-
tance sampling. As before, the number of points rendered
at each frame is adjusted based on the framerate of the pre-
vious frame. A key difference is that by using our points

(a) Image quality

Level of Detail | Unshaped | Circles | Ellipses | Exact
100 6.51 6.12 3.89 3.74
75 6.97 6.46 4.72 3.23
50 8.54 7.77 6.80 3.49
25 12.22 10.62 13.60 | 14.15
(b) Performance in frames per second
Level of Detail | Unshaped | Circles | Ellipses | Exact
100 1.7 1.7 2.0 2.1
75 3.1 3.1 32 32
50 6.4 6.6 6.7 6.7
25 253 252 255 252

Table 1. (a) Image quality for the fighter
dataset at different levels of detail. (b) Re-
spective rendering performance in frames-
per-second.

as described, holes may appear in the volume with a lower
LOD because the points may no longer overlap. To min-
imize these discontinuities in the resulting image, our el-
lipsoidal footprint is used. Because this problem will oc-
cur even on the boundary, we do not distinguish between
boundary and internal points. Instead, we present a tech-
nique for resizing the points based on the LOD to reduce
the number of gaps created. Cook and Halstead [8] demon-
strated this technique using a scale that is linear to the re-
duction for opaque geometry in a distant scene.

Since our volume renderer relies heavily on fragment
processing, we use an LOD algorithm corresponding to the
number of fragments, instead of primitives as in [4]. Thus,
a 50% LOD rasterizes 50% of the fragments. The prob-
lem is to find the correct number of points to render that
generates the correct number of fragments with the scal-
ing factor. If the number of fragments rasterized is repre-
sented as a function f of the LOD: f(A\) = N(\)S(\)z2,
where A is the LOD reduction, IV is the a function of the
number of points, S is a function of the point scaling, and
x is the point size. With no scaling, the number of frag-
ments generated is directly proportional to the number of
points rendered, i.e. N(\) = %a%, where n is the number
of points. If we introduce a linear scaling factor the num-
ber of points can be computed to obtain the same fragment
count: N(A)Az? = 222 or N(\) = +%. Therefore, at each
LOD step, the number of points rendered is adjusted by the
square of the LOD, where the LOD € [0, 1].

The resulting LOD scheme efficiently and dynamically
adapts the number of fragments rendered to achieve a tar-
get interactivity. In practice, image quality is not dominated
by the ellipsoidal representation of tetrahedra as we com-
posite by distance instead of convolution kernels. Figure 6
shows an example of our dynamic LOD with point resiz-
ing. It is important to note that although fewer points are

g g1

t

>

g1

t 4

Figure 7. lllustration of LOD Strategy in 2D (a) Original Mesh with viewing ray through the mesh and
associated scalar function ¢(t). (b) Approximating elements intersecting the viewing ray. The approx-
imation g, (¢t) ~ ¢(t) is directly influenced by the number of approximating elements intersected by
the viewing ray. (c) Resized random sampling of approximation elements (green) and the original ap-
proximating elements (black) along with the approximation of the function ¢(¢) under level-of-detail
conditions. The approximation g, (¢) represents a 50% level-of-detail.

selected for rendering, the sizes of the points being raster-
ized increases, thus increasing the number of points approx-
imating the scalar field as illustrated by Figure 7. Although
the point primitives are reshaped during rendering, the frag-
ments being culled must still be processed. Each fragment,
regardless of its final contribution to the framebuffer, is pro-
cessed by the fragment program. Because of the fragment
processing, during application of the LOD scheme, the rela-
tive size of the points selected for rendering directly impacts
the performance of the selected LOD. This LOD strategy
exploits the fact that as the total fragment count decreases,
the framerate increases.

5. Results

Here we present the results of our implementation in
terms of visual quality and interactivity as they relate to
HAVS. To adequately analyze the performance of our vol-
ume rendering approach we have implemented HAVS with
comparable optimizations. Each rendering method employs
Vertex Buffer Objects and parallel sorting and rendering. To
generate images with the highest possible quality in HAVS,
we use the largest size for the k-buffer in order to remove as
many artifacts as possible. All results and images were gen-
erated on an Intel Core 2 Duo 2.2 Ghz processor, 2.0 GB
RAM and an NVIDIA 7950 GX2 graphics card.

Table 2 describes the performance of our method based
on the shape of the footprints being generated compared
with the HAVS algorithm [5]. As the table describes, our
method’s performance is better than the HAVS algorithm
for all datasets while yielding acceptable image quality.

However, our algorithm approaches the performance of
HAVS for large meshes. This is due to the quantity of data
being sent to the GPU for further processing. Although each
of the increasingly accurate footprint generation methods
reduces the amount of fragment overdraw that ocurs at each
step, more data must be sent to the GPU, reducing the over-
all rendering speed of particularly large datasets. As tetrahe-
dra approach sub-pixel accuracy, it becomes unnecessary to
reshape the points representing them as unshaped points at
that scale represent tetrahedra just as well as shaped points,
generating additional speedups. The degree to which these
small tetrahedra affect the final visualization depends on the
structure found in the original tetrahedral mesh. In Figure
3 the fighter dataset is rendered so that all tetrahedra with
sub-pixel sized footprints are colored green. The reshaping
of these tetrahedra will do very little to mitigate any ren-
dering error in the final visualization, so they remain repre-
sented with squares.

5.1. Image Quality

In order to quantitatively evaluate the quality of a result-
ing image, a quality metric must be described. The root-
mean squared error metric is used here to analyze each ren-
dered image. The implementation of this metric represents
the mean of all distances in colorspace between correspond-
ing pixels. This provides a global metric by which we can
compare any image generated by our point-based method
to an image generated by exact volume rendering. Table 1
presents the results of the application of the above described
quality metric. As the error metric implies, lower numbers

Dataset | Num Tets | Unshaped | Circles | Ellipses | HAVS
SPX2 | 827,904 13.8 14.7 172 5.26

Torso | 1,082,723 6.7 7.1 6.8 3.70
Fighter | 1,403,504 53 5.1 49 278
F-16 | 6,345,709 0.3 0.28 0.29 0.2

Table 2. Performance summary for full-quality
renderings in frames-per-second.

correspond to higher quality images.

6. Discussion

The method presented here is generally faster than cur-
rent direct volume rendering approaches; however, it is clear
that some meshes are better represented by certain footprint
shapes than others. Due to the number of fragments gen-
erated by the GL_POINT primitive, directly rendering the
tetrahedral mesh may be a better approach than approxi-
mating the projections of the tetrahedra. This is true for
datasets in which the tetrahedra sizes vary widely as the
size of points representing large tetrahedra increase more
rapidly than the sizes for small tetrahedra thereby increas-
ing the overall number of fragments unnecessarilly gener-
ated. Although many of these fragments may be culled in
the fragment program, the testing and branching in the frag-
ment program is an expensive operation. Additionally, only
the exact projection approach does not render a large num-
ber of fragments that lay outside of the true projection of the
tetrahedron that must be composited to form the final ren-
dering. These extra fragments are culled in the point reshap-
ing process.

As Figure 4 suggests, the point based rendering method
presented here may yield a poorer quality rendering of a
dataset when compared with a direct rendering approach.
This is particularly noticeable at the dataset boundaries as
highlighted by the figure. This can be explained by the fun-
damental representation techniques of the underlying ge-
ometry involved in the rendering. While direct methods of-
ten represent tetrahedra as a collection of faces, this point-
based approach uses only a single rasterized square. As each
tetrahedron is represented by a single point, and thus a sin-
gle scalar, the final rendering also lacks scalar interpolation
throughout the tetrahedron. This limits the algorithms abil-
ity to produce proper pixel values when the depth complex-
ity at that location is low.

Although this approach to point-based rendering suffers
from problems related to fragment generation and approxi-
mation of the tetrahedral mesh, it poses several unique ad-
vantages over previous methods. Since the footprint gen-
eration and reshaping are completely independent of the
compositing and rendering stage, it is trivial to implement
various compositing mechanisms. Also, as we have shown,
a global level-of-detail strategy based on importance sam-

Figure 8. Rendering of the Heart dataset:
(top left) HAVS; (top right) circular foot-
prints, (bottom left) ellipsoidal footprints; and
(bottom right) exact projections. Note: This
dataset has malformed tetrahedra that cause
HAVS to produces erroneous renderings;
PBVR rendering does not fail in these situ-
ations.

pling generated as a pre-process combined with point re-
sizing enables this method to excel during interaction. Fur-
thermore, if lighting and shading are desirable for the final
rendering, passing normal information gathered from gra-
dient calculation in a pre-processing step can be easily be
used to implement a variety of shading models.

7. Conclusion

The method we present for the point-based volume ren-
dering of unstructured tetrahedral meshes has proven to be
a fast an effective method for visualizing large datasets.
As with any visualization method, there is a tradeoff be-
tween speed and accuracy. As the complexity of the ap-
proximations increases, so does the accuracy of the final
rendering. However, this increased accuracy necessarilly
comes with a decrease in performance of the technique. Our
method acheives interactive framerates through a combina-
tion of point-based footprint generation and a natural level-
of-detail strategy that compromises accuracy for speed dur-
ing periods of interaction while rendering at full-quality af-
ter interaction stops.

Future Work The next generation of GPUs will include not
only programmable vertex and fragment shaders, but pro-
grammable geometry shaders allowing better approxima-
tions to tetrahedra while further minimizing excessive frag-
ment generation and overdraw-based error. We hope to be
able to optimize this algorithm for use with this new tech-

nology while adding features such as lighting and shading.
Furthermore, this approach lends itself well to distributed
rendering as each rendering primitive exerts only a local
change and, with care, can be partitioned in such a way as
to take advantage of systems capable of massive parallel vi-
sualization of large datasets [23].

While we have focused on datasets containing exclu-
sively vertex-centered data, this technique is easily extended
to produce high-quality visualizations of cell-centered data
as well. As cell-centered data assigns a single scalar value
per tetrahedron, the approximation of the scalar value of
each point primitive exactly represents the scalar content of
the underlying tetrahedron.

Acknowledgments Our work is funded by the De-
partment of Energy under the ASCI VIEWS program
and the MICS office, the National Science Founda-
tion (grants CCF-0401498, EIA-0323604, OISE-0405402,
IIS-0513692, CCF-0528201), Sandia National Laborato-
ries, Lawrence Livermore National Laboratory, an IBM
Faculty Award and a University of Utah Seed Grant.

The authors thank Bruce Hopenfeld and Robert
MacLeod (University of Utah) for the heart dataset, Bruno
Notrosso (electricite de France) for the SPX dataset,
Neely and Batina for the fighter dataset, and Udo Tremel
(EADS-Military) for the F16 dataset.

References

[1] R. Balaz and S. Glassenberg. DirectX and Windows Vista
presentations
. http://msdn.microsoft.com/directx/archives/pdc2005, 2005.

[2] F. Bernardon, C. Pagot, J. a0 Comba, and C. Silva. GPU-
based tiled ray casting using depth peeling. Journal of
Graphics tools, 11(4):1-16, 2006.

[3] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-
quality surface splatting on today’s GPUs. Eurographics
Symposium on Point-Based Graphics, pages 17-24, 2005.

[4] S.P.Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. In-
teractive rendering of large unstructured grids using dynamic
level-of-detail. IEEE Visualization, pages 199-206, 2005.

[5] S. P. Callahan, M. Ikits, J. L. Comba, and C. T. Silva.
Hardware-assisted visibility sorting for unstructured volume
rendering. [EEE Transactions on Visualization and Com-
puter Graphics, 11(3):285-295, 2005.

[6] W. Chen, L. Ren, M. Zwicker, and H. Pfister. Hardware-
accelerated adaptive EWA volume splatting. [EEE Visual-
ization, pages 67-74, 2004.

[7] P. Cignoni, L. D. Floriani, P. Magillo, E. Puppo, and
R. Scopigno. Selective refinement queries for volume visu-
alization of unstructured tetrahedral meshes. /EEE Transac-
tions on Visualization and Computer Graphics, 10(1):29-45,
2004.

[8] R. Cook and J. Halstead. Stochastic pruning. Technical Re-
port #06-05, Pixar, 2006.

[9] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading.
ACM SIGGRAPH/EUROGRAPHICS workshop on graphics
hardware, pages 9-16, 2001.

[10] J. Georgii and R. Westermann. A generic and scalable
pipeline for GPU tetrahedral grid rendering. IEEE Transac-
tions on Visualization and Computer Graphics, 12(5):1345—
1352, 2006.

[11] J. Kriiger and R. Westermann. Acceleration techniques for
GPU-based volume rendering. [EEE Visualization, pages
38-45, 2003.

[12] D. Laur and P. Hanrahan. Hierarchical splatting: a progres-
sive refinement algorithm for volume rendering. ACM SIG-
GRAPH, pages 285-288, 1991.

[13] J. Leven, J. Corso, J. Cohen, and S. Kumar. Interactive vi-
sualization of unstructured grids using hierarchical 3D tex-
tures. IEEE Symposium on Volume Visualization and Graph-
ics, pages 3744, 2002.

[14] C. Loop and J. Blinn. Resolution independent curve render-
ing using programmable graphics hardware. ACM Transac-
tions on Graphics, 24(3):1000-1009, 2005.

[15] X. Mao, L. Hong, and A. Kaufman. Splatting of curvilinear
volumes. /EEE Visualization, pages 61-68, 1995.

[16] R. Marroquim, A. Maximo, R. Farias, and C. Esperanca.
GPU-based cell projection for interactive volume rendering.
SIBGRAPI, pages 147-154, 2006.

[17] K. Museth and S. Lombeyda. TetSplat: Real-time render-
ing and volume clipping of large unstructured tetrahedral
meshes. IEEE Visualization, pages 433-440, 2004.

[18] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
surface elements as rendering primitives. ACM SIGGRAPH,
pages 335-342, 2000.

[19] M. Pharr and G. Humphreys. Physically Based Rendering,
chapter 4.4. Morgan Kaufmann, 2004.

[20] S. Roettger, M. Kraus, and T. Ertl. Hardware-accelerated
volume and isosurface rendering based on cell-projection.
IEEE Visualization, pages 109—116, 2000.

[21] S. Rusinkiewicz and M. Levoy. QSplat: a multiresolution
point rendering system for large meshes. ACM SIGGRAPH,
pages 343-352, 2000.

[22] C.T. Silva, J. L. D. Comba, S. P. Callahan, and F. F. Bernar-
don. A survey of GPU-based volume rendering of unstruc-
tured grids. Brazilian Journal of Theoretic and Applied Com-
puting(RITA), 12(2):9-29, 2005.

[23] H.T. Vo, S. P. Callahan, C. T. Silva, W. Martin, D. Owen, and
D. Weinstein. iRun: Interactive rendering of large unstruc-
tured grids. Eurographics Symposium on Parallel Graphics
and Visualization, pages 93-100, 2007.

[24] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
ray casting for tetrahedral meshes. IEEE Visualization, pages
44-52,2003.

[25] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahe-
dral projection using vertex shaders. pages 7-12, 2002.

[26] D. Xue and R. Crawfis. Efficient splatting using modern
graphics hardware. Journal of Graphics Tools, 8(3):1-21,
2004.

[27] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA vol-
ume splatting. IEEE Visualization, pages 29-36, 2001.

