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Abstract

We show that there is a fundamental quantum limit to external force detection via monitoring a single harmonic
oscillator, which was neglected so far. This limit is equivalent to the impossibility of determining the quantum state of a
single oscillator, and the quantum Zeno effect of the oscillator, and requires an exchange of at least a quantum of energy
between the oscillator and the force. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

State-of-the-art precision measurements, such as
those which are employed for gravitational wave
detection, and those which utilize scanning probe
microscopy or Josephson junction circuits, are based
on the monitoring of the time evolution of a single
physical system. The classical noises which limit
these techniques originate in the processes of dissipa-
tion and dephasing caused by the coupling of the
monitored system with its environment. The possibil-
ity of isolating a physical system from its environ-
ment almost perfectly, so that it may be considered a
quantum system, has renewed interest in the question
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of the fundamental quantum limit to the detection of
a classical signal via monitoring the time evolution

w xof this system 1–16 . The model of a quantum
harmonic oscillator driven by an external force, which
in the limit of a vanishing natural frequency becomes
a driven free mass, approximates almost all precision

w xmeasurement techniques. Braginsky et al. 1–4 and
w xCaves et al. 5 suggested that the detection of the

force is constrained by the standard quantum limit
Ž . Ž .SQL when the position of the oscillator or mass
is monitored, where a position measurement imposes
back-action noise on the momentum and may in-
crease the position uncertainty at a later time. Yuen
w x w x8–12 and Ozawa 7 showed that the position of a
free mass could be monitored precisely using con-
tractive state measurements, and that there is no limit
to force detection via monitoring the position of the
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mass, when the state of the mass is reset to a known
Žcontractive state after each measurement see also

w x. w x w x8–16 . Braginsky et al. 2–4 , Caves et al. 5 and
w xHollenhorst 17 also suggested that detection of the

force beyond the SQL could be achieved via moni-
toring the number of quanta of energy of the oscilla-

Ž .tor using quantum non-demolition QND measure-
Ž w x.ments e.g., 2–5 .

In this Letter, we analyze the monitoring of the
dynamic observables of a quantum harmonic oscilla-

Ž .tor or free mass driven by an external force. We
show that in the monitoring of the momentum of a
free mass, determination of the force is independent
of the initial uncertainty in the momentum due to the
correlation between successive measurement results,
where preparation or resetting of the state of the
mass is unnecessary. In the monitoring of the posi-
tion of the mass, without resetting the state of the
mass after each measurement, determination of the
force is limited by the SQL, again due to the correla-
tion between successive measurement results. This
correlation, which was neglected in previous analy-
ses, is also at the root of the impossibility of deter-

Žmining the quantum state of the single mass or
. w x Ž w x.oscillator 18,19 see also 20 . In the case of

monitoring the dynamic observables of the oscillator,
force detection is limited only by the uncertainty in
the simultaneous monitoring of the two slowly-vary-
ing quadrature amplitudes, and is independent of the
initial quantum state of the oscillator, in analogy to
the monitoring of the momentum of a free mass. We
also analyze the monitoring of the number of quanta
of energy of the oscillator. In this case, the detection
of the force is limited by the minimum possible
uncertainty in estimating the oscillator number
change due to the unknown and therefore arbitrary
relative phase between the oscillator and the force.
This arbitrary phase is also at the root of the quan-

w xtum Zeno effect of the single oscillator 21,22 .
Force detection at this limit can be achieved by
either QND or standard destructive number measure-
ments, and requires resetting of the oscillator state to
the vacuum state after each number measurement, in
analogy to the monitoring of the position of a free
mass.

We conclude that there is a fundamental quantum
limit to external force detection. This limit requires
an exchange of at least one quantum of energy

Žbetween the force and the oscillator and vanishes
.for the free mass . Force detection beyond this limit

is impossible, no matter what quantum state the
oscillator is prepared in, observables of the oscillator
are being monitored or measurement schemes are
being employed.

2. Monitoring the dynamic observables of a driven
( )harmonic oscillator or free mass

A free mass, which is driven by an external force,
ˆ 2is described by the Hamiltonian Hsp r2myˆ

Ž .F t x, where x and p are the position and momen-ˆ ˆ ˆ
Ž .tum of the mass, respectively, and F t is the force.

The time evolution of the mass is described by the
Heisenberg equations of motion, which give

t
X Xp t yp 0 s dt F t , 1Ž . Ž . Ž . Ž .ˆ ˆ H

0

t tX

X XX XXx t yx 0 sp 0 trmq dt dt F t rm .Ž . Ž . Ž . Ž .ˆ ˆ ˆ H H
0 0

2Ž .
Ž .According to Eq. 1 , the time integrated force

Ž .can be determined from the momentum change p tˆ
Ž . 1yp 0 . It is the common assumption that the errorˆ

in the determination of the force via the monitoring
of the momentum of the mass is due to independent

Ž . Ž .errors in the estimates of p 0 and p t , i.e.,ˆ ˆ
² 2Ž .: 2 ² 2Ž .: 2 ² 2Ž .:Dp 0 qD and Dp t qD s Dp 0 qˆ ˆ ˆm m

D2 , where D is the momentum measurement error.m m

From this assumption one may conclude that for a
given measurement error D , force determination ism

best when the mass is prepared initially in a momen-
² 2Ž .:tum eigenstate, with Dp 0 s0. It is this conclu-ˆ

sion that underlies the interest in the preparation of a
Ž .free mass or harmonic oscillator in a specific initial

quantum state, such as a squeezed state, for external
Ž w x.force detection e.g., 23 . In fact, the error in the

determination of the external force is due to the error
Ž . Ž .in the estimate of the momentum change p t yp 0 ,ˆ ˆ

and is therefore fundamentally limited by the quan-

1 This common assumption is implicit in the original argument
² 2Ž .: ² 2Ž .: ² w Ž .for the SQL, where Dx 0 q Dx t , rather than D x t yˆ ˆ ˆ

Ž .x2: 2 Ž w x.x 0 q D , is minimized see, e.g., Refs. 1–15 .ˆ m
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² w Ž .tum uncertainty in the momentum change D p tˆ
Ž .x2:yp 0 , which is independent of the initial mo-ˆ

² 2Ž .:mentum uncertainty Dp 0 ,ˆ
2² :D p t yp 0Ž . Ž .ˆ ˆ

² 2 : ² 2 : ² :s Dp t q Dp 0 y Dp 0 ,Dp t� 4Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ
² 2 : ² 2 :s Dp t y Dp 0 s0 . 3Ž . Ž . Ž .ˆ ˆ

Ž .This is because of the correlation between p 0 andˆ
Ž .p t , which is ignored by the common assumption.ˆ

Recently we proved the impossibility of determin-
ing the unknown quantum state of a single system
w x Ž w x.18,19 see also 20 . We showed that the statistics
of the results of a series of measurements of a single
system are independent of the uncertainties of
the measured observables and that therefore these
uncertainties cannot be estimated, unlike the
corresponding expectation values. Indeed, a series of
momentum measurements of a single mass, which is
prepared in a known quantum state, for the purpose
of determining an unknown driving force is equiva-
lent to a series of momentum measurements of a
mass, which is driven by a known force, for the
purpose of determining the unknown initial momen-
tum uncertainty of the mass. In both cases, the
statistics of the measurement results are independent
of the initial momentum uncertainty, due to the
correlation between the results. External force detec-
tion via monitoring the momentum of a driven free
mass is independent of the initial momentum uncer-
tainty, in contradiction to the common assumption,
yet in full agreement with the impossibility of deter-
mining the unknown quantum state of the mass.

Ž .According to Eq. 2 , the doubly time integrated
Ž .force can be determined from the displacement x tˆ

Ž . Žw xyx 0 of the free mass. Braginsky et al. 1–3 andˆ
w x . w x4 , pp. 105–109 and Caves et al. 5 suggested that
the determination of the force via monitoring the
position of the mass is constrained by the so-called

Ž .standard quantum limit SQL . According to the
uncertainty principle, a position measurement must
impose back-action noise on the momentum. This
increase in the momentum uncertainty may lead to
an increase in the position uncertainty at a later time.

w x w xYuen 8–12 and Ozawa 7 showed, however, that
the increase in the momentum uncertainty would
lead to a decrease in the position uncertainty when
the free mass is initially in a contractive state, for

which the position and momentum are negatively
correlated. Specifically, when the initial position and

²� Ž . Ž .4:momentum of the free mass satisfy Dx 0 ,Dp 0ˆ ˆ
Ž . Ž .™y`, then both x 0 and x t can be determinedˆ ˆ

² 2Ž .:exactly, with Dx 0 ™0 andˆ

² 2 : ² 2 : ² 2 : 2 2Dx t s Dx 0 q Dp 0 t rmŽ . Ž . Ž .ˆ ˆ ˆ
² :q Dx 0 ,Dp 0 trm™0 , 4� 4Ž . Ž . Ž .ˆ ˆ

Ž .even though the uncertainty in p 0 is infinitelyˆ
² 2Ž .:large, Dp 0 ™`. Yuen and Ozawa concludedˆ

that external force detection via monitoring the posi-
tion of a driven mass using contractive state mea-
surements has no fundamental limit when the state of
the mass is reset to a known contractive state after
each position measurement.

ŽHowever, without such state resetting or prepara-
.tion , external force detection is, in fact, limited by

the SQL, even when the position of the mass is
monitored using contractive state measurements
which project the state of the mass onto any one of a
set of contractive states. This is due to the fact that in
this case the error in the determination of the exter-
nal force is due to the error in the estimate of the

Ž . Ž .displacement x t yx 0 , which is limited by theˆ ˆ
² w Ž .quantum uncertainty in the displacement D x t yˆ

Ž .x2:x 0 , rather than the uncertainties in the positionˆ
² 2Ž .: ² 2Ž .: Ž . Ž .Dx 0 and Dx t . When both x 0 and x tˆ ˆ ˆ ˆ

Ž . Ž .are determined exactly, the uncertainty in x t yx 0ˆ ˆ
is actually infinitely large, due to the correlation

Ž . Ž .between x 0 and x t which was neglected in allˆ ˆ
previous analyses

2² :D x t yx 0Ž . Ž .ˆ ˆ

² 2 : ² 2 :s Dx t y Dx 0Ž . Ž .ˆ ˆ
² :y Dx 0 ,Dp 0 trm� 4Ž . Ž .ˆ ˆ

² 2 : 2 2s Dp 0 t rm ™` . 5Ž . Ž .ˆ

The time evolution of the position of the free
mass is coupled to that of the momentum. According

Ž . Ž .to Eq. 2 , determination of the displacement x t yˆ
Ž . Ž .x 0 is equivalent to that of the momentum p t . It isˆ ˆ

not surprising then, that in the exact monitoring of
Ž .the position x t of the mass using contractive stateˆ

measurements without resetting the state of the mass
after each measurement, all information about the

Ž .momentum p t , and therefore also the displacementˆ
Ž . Ž . Ž .x t yx 0 and the force F t , is lost due to theˆ ˆ
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uncertainty principle. In the infinitely imprecise posi-
tion monitoring of the mass, all information about
the force is lost due to the measurement error D2

™m

`, even though in this case the momentum uncer-
² 2Ž .:tainty may satisfy Dp 0 ™0. From this trade-offˆ

2 ² 2Ž .:between D and Dp 0 we conclude that forceˆm

detection via position monitoring of a free mass is
² 2Ž .: 2 Ž .2 2 2limited by Dp 0 qD G "tr2m rD qDˆ m m m

G"trm, which is, in fact, the SQL. Force detection
at this limit can be achieved via imprecise position

² 2Ž .: 2 Žmonitoring, when Dp 0 s D s "tr2m seeˆ m
w x.also 16 . The best scheme for detecting the force,

therefore, is via monitoring the momentum of the
mass, which allows determination of the momentum
change and also the force independent of the initial
state of the mass, since the time evolution of the
momentum is decoupled of that of the position.

Consider now the more general case of a har-
monic oscillator, which is driven by an external
force. The Hamiltonian which describes this oscilla-

ˆ 2 2w Ž . Ž . xtor is H s " v a q a y f t a , where aˆ ˆ ˆ ˆ1 2 1 1''s mvr2" x and a spr 2"v m are the general-ˆ ˆ ˆ2

ized position and momentum of the oscillator respec-
Ž . Ž .'tively, f t s 2r"v m F t is the normalized force,

and v is the natural angular frequency of the oscilla-
tor. In the limit of v™0, the harmonic oscillator is
reduced to a free mass. The Heisenberg equations of
motion for the oscillator give

ˆ ˆa t sb t cos v t yb t sin v t , 6Ž . Ž . Ž . Ž . Ž . Ž .ˆ1 1 2

ˆ ˆa t sb t sin v t qb t cos v t , 7Ž . Ž . Ž . Ž . Ž . Ž .ˆ2 1 2

ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .where b t s b 0 q d t and b t s b 0 q1 1 1 2 2
Ž .d t are the two slowly-varying quadrature ampli-2

ˆ ˆŽ . Ž . Ž . Ž .tudes, with b 0 sa 0 and b 0 sa 0 , andˆ ˆ1 1 2 2
Ž . t X Ž X . Ž X . Ž .where d t s H dt cos v t f t and d t s2 0 1

t X Ž X. Ž X .H dt sin v t f t are the in- and out-of-phase com-0

ponents of the force, respectively.
The canonically conjugate quadratures of the os-

cillator are decoupled of each other, according to
Ž . Ž .Eqs. 6 and 7 . The out-of-phase component of the

Ž .force d t can be determined from the change in the1
ˆ ˆŽ . Ž .first quadrature of the oscillator b t yb 0 , and1 1

Ž .the in-phase component d t can be determined2
ˆ Ž .from the change in the second quadrature b t y2

ˆ ˆ ˆŽ . Ž . Ž .b 0 . The correlation between b 0 and b t , which2 1 1
ˆ ˆ 2² w Ž . Ž .x :leads to D b t yb 0 s0, implies that the1 1

Ž .determination of d t is independent of the initial1
ˆ 2² Ž .:uncertainty Db 0 . Similarly, the correlation be-1

ˆ ˆŽ . Ž .tween b 0 and b t implies that the determination2 2
ˆ 2Ž . ² Ž .:of d t is independent of Db 0 . Force detection2 2

via monitoring the quadratures of the oscillator is not
limited by the initial quantum uncertainties in the
quadratures, in analogy to the monitoring of the
momentum of a free mass.

Ž . t X Ž X.The determination of d t ' iH dt exp yiv t0
Ž X . Ž . Ž .f t sd t q id t at every sampling time interval1 2

Ž .and thus of f t is, therefore, limited only by the
uncertainties in the initial and final simultaneous

ˆmeasurements of the canonically conjugate b and1

b̂ , which satisfy the uncertainty relation2
ˆ 2 ˆ 2² : ² :Db Db G1r16. The uncertainty associated1 2

with the determination of the change in both quadra-
ˆ ˆ ˆtures b s b q ib , in terms of energy, is1 2

ˆ 2 ˆ 2 ˆ 2² < < : Ž² : ² :. w x2"v D b G2"v Db q Db G"v 24 .1 2
Ž .For the signal d t to surpass this uncertainty, the

force must exchange at least one quantum of energy
2with the oscillator, such that "v d t G"v perŽ .

sampling time interval.

3. Monitoring the number of quanta of energy of
a driven harmonic oscillator

Ž . Ž .According to Eqs. 6 and 7 , the external force
can be determined also from the change in the
number of quanta of energy of the harmonic oscilla-
tor

n t yn 0Ž . Ž .ˆ ˆ
2 ˆ ˆ< <s d t q2 d t b 0 qd t b 0 , 8Ž . Ž . Ž . Ž . Ž . Ž .1 1 2 2

ˆ 2 ˆ 2 Žw x w xwhere nsb qb . Braginsky et al. 2,3 and 4 ,ˆ 1 2
.pp. 113–115 suggested, that when the oscillator is

< :prepared initially in the number eigenstate k , both
² Ž . Ž .:the average number change n t yn 0 and theˆ ˆ

uncertainty in estimating this number change
² w Ž . Ž .x2:D n t yn 0 are linear in k. They suggestedˆ ˆ
that the signal-to-noise ratio in determining the num-
ber change increases with the initial number of

w xquanta of energy of the oscillator. Hollenhorst 17
w xand Caves et al. 5 showed that the transition proba-

X Ž < : < X:.bility Ý P k ™ k increases with k, and thatk / k

therefore there is no limit to detecting a transition of
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the oscillator 2. They all suggested that force detec-
tion via monitoring the number of a driven oscillator
using QND measurements has no fundamental limit.
This conclusion underlies the interest in QND mea-

Žsurement schemes for external force detection e.g.,
w x.2–5 .

< :However, when the oscillator is initially in k ,
² Ž . Ž .: < Ž . < 2the average number change n t yn 0 s d tˆ ˆ

is independent of k. The quantum uncertainty in the
number change,

2² :D n t yn 0Ž . Ž .ˆ ˆ
2 2 2 2ˆ ˆ² : ² :s4 d t Db 0 qd t Db 0Ž . Ž . Ž . Ž .1 1 2 2

ˆ ˆ² :qd t d t Db 0 ,Db 0 , 9Ž . Ž . Ž . Ž . Ž .� 41 2 1 2

² w Ž . Ž .x2:is approximately linear in k, D n t yn 0 sˆ ˆ
² 2Ž .: Ž . < Ž . < 2 ŽDn t s 2kq1 d t which also implies theˆ

X Ž < : < X:. Žincrease of Ý P k ™ k with k see footnotek / k
.2 . The signal-to-noise ratio in determining the num-

ber change decreases with the initial number of
quanta of energy of the oscillator.

In general, regardless of the initial oscillator state,
² Ž . Ž .: < Ž . < 2the average number change n t yn 0 s d tˆ ˆ

Ž .is obtained from Eq. 8 by averaging over the
w Ž .xunknown relative phase arg d t between the oscil-

lator and the force. The minimum possible quantum
uncertainty in the number change is obtained simi-

Ž .larly from Eq. 9 , using also the uncertainty relation
ˆ ˆ w xfor b and b 24 ,1 2

2² :D n t yn 0Ž . Ž .ˆ ˆ
2 22 2ˆ ˆ< < ² : ² : < <s2 d t Db 0 q Db 0 G d t .Ž . Ž . Ž . Ž .1 2

10Ž .

Note that the minimum uncertainty is achieved when
< :the oscillator is initially in the vacuum state 0 . This

minimum possible quantum uncertainty in the num-
ber change is due to the unknown and therefore
arbitrary phase between the oscillator and the force.
Such an arbitrary oscillator phase is also at the root
of the quantum Zeno effect of the oscillator, where a
series of number measurements would lead to de-

2 Detection of a transition of the oscillator does not give any
information about the nature of the external driving force, such as
estimates of its magnitude and relative phase.

phasing of the unitary time evolution of the driven
w xoscillator 21 .

Recently we showed that the quantum Zeno effect
of a single system is more than a dephasing effect, it
is a quantum measurement effect, equivalent to that
of the impossibility of determining the unknown

w xquantum state of a single system 22 . Indeed, a
series of number measurements of a single oscillator,
which is prepared in a known quantum state, for the
purpose of determining an unknown driving force is
equivalent to a series of number measurements of an
oscillator, which is driven by a known force, for the
purpose of determining the unknown unitary time

Ževolution of the number of the oscillator or the
unknown initial quantum state of the oscillator 3.

The information which can be obtained about the
unitary time evolution of the number of the oscillator
is fundamentally limited. The information which can
be obtained about the driving force via monitoring
the number of the harmonic oscillator is, therefore,
also fundamentally limited, in contradiction to the

w xprevious suggestions 2–5,16 , yet in full agreement
with the quantum Zeno effect of the single driven
harmonic oscillator.

In general, regardless of the initial oscillator state,
² Ž . Ž .: < Ž . < 2for the signal n t yn 0 s d t to surpass theˆ ˆ

² w Ž .minimum possible quantum uncertainty D n t yˆ
Ž .x2: < Ž . < 2 Ž .n 0 s d t of Eq. 10 , the external force mustˆ

exchange at least one quantum of energy with the
oscillator per sampling time interval, such that

2
d t G1. We conclude that this is a fundamentalŽ .

quantum limit to external force detection via moni-
toring a single harmonic oscillator, which was ne-
glected so far. Force detection at this limit can be

3 The unitary time evolution of a driven harmonic oscillator
w x ` < :25 , which is initially in the quantum state Ý C k , satisfiesks 0 k

2 ` ) ) 'Ž . Ž .: < Ž . <n t y n 0 s d t qÝ C C d t k qC d t =Ž . Ž .ˆ ˆ ks 0 k ky1 kq1

' x < :kq1 . In terms of the magnitude R of the sub-vector C k qk
< : � 4C kq1 and its angular orientation u ,f in the sub-spacekq 1

� < : < :4 ² Ž . Ž .:k , kq1 , the terms in n t y n 0 which share the factorˆ ˆ
) ) ) 2' Ž . Ž . < Ž . < Ž . �kq1 are C C d t qC C d t s R d t sin u cos fk kq1 kq1 k

w Ž .x4 ² Ž . Ž .: < Ž . <yarg d t . Exact determination of n t y n 0 when d t isˆ ˆ
w x w Ž .xknown would allow determination of u g 0,p and f yarg d t

w xg 0,2p up to a two-fold degeneracy, and therefore also of the
< : < :sub-vector C k qC kq1 . However, distinguishing be-k kq1

< : < :tween different unknown initial superpositions of k and kq1
² Ž . Ž .:with certainty is impossible. Similarly, determining n t y n 0ˆ ˆ

exactly is impossible.
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achieved by either QND or standard destructive
number measurements, and requires resetting of the
oscillator state to the vacuum state after each number
measurement, in analogy to the monitoring of the
position of a free mass, where force detection be-
yond the SQL requires resetting the state of the mass
to a known contractive state after each position
measurement.

4. Conclusions

We showed that there is a fundamental quantum
limit to external force detection via monitoring the
time evolution of a single harmonic oscillator. This
limit is equivalent to the impossibility of determining
the quantum state of the oscillator and to the quan-
tum Zeno effect of the oscillator. This limit requires
an exchange of at least a quantum of energy between
the force and the oscillator per sampling time inter-
val, and vanishes for the free mass. Force detection
beyond this limit is impossible, no matter what
quantum state the oscillator is prepared in, observ-
ables of the oscillator are being monitored or mea-
surement schemes are being employed. This limit
can be achieved via simultaneous monitoring of the
time evolution of the two slowly-varying quadrature
amplitudes of the oscillator, where the quantum un-
certainties associated with the initial state of the
oscillator do not limit the determination of both the
magnitude and phase of the force, in analogy to the
monitoring of the momentum of a free mass. Deter-
mination of the magnitude of the force at this limit
can be achieved also via monitoring the number of
quanta of energy of the oscillator, using either QND
or destructive number measurements, where resetting
the state of the oscillator the vacuum state after each

measurement is required, in analogy to the monitor-
ing of the position of a free mass.
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