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We present a sensitivity analysis of the optimization of the probe placement in radiofrequency (RF) ab-
lation which takes the uncertainty associated with bio-physical tissue properties (electrical and thermal
conductivity) into account. Our forward simulation of RF ablation is based upon a system of partial
differential equations (PDEs) that describe the electric potential of the probe and the steady state of
the induced heat. The probe placement is optimized by minimizing a temperature-based objective func-
tion such that the volume of destroyed tumor tissue is maximized. The resulting optimality system is
solved with a multi-level gradient descent approach. By evaluating the corresponding optimality system
for certain realizations of tissue parameters (i.e. at certain, well-chosen points in the stochastic space)
the sensitivity of the system can be analyzed with respect to variations in the tissue parameters. For the
interpolation in the stochastic space we use a stochastic finite element approach with piecewise multilinear
ansatz functions on adaptively refined, hierarchical grids. We underscore the significance of the approach
by applying the optimization to CT data obtained from a real RF ablation case.

KEY WORDS: stochastic sensitivity analysis, stochastic partial differential equations, stochastic
finite element method, adaptive sparse grid, heat transfer, multiscale modeling, representation of
uncertainty.

1. INTRODUCTION

The interstitial thermal destruction of lesions with radiofrequency (RF) ablation has become a widely used technique
for the treatment of tumor diseases in various organs. The focus of this work concentrates on the RF ablation of lesions
in the liver. In RF ablation, a probe which is connected to an electric generator is placed in the malignant tissue. Upon
turning on the generator, the tissue is heated by an electric current due to its Ohm resistance. The heat causes the
coagulation of proteins and consequently tissue cells die. The treatment is considered successful if all malignant cells
are completely destroyed including a safety margin of about 0.5–1cm; (cf. e.g., [1]).

The success of an RF ablation treatment depends heavily on the anatomical configuration and on the experience of
the attending medical doctor. As blood vessels in the vicinity of the lesion transport away the heat which is generated
by the electric current, there is the risk that tumor cells close to blood vessels are not destroyed. As a consequence,
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local recurrences may result, and indeed there are recurrence rates of up to 60% reported in the literature [2]. Today
it mostly depends on the experience of the attending radiologist, surgeon or gastroenterologist to select the therapy
parameters, i.e., the placement of the probe and the settings of the electric generator such that the local blood flow
does not hinder the success of the therapy.

These expositions motivate many during the last decade to investigate RF ablation scenarios using mathematical
modeling, simulation and optimization. The common goal is to understand the biophysical processes involved in this
treatment form and to allow for the planning of an optimal treatment for an individual patient in advance, which would
yield the greatest therapy quality and success.

The mathematical/bio-physical models of this scenario which have been developed so far result in systems of
partial differential equations (PDEs) [3–6]. These systems allow for a numerical simulation of RF ablation yielding
a prediction of the outcome for a given placement of the probe and power of the generator. Clearly, these models
depend on the physical properties of the tissue, i.e., their electrical and thermal properties such as electrical and
thermal conductivity, heat capacity, density, and water content.

The modeling of these tissue properties poses a particular challenge because they depend on the current state of
the tissue, e.g., the electrical conductivity depends on the temperature, the water content, and also on the grade of
destruction of the tissue [3, 7, 8]. Moreover, the tissue properties vary inter-individually, and in fact they are not
exactly known. Values used in simulations are, for example, often based on ex-vivo experiments of animal tissue [3].
In addition, experimental measurements are always accompanied with a certain range of errors. Consequently, truly
patient-specific models for RF ablation are not currently feasible, and the question arises whether results obtained
through simulations can be used efficaciously in the clinical setting. In our view, the issue of patient specific models
and simulations is in fact the most challenging task for mathematical modeling and simulation in medicine.

For practical purposes, more relevant than the simulation of RF ablation, is the inverse problem of finding an
optimal placement for the RF probe such that a given lesion is completely destroyed. This optimization problem has
been investigated by the authors with thorough mathematical approaches that minimize certain objective functions [9–
12]. The role of the objective function is to measure the “quality” of a given probe placement; a quantification
of quality provides insight into the deviation of the achieved temperature from a desired temperature. Clearly this
involves the use of one of the aforementioned models for forward simulations of RF ablation. In this paper we make
first steps toward combining the optimization of the probe placement with the analysis of the uncertainty that is
associated with material parameters, i.e., we investigate the sensitivity of the optimal probe placement with respect to
variations in the material parameters.

We start with a deterministic model for the electric potential of the RF probe and for the steady state of the
temperature distribution. In our approach we do not consider the electric and thermal conductivity to have fixed
values, but to be probabilistically distributed. The ranges for these parameters can be taken from experiments which
are documented in the literature, or estimations of the measurement error can be taken into account. Substituting the
probabilistically distributed values into the PDE-model for the simulation of RF ablation yields a system of stochastic
partial differential equations (SPDEs).

There are several different methods to discretize this system. Probably the most popular approach is the (rather
slowly converging) Monte Carlo simulation, which is a non-intrusive sampling methodology that requires a large
number of randomly chosen sampling points to completely cover the stochastic space. Another well known approach
is the stochastic Galerkin method, which uses an approximation of the stochastic process by a finite linear combination
of stochastic basis functions. It works with the weak formulation of the SPDE system to obtain an approximate
solution. Although the stochastic Galerkin method provides high accuracy and fast convergence, it is not always the
best suited (i.e., most computationally efficient) method for solving large problems because of its intrusive nature
[13]. To address this problem, combinations of both methods have been developed that work with an approximation
representation of the stochastic process and evaluate the resulting weak formulation at carefully chosen (sparse) grid
points within the random space to compute accurate statistics with significantly fewer solutions than in the Monte
Carlo simulation. One result of such combinations is the stochastic collocation method, which uses polynomial basis
functions for the approximation of the stochastic process and thus requires a smoothly-varying dependence of the
model on the stochastic input parameters (i.e., on the tissue properties). Another resulting method is a stochastic
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finite element approach (also referred to as the collocating multi-element generalized polynomial chaos method) with
e.g., piecewise multilinear ansatz functions on adaptively refined, hierarchical grids in the stochastic space. Here we
relax the smoothness requirements compared to the stochastic collocation method at the cost of more sampling points
in the stochastic space. However, in comparison to Monte Carlo, we still gain in terms of efficiency by requiring fewer
solution evaluations while obtaining much better convergence.

By evaluating the SPDE system for certain realizations of the material parameters we can analyze the sensitivity
of the system with respect to variations in the coefficients of the PDE system, i.e., with respect to variations in the
material parameters. To compute this sensitivity analysis we take a stochastic finite element approach into account
using piecewise multilinear ansatz functions for the interpolation in the stochastic space. Moreover, an adaptive grid
refinement is performed in critical stochastic regions. The reason for using this approach instead of a stochastic col-
location method for analyzing the sensitivity of our optimization are the weaker smoothness requirements mentioned
above.

1.1 Related Work

The numerical simulation of RF ablation (and related thermal-therapies) has been considered by many authors [3, 4,
6, 14, 15]. A particular focus has been emphasized concerning the modeling of blood flow and its effect on the tem-
perature distribution during RF ablation [5, 14, 16]. The optimization of the probe placement through a minimization
of the L2 distance between the achieved temperature and a critical temperature inside the tumor has first been con-
sidered by the authors in [9]. In [10] we have extended this approach to a non-symmetric penalization, thus allowing
for temperatures which are above the critical temperature. Moreover, we generalized the former approach toward
probe-clusters and use a hierarchical multi-scale optimization algorithm. A further modification of our optimization
that uses shape derivatives instead of central differences for the calculation of the descent direction in order to increase
the robustness (i.e., the starting point independency) of our optimization algorithm will be published in [11]. In [17]
Villard et al. approximate the complicated optimization with PDE constraints by a simple geometric optimization
which uses templates for the elliptical shapes of temperature isosurfaces generated by RF probes. Butz et al. [18],
who focus on the optimization of cryo-therapy, but consider RFA as well, also use ellipsoidal approximations of the
ablation zone, which they have obtained from the literature and additional experiments. Moreover, a related form of
therapy (interstitial ultrasound) has been optimized in [19]. In [20] Seitel, Villard and Baegert et al. present a trajec-
tory planning system for percutaneous insertions that extents the work of Villard and Baegert [1, 21] and determines
rated possible insertion zones/trajectories via hard and soft constraints using the concept of pareto optimality. How-
ever, here the ablated tissue region and its coverage of the tumor seems not to be under consideration (i.e., part of the
soft constraints) any more. Kapoor et al. [22] formulate the task of optimizing the number and placement of multiple
RF needle probes as mixed variable optimization problem with hard and soft constraints, which they solve with a
derivative-free class of algorithms called mixed variable mesh adaptive direct search. In contrast to Seitel, Villard
and Baegert et al. [20], they take into account the optimal thermal ablation coverage, but again use ellipsoidal shaped
approximations of single probe ablation zones, which are then combined to the resulting necrosis. In particular, they
do not take into account the cooling effect of large blood vessels close by the tumor. In [23] Chen et al. optimize the
RF probe’s insertion depth and orientation under the assumption of a given, fixed entry point of the probe. They use
an objective function that depends on the survival fraction, which is predicted by a finite element computation of the
Arrhenius formalism, but which is also approximated as a field that transforms rigidly with the electrode, during the
optimization. To the best of our knowledge none of the above approaches considers the uncertainty that is associated
with tissue parameters due to their patient- and state dependence, as well as due to measurement errors.

The main stochastic theoretical underpinning of this work is generally referred to as generalized Polynomial
Chaos. Based upon the Wiener-Hermite polynomial chaos expansion [24], generalized polynomial chaos seeks to
approximate second-order random processes by a finite linear combination of stochastic basis functions. Once one
has chosen an approximation space of the random process of interest, a solution within that space can be found by
solving the stochastic partial differential system of interest in the weak form. Because of its analogy with the classic
Galerkin method as employed in finite elements, this methodology is often referred to as the generalized Polynomial
Chaos - Stochastic Galerkin method (gPC-SG). It has been applied as a method for uncertainty quantification in the
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field of computational mechanics for a number of years and has recently seen a revival of interest [25–32]. This
approach has also been applied successfully within the biological modeling world. In [33], Geneser et al. employed
the gPC-SG approach to evaluate the effects of variations and uncertainty in the conductivity values assigned to organs
in a two-dimensional electrocardiograph simulation of the human thorax.

Although the stochastic Galerkin method provides a solid mathematical framework from which one can do analysis
and can derive algorithms, it is not always the most computationally efficient means of solving large problems. Nor
is it the case that one always has the freedom to re-architect their currently available deterministic solver to employ
gPC-SG. To address these issues, the non-intrusive stochastic collocation (SC) method was developed [34].

For the sensitivity analysis of our optimization with respect to changes in the tissue parameters we use a stochastic
(collocating) finite element approach (see e.g., [35, 36]) with piecewise multilinear basis functions, which need weaker
smoothness requirements on the stochastic optimality system than global polynomial basis functions as used in the
traditional gPC approach. This multi-element approach is often referred to as the “multi-element polynomial chaos
method” (MEgPC) [37, 38], which has both Galerkin and Collocation variants and allows the user to decide the level
of smoothness that will be exploited in the random space through a combination of both element spacing (in the
random space), polynomial order, and smoothness conditions between (stochatic) elements.

The optimization problem considered in this paper lies in the field of nonlinear optimization subject to infinite di-
mensional constraints given by a system of (stochastic) partial differential equations. For an overview of the methodol-
ogy we refer the reader to [39]. The consideration of uncertainty in inverse problems and optimization problems with
PDE constraints has not yet received much attention in the community. The estimation of parameters in the presence
of noisy measurements has been treated with the Bayesian inference approach, which uses known information about
the parameters to create a priori distribution [40–42]. A first approach to stochastic inverse problems is presented by
Zabaras and Ganapathysubramanian in [43] where the solution of the stochastic inverse heat equation is obtained with
the method of polynomial chaos. A stochastic collocation approach to the solution of optimal control problems with
stochastic PDE constraints is presented in [44]. In this work the authors derive a gradient descent method as well as
a sequential quadratic program for the minimization of objective functions of tracking type, which involve stochastic
moments of the state variables.

1.2 Paper Organization

The paper is organized as follows: In Section 2 we briefly review a (deterministic) mathematical model for the
simulation of RF ablation and the optimization of the probe placement. We discuss a suitable objective function and
a multi-scale gradient descent algorithm for the solution of the optimality system.

In Section 3 we introduce the notion of random fields as a model for the uncertainty associated with material
parameters. The extension of the deterministic PDE model to an SPDE system is presented in Section 3.1.

In Section 3.2 we give a short overview of some popular methods for the stochastic discretization and in particular
describe the stochastic finite element method as used in this work. Further, in Section 3.3 two different approaches
for an analysis of the sensitivity of the optimal probe placement with respect to variations in the material parameters
are discussed. Finally, applications are presented in Section 4 and conclusions are drawn in Section 5.

2. OPTIMIZATION OF RF ABLATION

In this section we present a model for the simulation of the RF ablation and for the optimization of the probe placement.
We consider the computational domain to be a cuboid D ⊂ R3 in the three-dimensional space with boundary B = ∂D
in which a tumor Dt ⊂ D and vascular structures Dv ⊂ D are located. Furthermore, we assume that a mono-polar RF
probe is applied in D, whose position p ∈ D (of the active zone’s center) and direction a ∈ S2 = {x ∈ R3 : |x| = 1}
are variables (over which we would like to optimize later). The subset of D that is covered by the probe is denoted by
Dpr, and the subset covered by the electrode is denoted by Del (cf. Fig. 1). Note that these sets depend on p and a. In
practical applications the sets Dt and Dv are determined from segmented image data in advance, e.g., by the methods
presented in [45]. Moreover, to achieve the desired safety margin we can consider Dt to be a dilated version of the
original segmented tumor mask.
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Figure 1: Schematic sketch of the considered configuration identifying the different geometric regions specified in the
text. Note that Del ⊂ Dpr where both sets depend on p and a.

2.1 Simulation of RF Ablation

Let us now describe how to compute the heat distribution in the tissue D for a fixed position and orientation of the
probe, that is, for fixed Dpr and Del. The forward simulation model consists of two parts. The first component is the
electrostatic equation that describes the electric potential of the tissue which is induced by the electric potential of the
electrodes. The second component is the heat equation which models the distribution of temperature once the heat
source from the electric potential is known.

The electric potential φ : D → R of the RF probe is modeled by the electrostatic equation

−div(σ(x)∇φ(x)) = 0 in D \Del (1)

with appropriate boundary conditions (see below). Here, σ : D → R is the electric conductivity of the tissue. It is
known that the electric conductivity also depends on the temperature, the water content and the protein state of the
tissue. More refined models for the forward simulation take this behavior into account [46, 47]. However, since our
approach is a first step towards an optimization of the probe placement (i.e., the inverse problem), we do not consider
this dependence and just investigate spatial variation of σ = σ(x).

For the electrostatic equation (1) we consider the inner boundary condition

φ = 1 on Del , (2.1)

that fixes the potential on the electrode; below we are going to scale the heat source resulting from the electric field
according to the actual voltage which is imposed by the generator. Furthermore, as outer boundary conditions for (1)
we consider the Dirichlet boundary condition

φ = 0 on B . (2.2)

Due to the electric resistance of the tissue, the potential φ induces a heat source Qrf . However, the magnitude of
this heat source depends on the power of the generator and the impedance (resistance) of the tissue, which leads to a
decreased energy input if the impedance increases. To model this dependence on the characteristics of the generator
we take the equivalent circuit diagram shown in Fig. 2 into account [3]. This yields a characteristic curve of the
generator of the type presented in Fig. 2. The curve shows that depending on the resistance of the tissue the effective
power applied to the tissue is in general smaller than the maximum power of the generator.

To provide the reader with a better perspective on how this non-linear relationship impacts the system, we provide
more details on the coupling: The impedance R of the tissue is given by

R =
U2

Ptotal
with Ptotal =

∫
D

σ|∇φ|2 dx , (3)
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Figure 2: Left: Equivalent circuit diagram for the calculation of the scaling factor which is needed to convert the
unscaled power P into the effective heat source Qrf . Right: The characteristic curve of the generator shows the
dependence of the effective power Peff on the impedance R of the tissue, while RI and Psetup are fixed (here: RI =
80 Ω, Psetup = 200 W).

where U = 1 V is the potential φ of the electrode (cf. (2.1)). According to the equivalent circuit diagram shown in
Fig. 2, the effective power of the generator is now given by

Peff =
4PsetupRRI

(R + RI)2
, (4)

where RI is the inner resistance of the generator and Psetup is the value set up at the generator’s control unit. Finally,
the heat source is given by

Qrf(x) =
Peff

Ptotal
σ(x)|∇φ(x)|2 in D , (5)

which is proportional to the square of the magnitude of the electric field∇φ imposed by the electric potential φ.

The heat distribution T : D → R is modeled by the steady state of the Bioheat-Transfer-Equation

−div(λ(x)∇T (x)) = Qrf(x) + Qperf(x) in D . (6)

Here, λ : D → R is the thermal conductivity of the tissue. Again in our first step towards optimization, we only take
spatial variation of the heat conductivity into account. More refined models also consider the dynamics of the heat
distribution and the dependence of λ on other states (water content, protein state) of the system [47]. The right-hand-
side of (6) consists of the source (heating) Qrf due to the electric current and the sink (cooling) Qperf due to the blood
flow in the vascular structures Dv. We assume that there is no heating on the outer boundary of D, i.e., we choose D
to be sufficiently large (cf. also Sect. 4). Thus, we consider the Dirichlet boundary condition

T = Tbody on B . (7)

To model the cooling effects of the blood perfusion, we use a weighted variant of the approach of Pennes [48]:

Qperf(x) = −ν(x) (T (x)− Tbody) , ν(x) =

{
νvessel ρblood cblood , if x ∈ Dv ,

νcap ρblood cblood , else .
(8)

Thus, the coefficient ν : D → R depends on the relative blood circulation rate νvessel [s−1] of vessels and νcap [s−1]
of capillaries respectively, as well as on the blood density ρblood [kg/m] and the heat capacity cblood [J/kg K] of blood.
Here, we assume that the whole tissue is pervaded by capillary vessels and thus is exposed to their cooling influence.
We emphasize that for the modeling of blood flow we have again purposely chosen a very simple approach.
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Remark The modeling of perfusion has been investigated by many authors [49–53]. Sheu [54] et al. investigate the
influence of different heat transfer coefficients between tissue and vessels. These authors conclude that with increasing
ablation time the relative influence of cooling through blood advection decreases, whereas the capillary/diffusive
cooling increases. Obviously, the unknown heat transfer coefficients between tissue and blood flow pose another
important source of uncertainty in the simulation of RF ablation. We emphasize that, the stochastic finite element
method is capable of handling these uncertain heat transfer coefficients in the bio-heat transfer equation. However,
in the present work we did not investigate this uncertainty. We also note that taking into account uncertainty in flow
simulations with e.g., the Navier-Stokes equations is a more involved topic which has been investigated in e.g., [32]

Remark In the literature it is common to estimate the damage inflicted to the tissue through the temperature profile
by the Arrhenius formalism [55]. This formalism considers a history integral over a certain function of the tem-
perature, thus it takes into account that already at low temperatures (in the range of a high fever, i.e., T & 43 ◦ C)
destruction of tumor cells takes place. A different approach considers a critical temperature, i.e., the temperature at
which (according to the Arrhenius formalism) the tissue is destroyed after an exposure time of 1 s. Clearly, using this
approach is much simpler; however the size of lesions is underestimated.

In summary, the states φ : D → R and T : D → R are defined by the boundary value problems

−div(σ(x)∇φ(x)) = 0 in D \Del, (9.1)
−div(λ(x)∇T (x))+ν(x)T (x) = Qrf(x)+ν(x)Tbody in D (9.2)

with boundary conditions (2) and (7). Note that the two equations are coupled through the term Qrf .

2.2 Discretization

For the discretization of the elliptic boundary value problems (9.1) and (9.2) with boundary conditions (2) and (7)
we use a composite FE (CFE) approach on the three dimensional uniform Cartesian grids induced by the underlying
medical image data. The main advantage of CFEs over the classical FE approach is a better resolution of the RF
probe’s geometry. In fact, with CFEs the geometry of the RF probe is built into the shape of the basis functions,
which yields high resolution of the probe even on structured grids, allowing for a combination of the adaptivity and
the efficiency of structured hexahedral grids. Furthermore, in our numerical experiments we determined that good
resolution of the RF probe has a significant impact on the robustness of the optimization of the RF probe placement,
which will be described later. For details on the CFE method we refer the reader to [56–58].

For reasons of analogy we restrict the following description to the problem (9.2) which we assume to be adjusted
to homogeneous boundary conditions in the usual way. We obtain the weak form by multiplying the corresponding
PDE with a test function v. Integration by parts leads to

(λ∇T,∇v)2,D + (νT, v)2,D = (Qrf + νTbody, v)2,D (10)

for all test functions v, where (·, ·)2,D denotes the L2 scalar product over D.
In a second step we discretize this variational problem by restricting (10) to a finite dimensional space V h consist-

ing of piecewise trilinear, globally continuous shape functions of our finite element space. Note, that our CFE basis
functions are adapted on the boundary of the RF probe, such that the probe’s geometry is approximated sufficiently
well on the grid.

Denoting the vector of nodal values ti of the temperature with ~t = (t1, . . . , tn)T and the vector of nodal values ri

of the right hand side with ~r = (r1, . . . , rn)T we finally have to solve

(L[λ] + M[ν])~t = ~r ,
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where the stiffness matrix L[λ] and the mass matrix M[ν] are given by:

Lij [λ] = (λ∇ψi,∇ψj)2,D and Mij [ν] = (νψi,ψj)2,D .

Since the matrix (L[λ] + M[ν]) is symmetric and positive definite, this system can be solved by e.g., a conjugate
gradient (CG) method.

2.3 Optimizing the Probe Placement

The aim of the RF ablation therapy is the complete destruction of the lesion including a sufficiently large safety
margin. Thus, for a given lesion it must be decided by the attending doctor how to place the RF probe such that this
goal is achieved. In this section we review and extend an earlier work [9–11], which uses mathematical optimization
to find the best probe placement. Our exposition in this section is the basis for an analysis of the sensitivity of the
optimization with respect to the uncertainty related to the material parameters.

In the following we focus on an objective function which measures the “quality” of a given temperature distribu-
tion, i.e., which estimates the success that would be obtained with a given probe placement. For reasons of stability
and robustness of the optimizer, we base our objective functional directly on the temperature profile. Thus, we relate
our approach to the notion of critical temperature, having in mind that we (systematically) underestimate the size of
lesions (see remark above).

For the optimization we consider an optimal ablation result to be a maximum volume of destroyed tissue, which
is obtained by high temperatures inside the lesion Dt. Thus, to maximize the volume of ablated tissue we would
therefore want to maximize the lowest temperature inside the lesion including a safety margin. Since we do not aim
at an optimization of the generator power Psetup, it does not make sense to directly consider the deviations from a
critical temperature. In fact the critical temperature would only change our chosen objective function by a constant
term (see [11]).

To be more precise, let us remember that admissible probe parameters lie in the space U := D × S2. Thus, we
aim at finding the optimal probe placement (p̄, ā) such that

(p̄, ā) = argmax
(p,a)∈U

min
x∈Dt

T (x) = argmin
(p,a)∈U

(
− min

x∈Dt
T (x)

)
,

where T depends on the probe placement (p, a). This objective is designed such that the smallest temperature that is
attained inside the lesion is maximized. Since the min-function is not differentiable it is popular to approximate it by
a smooth function. In the following we use the approximation

f̃(T ) :=
1
α

log
(

1
|Dt|

∫
Dt

exp
(
− αT (x)

)
dx

)
(11)

for some α > 0. Note that for α → ∞, the integrand exp(−αT (x)) converges to zero slowest for the smallest value
of T (x). Thus, for large α the integrand can be approximated by the constant value exp(−αminDt T ). Consequently
for large α the integral reduces to α−1 log(|Dt|−1

∫
Dt

exp(−αminDt T ) dx), and f̃(T ) simplifies to −minDt T .
With our choice of approximation (11), which uses the exponential function, we seek an equal heat distribution

inside the tumor, since therewith the lowest temperature inside the tumor is penalized most. The factor α > 0 models
the grade of penalization of a non-uniform temperature distribution inside the tumor.

We can write f̃(T ) = K + α−1f(T ) with K = α−1 log(1/|Dt|) and thus arrive at

f(T ) := log
( ∫

Dt

exp
(
− αT (x)

)
dx

)
, (12)

which is a simpler objective function than f̃ . Consequently our optimization problem becomes

(p̄, ā) = argmin
(p,a)∈U

f(T ) = argmin
(p,a)∈U

log
( ∫

Dt

exp
(
− αT (x)

)
dx

)
.
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Formally, our objective function f defined above is a function of the temperature distribution T . But T depends
on the heat source Qrf , and Qrf depends on the optimization parameter (p, a) =: u ∈ U . We can handle these
dependencies by expressing our optimization problem as follows: we seek a positioning u such that the cost function
given in terms of the positioning F (u) = f ◦ T ◦ Q(u) is minimized where

Q(u) = Qrf , T = T (Qrf) .

Obviously, in certain situations the uniqueness of a minimizing configuration is not guaranteed, e.g., for spherical
tumors. This situation may also occur in practice for hepatic tumors which in general have a spherical-like shape.
However, such a symmetry is broken by the consideration of surrounding blood vessels and their cooling effects.
Moreover, for practical reasons the uniqueness of a solution is not needed and even local minima give important
information about good probe and generator configurations. In a future model we will incorporate constraints for the
optimization parameters which break any existing symmetry even further. Such constraints are given by anatomical
structures (bones, colon, diaphragm) that must not be punctured during the ablation.

2.4 Multiscale Gradient Descent

For the minimization of the objective functional F , we use a gradient descent method. Since the orientation a lies on
the two-dimensional sphere S2 and the computation of a gradient on the sphere would involve some difficulties (in
particular because there is no basis of the tangent space of S2 at a that depends continuously on a), we replace U by
the open set

Ũ = D × (R3 \ {0}) ⊃ U ,

and use in each step of the gradient descent method the projection

PD×S2 : Ũ → U , (p, a) 7→ (p, a/|a|) .

We also define a continuation of or solution operator Q onto Ũ that does not depend on the length of a via

Q(p, a) = (Q ◦ PD×S2)(p, a) = Q(p, a/|a|) .

Letting the superscript n ∈ N denote the iteration count, we can describe the particular ingredients of our gradient
descent method as follows:

• Initial value. Set n = 0, and choose an arbitrary probe positioning u0 ∈ U as an initial guess.

• Descent direction. Then, in each iteration step n ≥ 1, calculate the descent direction wn ∈ Ũ from the current
iterate un as an approximation of −DuF (un), i.e., −Du(f ◦ T ◦Qrf(un)).

• Step size. Determine the step size sn > 0, such that the resulting new iterate un+1 = PD×S2(un + snwn) is
admissible, i.e., fulfills un+1 ∈ U and reduces the value of the objective function F (un+1) < F (un). Using
the projection PD×S2 , we assert that the new orientation lies on the sphere.

• Stopping criterion. The iteration continues until the difference |un+1 − un| falls below a given threshold θ.

To accelerate the gradient descent algorithm, we use a multi-scale approach, i.e., we start with the optimization
on a coarse grid and use the solution as the initial guess on a finer grid. In Alg. 1 we show the complete multi-scale
optimization algorithm in pseudo-code. For each level l (see lines 3–25 of Alg. 1) of the computational grid the
optimization is performed as described above. The descent direction wn in line 7 of Alg. 1 is computed with help
of a conjugate gradient calculation of the corresponding adjoint equation (see [9–11]) and a determination of the
derivative of the heat source Qrf with respect to the probe positioning u via shape derivatives (see [11]). Specifically,
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Algorithm 1 Multi-scale gradient descent for the optimization of the probe placement

1: l← l0 . Start with level l0
2: Initialize ū.
3: while l ≤ L do
4: u0 ← ū . Initialization
5: n← 0
6: repeat

7: wn ← −∇uF (un) = −Duf(T (Qrf(un))) . Compute descent direction

8: if n = 0 then . Initialize step size
9: s0 ← (2|w0|)−1diam(D)

10: else
11: sn ← 2|wn−1|(|wn|)−1sn−1

12: end if

13: m← 0 . Reset counter

14: un+1 ← P (un + snwn) . Determine step size
15: while F (un+1) > F (un) or un+1 6∈ U do
16: m← m + 1 . Increase counter
17: if m = mmax then
18: STOP
19: end if
20: sn ← sn/2 . Bisect step size
21: un+1 ← P (un + snwn)
22: end while
23: until |un+1 − un| ≤ θ
24: ū← un+1

25: l← l + 1 . Proceed to next level
26: end while

we interpret the probe placement u ∈ Ũ as a vector of shape parameters p ∈ R6 such that the computational domain
D depends on p, i.e., D = D(p) and in particular Del = Del(p). Then we can calculate ∂pi

Qrf as

∂pi
Qrf = ∂pi

(
Peff

Ptotal
σ|∇φ|2

)
= σ

(
−2
∫

D

σ∇φ∇(∂pi
φ)dx

(
Peff + Peff

RI −R

R(R + RI)
U2

Ptotal

)
|∇φ|2

P 2
total

+ 2
Peff

Ptotal
∇φ∇(∂pi

φ)
)

.

Here, the derivative ∂pi
φ of the potential φ with respect to the shape parameter pi is calculated by the following PDE

system obtained by a transformation of the potential equation (1) with boundary conditions (2)∫
D\Del

σ〈∇∂piφ,∇v〉dx = 0

∂piφ = −〈∇φ, xpi〉 ∀ x ∈ ∂Del .

For the integration in the objective function we use a tensor-product trapezoidal rule. The search for the optimal
step size is performed with a variant of Armijo’s rule (cf. e.g., [39]) (lines 8–22 of Alg. 1). Note that for each test
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in the while-condition (see Alg. 1, line 15), an evaluation of the complete system of PDEs (9), and the objective
function are needed. To obtain representations of the vascular structure Dv and of the lesion Dt on coarse grids we
use a bilinear restriction frequently used in multi-grid methods [59] with an additional threshold for the tumor and the
vessels to obtain sharp boundaries.

For more details of the multi-scale gradient descent approach we refer the reader to [10]. There, we have also
verified the multi-scale optimization process on the basis of an artificial example where the optimal probe placement
is qualitatively known.

3. MATERIAL PARAMETER UNCERTAINTY

The PDE model for the simulation of the heat distribution described in the last section involves the electric and thermal
conductivity of the corresponding tissue. As we have discussed in the introduction, we must note that these quantities
cannot be determined exactly. The material properties depend on the physical state of the tissue, and moreover
they vary inter-individually (i.e., from patient to patient) and in fact they also vary from day to day depending on
the patients physical constitution. The range of values, which are given in the literature, underline this uncertainty,
e.g., from [3, 4, 6, 8] we learn that even in native liver tissue we have

σ = 0.17 S/m—0.60 S/m , λ = 0.47 W/Km—0.64 W/Km . (13)

These values have mostly been obtained from in vitro experiments on cadaveric human tissue or animals, and they are
certainly furthermore associated with realistic measurement errors of 10% or more.

Taking the uncertainty of the values of material parameters into account leads to the question about the dependence
of the forward simulation of RF ablation and also about the sensitivity of the optimal probe placement found in Sect. 2
with respect to variations (either due to uncertainty or errors) in the material parameters. Discussing this question does
not improve the accuracy of the simulation or the optimization (as numerical verification is a matter divorced from the
answer to this question); rather, it enables us to quantify how the uncertainty of the electric and thermal conductivities
affects (or propagates through) the numerical results. Based on the results obtained by our sensitivity analysis, a
future goal in direction of a patient-specific modeling and simulation will be the optimization of the confidence of the
success of the therapy.

In the following, we extend the model for the simulation and optimization of RF ablation presented in Sect. 2
such that it incorporates the uncertainty in the material properties. In Sect. 3.2 we give a brief overview of some
common methods for the stochastic discretization and in particular describe the stochastic finite element method with
piecewise multilinear ansatz functions, which we use in this work. Further we discuss three different variants to
analyze the sensitivity of the optimal probe placement in Sect. 3.3.

3.1 A Stochastic Model for RF Ablation

Let (Ω,A,µ) be a probability space expressing the behavior of the thermal conductivity and electric conductivity
where Ω is the event space, A ⊂ 2Ω the σ-algebra, and µ the probability measure. In the following we consider the
case that the tissue parameters σ and λ are not fixed to particular (deterministic) values, but rather lie within a range
of possible values. Thus, an eventω in our probability space consists of a particular choice of the material properties
(σ, λ). The physical parameters can be considered as random fields expressible in terms of random variables and
characterizable by their probability density functions (PDFs).

For the medical problem of interest, let us assume that we have three main types of tissue present in our computa-
tional domain: native liver tissue (n), tumor tissue (t), and blood vessels (v). For each of these tissue types we assume
that the distribution of σ and λ are controlled by uniformly distributed independent random variables, each of which
is defined over the interval [−1, 1].

Following [60], we know that we can represent any general second-order random process g(ω),ω ∈ Ω in terms of
a collection of random variables ξ = (ξ1, . . . ξN ) with independent components. Here, the stochastic process under
investigation is the optimal probe placement ū as it is obtained by the algorithm described in the previous section.
Since the optimal probe placement depends on the material parameters σ and λ any uncertainty associated with those
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12 I. Altrogge, T. Preusser, T. Kröger, S. Haase, T. Pätz, R.M. Kirby

parameters will induce uncertainty in the optimal probe placement. Note that in the following we will also refer to
random fields as stochastic processes.

Remark Here and in the following we assume that the distributions for the three-different components of the ma-
terial parameters are independent. Note that from the mathematical viewpoint it is very convenient to assume in-
dependence since it allows to construct tensor-product Hilbert spaces on the stochastic domain. Note independence
may not be justified from the anatomical perspective, since e.g., the different conductivities are correlated through the
water content of the tissue. However, there exists a mathematically rigorous (nonlinear) mapping which transforms
a set of random variables into a set of independent random variables. This research falls into the area of numerical
representation of non-Gaussian processes, which remains an active research field [34].

To describe the electric field emerging from the RF probe regarded as a random field, let us consider the vector of
random variables ξσ = (ξσ

n , ξσ
t , ξσ

v ) ∈ Γσ := [−1, 1]3 (i.e., N = 3) which describes the uncertainty in the electric
conductivity of the native tissue, the tumor, and the vessels. We model the stochastic field σ(x, ξσ) for the uncertain
electric conductivity by

σ(x, ξσ) =


σn(ξσ

n ) if x ∈ Dn ,

σt(ξσ
t ) if x ∈ Dt ,

σv(ξσ
v ) if x ∈ Dv .

(14)

To model the uncertain distribution of heat we proceed similarly by considering ξλ = (ξλ
n, ξλ

t , ξλ
v) ∈ Γλ :=

[−1, 1]3. The three components of ξλ represent the heat conductivity in the native and malignant tissue as well as in
the vascular structures. Like in (14) we define the overall heat conductivity λ(x, ξλ). We will henceforth consider our
input parameters to be of the form σ(x, ξσ) and λ(x, ξλ) given by ξ = (ξσ, ξλ) ∈ Γ distributed over the ranges as
e.g., given in (13), where Γ := Γσ × Γλ = [−1, 1]3 × [−1, 1]3.

Having introduced the uncertain electric conductivity, we can formulate a stochastic electrostatic equation similar
to (1) and (2) by: Find a stochastic field φ(x, ξσ) such that

−div(σ(x, ξσ)∇φ(x, ξσ)) = 0 a.e. in D \Del × Γσ ,

φ(x, ξσ) = 1 a.e. on Del × Γσ ,

φ(x, ξσ) = 0 a.e. on ∂D × Γσ .

(15)

Straightforwardly, we can proceed to incorporate the uncertainty into the remaining components of the model that
has been presented in Section 2.1. This yields a stochastic field for the heat source and stochastic processes for the
total and the effective power, i.e.,

Qrf(x, ξσ) =
Peff(ξσ)

Ptotal(ξσ)
σ(x, ξσ)|∇φ(x, ξσ)|2 , (16)

Peff(ξσ) =
4PsetupR(ξσ)RI

(R(ξσ) + RI)2
, R(ξσ) =

U2

Ptotal(ξσ)
, Ptotal(ξσ) =

∫
D

σ(x, ξσ)|∇φ(x, ξσ)|2 dx . (17)

We may also define the stochastic heat equation in analogy to (6) and (7). Since the source term on the right
hand side depends on the solution of the stochastic electrostatic equation, the temperature distribution is going to be a
random field that depends on both ξσ and ξλ, i.e.,

−div(λ(x, ξλ)∇T (x, ξ)) = Qrf(x, ξσ) + Qperf(x, ξ) a.e. in D × Γ ,

T (x, ξ) = Tbody a.e. on ∂D × Γ ,
(18)
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where ξ = (ξσ, ξλ). The sink term Qperf in (18) is modeled like in Section 2.1

Qperf(x, ξ) = −ν(x) (T (x, ξ)− Tbody) , ν(x) =

{
νvessel ρblood cblood for x ∈ Dv ,

νcap ρblood cblood else .
(19)

3.2 Stochastic Discretization

In the following we give a short overview of some common methods for the stochastic discretization (see also [44]).
We start with the Monte Carlo (MC) method, then proceed to a description of the stochastic Galerkin (SG) method and
finally mention the stochastic collocation method and the stochastic finite element method (SFEM) with piecewise
multilinear ansatz functions, as used in our sensitivity analysis.

3.2.1 Monte Carlo Simulation

A classical and very popular approach for the stochastic discretization is the Monte Carlo (MC) method. Thereby
P realizations ξj , j = 1, . . . , P of the vector of random variables ξ are generated. Consequently, P deterministic
problems are solved, which are obtained from (15) and (18) by considering the realizations of the electric and thermal
conductivity σ and λ corresponding to ξj . Finally, the statistics of the solution samples Tj = T (x, ξj), or of the
corresponding samples of the optimal probe placement ū(ξj) = (p̄(ξj), ā(ξj)) obtained by the optimization presented
in Sect. 2, lead to the desired result. The MC approach is known to be extremely robust and requires no assumptions on
the smoothness of the underlying stochastic processes. However, the convergence is very slow and goes asymptotically
with 1/

√
P .

3.2.2 Stochastic Galerkin Method

The stochastic Galerkin method utilizes the weak formulation of (15) and (18) on finite dimensional stochastic sub-
spaces of the probabilistic Hilbert space, in which the random processes lie. The approximating subspaces can be
constructed by e.g., the generalized Polynomial Chaos (gPC) approach. Thereby any second-order stochastic pro-
cess g(ξ) written in terms of random variables, is represented by a weighted (infinite) sum of orthogonal polynomi-
als [31, 32, 61, 62] which are functions of the vector of random variables ξ of known probability density function
(PDF). Here, in the case of this study, the random input fields of interest are the (stochastic) input parameters σ and
λ. The random process of interest is the optimal probe placement ū for which we solve in Section 2.

An approximation of a stochastic process can be expressed by truncating the infinite summation to P + 1 terms
for some P ∈ N. Denoting the stochastic orthogonal polynomial set as Li(ξ) and the polynomial weights as ĝi, we
can write our approximation of the process as

g̃(ξ) =
P∑

i=0

ĝiLi(ξ) , with ĝi =
(∫

Γ

L2
i dµ(ξ)

)−1 ∫
Γ

g(ξ)Li(ξ) dµ(ξ) . (20)

In the case of random processes g that depend on a scalar random variable ξ (e.g., σm(ξσ
m), m ∈ {n, t, v}, cf. (14)) and

which have uniform distribution, the Legendre polynomials are the optimal orthogonal polynomials to employ [62];
this allows us to express g(ξ) exactly in terms of two coefficients such that g(ξ) = ĝ0L0(ξ) + ĝ1L1(ξ) = ĝ0 + ĝ1ξ,
where the first coefficient is the midpoint of the uniform interval and the second coefficient is the half-length of the
uniform interval.

3.2.3 Stochastic Collocation Method

In the generalized polynomial chaos - stochastic collocation (gPC-SC) approach [63] quadrature rules are employed
which collocate the stochastic process of interest for accomplishing the integration over the stochastic domain in order
to compute the coefficients ĝi of the expansion (20). It is popular to use a set of quadrature points {ξj}Qj=1 which lie
on a sparse grid in the stochastic space (see Fig. 3, left) generated by Smolyak’s algorithm [63].
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Analogous to a classical polynomial interpolation, the use of Lagrange interpolation is particularly convenient:
Instead of using the collocation points ξj for an integration of the coefficients in the expansion (20), an approximation
of the stochastic process on the incomplete polynomial space resulting from Smolyak’s algorithm is considered. Thus,
the interpolation approximation of f(ξ) can be defined by

f̃(ξ) =
Q∑

j=1

f(ξj)hj(ξ) =
Q∑

j=1

F(g(ξj))hj(ξ) (21)

with a set of Lagrange interpolating basis functions hi(ξj) = δij . Here F denotes the solution operator for the deter-
ministic model from the previous sections, i.e., f(ξ) = F(g(ξ)). Solving the deterministic system at the collection
of samples {ξj}Qj=1 allows one to construct an approximation such that the residual R(f(ξ) − f̃(ξ)) between the
interpolated system f̃(ξ) and the true process f(ξ) is zero at these points.

With the interpolation (21) an approximation of the mean of the process f(ξ) is given by

f̄ = E[(f)(ξ)] =
∫

Γ

f(ξ)dµ(ξ) ≈
Q∑

j=1

wjf(ξj) =
Q∑

j=1

wjF(g(ξj)) , (22)

where wj are the collocation weights derived by integration of the interpolation functions wj =
∫

Γ
hj(ξ)dµ(ξ).

Similarly, an approximation of the variance can be calculated as follows:

Var[f(ξ)] = E[(f(ξ)− f̄)2] ≈
Q∑

j=1

wj(f(ξj)− f̄)2 . (23)

Let us finally note that the collocation approach discussed above is one of multiple possible collocation methods
used in the solution of stochastic PDEs [64]. With increasing rate of convergence (and increasing assumptions on
smoothness) one can use approaches based e.g., on the classical Monte-Carlo method, the Newton-Cotes formulas,
Gaussian or Clenshaw-Curtis quadrature, or the sparse-grid spectral collocation method discussed here.

3.2.4 Stochastic Finite Element Method

For the sensitivity analysis of the optimal probe placement with respect to variations in the tissue properties, here we
use a slightly modified method of discretizing and numerically solving the involved SPDEs, which requires weaker
smoothness assumptions on the stochastic process than the previously presented global collocation approach. More
precisely, here we use a stochastic finite element method with piecewise multilinear ansatz functions on uniform
hierarchical grids, which are adaptively refined in critical stochastic regions (see Fig. 3, middle). Thus, the interpo-
lating basis functions hj in (21) are changed to piecewise multilinear ansatz functions like the ones depicted on the
right of Fig. 3, i.e., instead of orthogonal polynomials, here we take these piecewise multilinear ansatz functions for
the interpolation between the adaptively refined sampling points in the stochastic space. This methodology, some-
times referred to as the collocating multi-element polynomial chaos method [37, 38] combines the advantages of the
stochaatic collocation method with flexibility of a multi-element (hierarchical) approach.

3.3 Sensitivity Analysis

From the approximation of the stochastic process describing the optimal probe placement we now can analyze the
sensitivity of the system to perturbations in the parameters. In the following, we discuss two different variants for the
parametric sensitivity analysis through the stochastic finite element approach described above. In Section 4 we will
present examples for the second of the variants discussed in the following.
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hj

Figure 3: Left: Distribution of grid nodes obtained with Smolyak’s algorithm. Middle: Uniform, adaptive dis-
tribution of nodes for the stochastic interpolation with piecewise multilinear, hierarchical ansatz functions. Right:
First five piecewise linear ansatz functions hj for the interpolation approximation of the random field f(ξ) ≈∑Q

j=1 f(ξj)hj(ξ) (see (21)).

3.3.1 Probability Density of Joint Distribution

A first approach that reveals the robustness (or more precisely the global behavior) of the optimal probe placement
with respect to variations in the material parameters is given by a direct analysis of the probability density function
(PDF) of the probe placement.

In general, the PDF is not calculable analytically; one has to evaluate the stochastic process, i.e., the representa-
tion (21) of the random field f with piecewise multilinear ansatz functions hj , at a large number of sampling points
to get an appropriate approximation of the PDF. For more details we refer the reader to [64] and in particular to [65].

3.3.2 Covariance of Joint Distribution

Instead of the calculation of the PDF, one can investigate the covariance matrix of the joint distribution of the compo-
nents of the optimal probe placement. The covariance matrix of the approximation f̃ of the random field f (cf. (21)
with piecewise multilinear ansatz functions hj) can be computed much faster than the PDF, and its results are easier
to interpret. Formally, the covariance matrix of the joint distribution of the coordinates of e.g., the optimal probe
position p̄(ξ) = (p̄x(ξ), p̄y(ξ), p̄z(ξ)) can be written as

Cov[p̄] =
(
Cov[p̄c, p̄d]

)
c,d∈{x,y,z} , where Cov[p̄c, p̄d] = E

[
(p̄c − E[p̄c])(p̄d − E[p̄d])

]
for all pairs of coordinates c, d ∈ {x, y, z}. The covariance matrix is a symmetric (in this case 3 × 3) matrix that
quantifies how the coordinates of e.g., the optimal probe position are coupled through the random variable ξ. If this
matrix were diagonal, the coordinates would be independent.

Remark We emphasize that special care must be taken concerning the accuracy of the numerical solvers involved.
In [66] Kaipio and Somersalo discuss that limited numerical accuracies (i.e., discretization errors) can sometimes
(effectively or ineffectively) be interpreted as the behavior of a random process and thus as sensitivity of our problem.
Consequently, in our numerical experiments shown in Sect. 4 we have set the stopping criteria of the iterative solvers
as well as for the optimization loops appropriately.

4. RESULTS

In the following we will evaluate the concepts presented in the preceding sections on the basis of a real RF ablation
case. Here, we consider the material parameters to be uniformly distributed. The thermal conductivity λ = (λn, λt, λv)
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ranges in [0.47,0.64]× [0.51,0.77]× [0.51,0.54] [W/Km]. Moreover, the electric conductivity σ = (σn,σt,σv) ranges
in [0.17, 0.60]× [0.64, 0.96]× [0.67, 0.86] [S/m]. The respective intervals have been chosen based upon values found
in the literature [3, 4, 6].

In general, to find an appropriate refinement level one can use the same procedure as for the determination of an
appropriate spatial grid resolution: The respective computation is performed for a hierarchy of increasing level values
and the results are tested for Cauchy convergence. For this purpose we compare the optimizer (p̄, ā) at each node
with the corresponding interpolate from the previous refinement level. We need an additional level of refinement at
one node as long as the positions differ by more than 1 mm or the angles differ by more than 5 ◦. Below we show
the results of such a hierarchy of computations for the sensitivity of the probe position w.r.t. variations in the electric
conductivity.

As settings for one deterministic optimization, here we use α = 0.5 within the objective function f in (12) and
θ = 10−6 within the stopping criterion related to the probe position, as well as θ = 10−3 within the stopping
criterion related to the probe orientation. For the iterative solvers used in the computation of the forward problem
we use an accuracy of at least 10−15 for the decrease of the residual. The computational domain D is of extent
60 × 60 × 60 mm3, and it is discretized with a fine grid of 643 cells. For the multi-scale optimization we consider
one coarser grid having 323 cells. With these settings the optimization of the probe location for one sampling point
in the stochastic space typically takes about 2 h on a standard desktop PC with an Intel R© Core 2 DuoTM 2.93 GHz
processor and 4 GB RAM.

Here, we work with CT data which has been segmented to obtain the vascular system with a tumor of interest.
The segmentation has been performed by the methods presented in [45]. The tumor located in this domain has main
axes of approximate length 45.9 mm, 41.9 mm, and 36.2 mm.

For the perfusion term (8) we take νcap = 0.006067 s−1 and νvessel = 0.05 s−1. The value for the blood density is
ρblood = 1059.0 kg/m3, and the heat capacity of blood is set to cblood = 3850.0 J/kgK (cf. Sect. 2 and [3, 6]).

A monopolar probe with radius 1.2 mm and with an electrode length of 20 mm is applied. The electric generator
has an inner resistance of 80 Ω, and it is set up to a power of 30 W. For the optimization, the initial probe position is
always located at a distance of 11.25 mm in each coordinate direction from the center of D. The initial orientation is
a = (5, 2, 3), projected on the sphere (i.e., normalized to length 1).

Remark To guarantee that the size of our computational domain does not influence the result of the optimizer, we
have performed a comparison between forward simulations using Dirichlet or Neumann boundary conditions at ∂D,
respectively. Both temperature profiles differ at most by 0.45 K in the interior of D, i.e., at locations which are more
than 10 mm apart from ∂D. Closer to the boundary, i.e., for locations which lie in a ring with radius 10 mm around
∂D, the temperatures differ more. In particular, the largest deviation of 4.93 K appears at the outer boundary ∂D.
We conclude that in the vicinity of the lesion the particular choice of boundary condition does not influence the result
significantly.

4.1 Sensitivity of the Temperature

Before we analyze the sensitivity of the optimal probe position and orientation, we first investigate the sensitiv-
ity of the temperature, calculated by our forward simulation (see Sect. 2.1). More precisely, we perform a sim-
ple sampling of the six-dimensional stochastic space for stochastic σ and λ by 36 = 729 grid points, such that
all 36 combinations of σ and λ at the interval boundaries and at the middle of the intervals are considered. We
then determine the values of σ and λ, for which the L∞-norm of the temperatures differs most. In Fig. 4 we see
the result of this investigation. In more detail, we see the 50 ◦C isosurface of the temperatures, whose maximal
values differ most (left and middle) together with the 30 K isosurface of the difference of the temperatures ob-
tained by a simple subtraction of the two temperatures from each other (right). The corresponding values for the
electric and thermal conductivity are (σn,σt,σv, λn, λt, λv) = (0.17, 0.64, 0.67, 0.64, 0.51, 0.54) (Fig. 4, left) and
(σn,σt,σv, λn, λt, λv) = (0.60, 0.64, 0.86, 0.47, 0.77, 0.51) (Fig. 4, middle). This corresponds to our expectation,
since for a large value of the thermal conductivity λt within the tumor region (Fig. 4, middle) the high temperature
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Figure 4: Left and Middle: We show the 50 ◦C isosurface of two different temperatures obtained for different realiza-
tions of σ and λ. Right: Visualization of the 30 K isosurface of the difference of the two temperatures, whose 50 ◦C
isosurfaces are presented on the left. In all images the vascular system Dv is displayed in beige-brown and the tumor
lesion Dt is displayed in a transparent gray color.

around the probe diffuses faster away than for a small value of λt. From the results we see a significant difference
in the shape of the 50 ◦C temperature profiles, especially close by the vessels (see left and middle image of Fig. 4).
Moreover, we see that the largest temperature difference appears around the end of the probe’s electrode which lies
close by the vascular system (see right image of Fig. 4). Further, we notice that obviously there exist material param-
eter settings for which a complete ablation of the tumor is not achieved (Fig. 4, middle). This further motivates the
consideration of the material parameter uncertainty for the planning of RF ablation.

4.2 Sensitivity of the Optimal Probe Location

In Sect. 3.3 we have described different variants for a sensitivity analysis of the optimal probe placement with respect
to variations in the material parameters. Let us first note that since the space of admissible probe placements U
is a five-dimensional space, a visualization and an analysis of the PDFs of the corresponding distributions is not
straightforward (cf. also [65]), because the PDFs are functions U → R.

When we take uncertainty in the values of σ or λ in all three tissue types (native liver tissue, tumor and ves-
sels) into account, we have a three-dimensional stochastic space Γ. On this space we can approximate a stochastic
process through stochastic finite elements that reveal the dependence of the optimal probe placement ū (which lies
in a five-dimensional space U ; three dimensional probe location p ∈ R3 and an orientation vector a ∈ S2 on the
two-dimensional sphere) w.r.t. variations in the parameters σ or λ.

In our investigations we found that the optimization of only the probe’s position with fixed orientation and the
optimization of only the probe’s orientation with fixed position have less local optima than the optimization of both
quantities at the same time. Thus, we first analyze the sensitivity of the optimal probe position and orientation
separately (i.e., independent of each other) (see Figs. 5 and 6) and as a further step then also consider the sensitivity
of the simultaneous optimization of both quantities (see Fig. 7).

Let us first discuss a visualization that reduces the complexity of the data and allows for an easy perception of the
distribution of the optimal probe location p̄. The PDF of the optimal probe location is a mapping R3 → R which could
be visualized through a volume rendering. However, a deep understanding and analysis of the three-dimensional PDF
can be obtained only by an interactive three-dimensional display of the data. Therefore we use the second approach
described in Sect. 3.3 to provide a simpler and better perceptible visualization. From the probability distribution of the
optimal probe location we compute the first and the second moment, corresponding to the mean and the covariance.
An eigenanalysis allows us to draw an ellipsoid centered at the mean, oriented with the eigenvectors, and scaled with
the square root of the eigenvalues of the covariance matrix. It can be interpreted as a principal component analysis of
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Figure 5: Visualization of the sensitivity of the optimal probe position through an ellipsoidal representation of the
covariance matrix. The sensitivity w.r.t. variations in the electric conductivity σ (left, blue ellipsoid) and thermal con-
ductivity λ (left, pink ellipsoid) are shown. In addition, we show the RF probe drawn at the mean of the corresponding
placement’s distribution for stochastic σ and λ, respectively (middle left). Moreover, the sensitivity w.r.t. a larger
variation of σ (i.e., σ ∈ [0.1, 3.0]3 [S/m]) is visualized (middle right) together with a consideration of the correspond-
ing results for the last four refinement levels of the adaptively refined stochastic grid (right). As before, the vascular
system Dv (if shown) is displayed in beige-brown and the tumor lesion Dt is displayed in a transparent gray color.

the PDF: large eigenvalues imply that the distribution is wide (has a high variance) in the corresponding direction.
In Fig. 5 we embed the ellipsoid in the surrounding anatomy. Here, we visualize the sensitivity of the model

(i.e., of the optimization of only the probe position with fixed orientation) with respect to variations in σ (left, blue
ellipsoid) and λ (left, pink ellipsoid) together with the RF probe drawn at the mean of the corresponding placement’s
distribution for stochastic σ and λ, respectively (middle left). We see that our model (i.e., our optimal probe position)
shows no significant sensitivity w.r.t. variations in σ or λ, since the corresponding ellipsoids are very small (see Fig. 5,
left) and moreover the mean of the placements distribution for stochastic σ differs from the mean of the placements
distribution for stochastic λ by only 0.2 mm (see Fig. 5, middle left). Note, that in a second step we also analyzed
the sensitivity of the optimal probe position for variations in σ and λ simultaneously, but since we did not obtain a
significant sensitivity even for this combined stochasticity, we do not show the corresponding result, here. However,
if we enlarge the variations in the electric conductivity σ = (σn,σt,σv) to e.g., [0.1, 3.0]3 [S/m] (which is still
adequate, since we want to consider uncertainties caused by measurements on animal and/or cadaveric tissue, which
further may be afflicted by measurement errors) we see a more significant sensitivity of the optimal probe position (see
Fig. 5, middle right). On the right of Fig. 5 we present the result of this sensitivity analysis for different refinement
levels of the adaptively refined grid. More precisely, we see the result for level 7, 8, 9 and 10, where i.e., the adaptive
refinement level 10 here corresponds to 2576 sampling points in the stochastic space (on a full three dimensional
Smolyak grid this would be 6017 sampling points at a resolution of s = 8 in terms of polynomial spanning ability).
Although the sensitivity analysis for this larger variation of σ did not converge up to the refinement level 10, i.e., the
1 mm stopping criterion of our sensitivity analysis (see explanations from above) is not fulfilled, yet, we see that for
the last three refinement levels, the ellipsoid does not change significantly.

Finally, we show the sensitivity analysis of the simultaneous optimization of the probe’s position and orientation
with respect to variations in the electric conductivity σ. Here, again σ varies within the ranges presented at the
beginning of Sect. 4. For this combined optimization of both quantities, we see a much larger sensitivity of the optimal
probe position (Fig. 7, left and middle) than for the separate optimization of only the probe’s position. Since the
sensitivity analysis of this combined optimization did not converge up to a refinement level 7, which here corresponds
to 2303 sampling points on the adaptively refined grid, we visualized the corresponding ellipsoid for the last three
refinement levels 5, 6 and 7. We see, that at least for the last two refinement levels, the ellipsoid does not change
significantly any more.
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Figure 6: Visualization of the sensitivity (i.e., the PDF) of the optimal probe orientation through a color coding of the
sphere. As shown by the color ramp on the right, green colors indicate unlikely orientations, whereas red colors show
likely orientations. On the left we see the sensitivity w.r.t. variations in σ within the rather small ranges presented at
the beginning of Sect. 4. In the middle we additionally draw the RF probe at the mean of the placement’s distribution.
On the right we see the sensitivity w.r.t larger variations of σ (i.e., σ ∈ [0.1, 3.0]3 [S/m]) again with the RF probe drawn
at the mean of the placement’s distribution. As in the previous figures, the vessels Dv are displayed in beige-brown
and the tumor Dt is displayed in transparent gray.

4.3 Sensitivity of the Optimal Probe Orientation

The visualization of the PDF of the optimal probe orientation is much easier, since the orientation lies on the two
dimensional sphere S2. In Fig. 6 we show different PDFs of the optimal probe orientation ā by a color coding of the
sphere. More precisely, we show the results of a sensitivity analysis of the optimal probe orientation with fixed probe
position for stochastic σ varying within the ranges presented at the beginning of Sect. 4 (Fig. 6, left and middle) and
for stochastic σ ∈ [0.1, 3.0]3 [S/m] (Fig. 6, right).

The results confirm our observation from the analysis of the optimal probe location: We have a weak dependence
on σ for variations within the rather small ranges presented at the beginning of Sect. 4 and a significant dependence
on σ for large variations of this three-dimensional tissue parameter.

Note, that we also analyzed the sensitivity of the optimal probe orientation with fixed position w.r.t. variations in
the thermal conductivity λ within the rather small ranges presented at the beginning of Sect. 4. However, since the
results do not differ much from the corresponding results for a stochastic electric conductivity σ (i.e., they reveal no
significant sensitivity), we do not show them, here.

In (Fig. 7, right) we show the sensitivity of the optimal probe orientation, which we obtained for the combined op-
timization of the probe’s position and orientation described at the end of Section 4.2. As for the optimal probe position,
also for the optimal probe orientation we see a much larger sensitivity, when analyzing the combined optimization of
both quantities.

We finally conclude that for the combined optimization of the probe’s position and orientation and/or for large
variations in the electric and/or thermal conductivity the uncertainty of the tissue properties can have a significant
influence on the optimal probe placement for RF ablation. The aim of our investigations is to sensitize the final user
of a planning software to this uncertainty associated with the results.

5. DISCUSSION AND CONCLUSIONS

We have presented a model for the optimization of the placement of a monopolar probe in radiofrequency ablation that
depends on the electric and thermal conductivity of native liver tissue, tumor tissue, and vessels. The deterministic
forward model for the simulation of the temperature distribution of the RF ablation, which is used within our opti-
mization, has been extended to a stochastic PDE model with probabilistically distributed material parameters taking
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Figure 7: Visualization of the sensitivity of the optimal probe position (left, representation of the covariance matrix
via blue ellipsoid) and orientation (right, coloring of the sphere) w.r.t to variations of σ in the ranges described at the
beginning of Sect. 4 and obtained for the combined optimization of the probe’s position and orientation. In the middle
image we see the corresponding sensitivity results for the optimal probe position and for the last three refinement levels
of the stochastic grid. Again as in the previous images, the segmented vascular system Dv (if shown) is displayed in
beige-brown and the segmented lesion Dt is displayed transparent gray.

into account the uncertainty associated with electric and thermal conductivities of the tissue. Together with a stochas-
tic finite element method on adaptively refined, hierarchical grids, this approach allows us to evaluate the sensitivity
of the optimization results with respect to variations in the material parameters.

We have presented numerical results which are based on a segmented lesion and vascular structures from a real CT
scan. Because vector-valued data is optimized (probe location and/or probe orientation) a visualization of the resulting
distributions is not straightforward. For the visualization of the distribution of the optimal probe location we presented
different approaches. Since a three-dimensional volume rendering of the histograms is difficult to interpret, we use an
ellipsoidal representation, which easily reveals the mean and the covariance of the distribution. A visualization of the
distribution of the optimal probe orientation is much simpler. Here we showed a color coding of the sphere according
to the corresponding PDF.

Our numerical experiments show a significant sensitivity of the temperature profiles w.r.t. variations in the tissue
properties. For the optimization however, the separate consideration of only the probe position or only the probe
orientation does not show any significant sensitivity for realistic variations in the electric conductivity σ and/or the
thermal conductivity λ which are given in the literature for cadaveric animal tissue. However, if we enlarge the
variations in order to account for measurement errors and differences between animal and human tissue we see a
significant sensitivity even for the optimization of only the probe position or only the probe orientation. If we analyze
the combined optimization of the probe’s position and orientation, we obtain significant sensitivities, also for the
smaller variations of σ.

The optimization of the placement of one monopolar probe presented in this work, easily generalizes to an opti-
mization of the placement of a cluster of probes. Also the study of treatment by bi-polar probes, multi-polar probes,
or umbrella-type probes is possible with the framework presented herein. Our investigations in these fields are still in
progress. In addition, the approach presented in this paper can be used for many other models in medical simulation
including cryosurgery or irreversible electroporation as well. In particular for complicated nonlinear models for which
a theoretical sensitivity analysis is cumbersome or even infeasible, our approach is attractive.

With the numerical experiments considered here, we have demonstrated that our approach allows to quantify the
robustness of simulation results with respect to the uncertainty involved in the model parameters. In this sense our
investigations can sensitize the user (i.e., a radiologist, surgeon, medical doctor) to use simulation results which are
based on uncertain parameters with care.

With our investigations we have performed a step toward patient-specific modeling in the field of medical simula-
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Figure 8: 50 ◦C isosurface of the temperatures calculated with our forward simulation for νvessel = 0.006067 s−1
(left) and νvessel = 0.5 s−1 (right). In both calculations the values of σ and λ have been set to the mean values of the
intervals presented at the beginning of Sect. 4.

tion – here applied to the optimization of RF ablation. We do not tackle the problem of patient-specific parameters by
trying to obtain more accurate material parameters. Instead we consider uncertainty to be an intrinsic attribute of the
modeling process.

Our future investigations will involve an optimization of the confidence for the success of the therapy. Moreover,
our future investigations will deal with the optimization of the RF ablation under a refined and time-dependent model
for the simulation. Thus, we can take into account the nonlinear dependence of the material parameters on the
state of the system as well. Also, the consideration of the perfusion coefficients as sources of uncertainty will be
a further direction of research. Fig. 8 shows an outlook in this direction. Here, we see the 50 ◦C isosurface of the
resulting temperatures of our forward simulation calculated for different values of the relative perfusion rate νvessel (see
Sect. 2.1), i.e., for νvessel = 0.006067 s−1 (capillary perfusion) and for νvessel = 0.5 s−1 (strong perfusion for which
the temperature within the vascular system approximately remains body temperature). All other tissue parameters
(i.e., the conductivity values) have been set to the mean values of the intervals presented at the beginning of Sect. 4.
We see, that we get a significant difference in the shape of the corresponding temperature profiles, which motivates a
deeper analysis of uncertain perfusion coefficients.
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