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Recently, Aharonov, Anandan and Vaidman [1,2] showed that the wavefunction of a 
single quantum system could be determined from the resu lts of a series of "protective 
measurements" performed on the system. In t he protective measurement scheme, a-prio ri 
knowledge of the wavefundion of the system is used in order to measure t his system 
and protect its wavefunction from changing at the same time. Aharonov I Anandan and 
Vaidman argued that the protective measurement accounts for the physical reality of the 
wavefunction. Yet, it seems thai one shou ld be able to measure the wavefundion of a 
single system without any arprior i knowledge, if the wavefunction were rea l. 

According to the projection postulate, a precise measurement of a single system would 
always yield one of the eigenvalues of the measured observable. This eigenvalue can 
be used to estimate the expectation value of the observable. The uncertainty of t he 
measured observable could never be est imated using the single measw'ement result . This 
uncertainty cannot be estimated even if we use the results of additional measurements of 
the single system. After the measurement, the wavefunction of the system collapses to the 
eigenstate, which corresponds to the measured eigenvalue, and the results of addit ional 
measurements would not add any information about the initial wavefundion of the system. 
No~, consider a very weak measurement of the single system. This meas urement would 
leave the wavefundion of the system almost unchanged. Consecutive weak measurements 
of the same system, therefore, would give us some addit ional info rmation about the initial 
wavefunction of the system. Since the measured system is approximately in the same 
state when the different measuremen ts are performed, one may expect the statistics of 
the measurement results to be approximately the same as the results of an ensemble 
measurement, where a single measurement is performed on each system in an ensemble of 
identical systems. Specifically, one may expect the statistics of these measurement results 
to enable us to est imate the uncertainties of the measured observables with finite estimate 
errors, where the abili ty to estimate the uncertainty of a specific observable distinguishes 
a measurement of the wavefunction from a measurement of the observable. 

In this work, we show that this intuitive picture fails, and one cannot, in fact, deter
mine the initia l wavefunction of a single system at all using a series of weak quantum 
measurements. We prove that the statistics of the results of a series of measurements of 
a single system are independent of the init ial uncertainties of the measured observables, 
as a direct result of the projection postulate. 
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Consider a series of alternating measurements of the two conjugate observables q 
and p of a single quantum system, which is initially in the pure state described by the 
density operator Po- The stat istics of the q measurement results are expected to give 
information about the initial probability density of q, Po(q) = ,(qIAM)" i.e., est imates 
of the initial center position of this probability density (or the expectation value of q) , 
(go) = f dg Po(q) q, and the in it ial width of the probabil ity density (or the uncertainty 
of q), (~qJ) = (qJ) - (qo)', where (qJ) = fdgPo(q)q' . In the same way, the statistics 
of the p measurement results are expected to give information about Po(p) = "(pIPolp),, . 
Note that this model applies to the case of a series of measurements of the observable 
ijcos B + fisinB, for all () E [0,211'-]. Indeed , one needs, at least, information about the 
probability densities of all of these observables in order to reconstruct t.he wavefundion. 

First, ij is measured. The measured system is correlated to a probe, and after the 
correlation the probe is measured to yield the inferred measurement result ql' The 
probability-amplitude operator, Y = p(ii,IOI1»p, completely describes the th ree stages 
of this measurement [31: The preparation of the probe in the state 11»p, the interaction 
of the probe with the measured system, U, and the result of the measurement, iiI! which 
corresponds to the state of the probe after the measurement , Iql )p. The probability of 
obtaining the measurement result iiI is 

(1) 

Note that the stat istics of the results of an ensemble measurement would be P(iil )' In 
general, though, the measurement process disturbs the wavefunction of the measured 
system, and it is not necessarily possible to infer Po(g) [rom P(iid. 

Let us, therefore, consider fi rst the case in which the measurements are back-action 
evading measurements 111, i.e., [0, ql = 0, and 

P(iil ) = J dgX(q,ii, ) Po(q) , (2) 

where X (g, lid = ,(gIYtY lg), is the probability for the probe to undergo a transition 
from 11»p to !iit)p when the signal is in the state Ig),· In this case one can use P(iid to infer 
(qo) and (LlQ5 ), the initial expectation value and uncertainty of ij. We also assume that 
the measurements satisfy the following three conditions. First, the transition probability 
of the probe is required to be normalized over all possi ble final states of the probe, 

J dii,X(g,iid = 1 . (3) 

As the inferred value of ij, Q, should equal, on average, the center position of the probability 
density of q, (ii,) = f dii, P(iid iit = (qo). This leads to the second condition , 

J dii, X(g, ii,)ii, = q . (4) 

The system and the probe should be independent of each other. Therefore, the probability 
error associated with the measurement result , iii , should equal the sum of the measurement 
error, ~~ , and the intrinsic uncertainty of q, (Llij; ) = (ijf) - (iit )2 = (~qJ) + ~~, where 
(iii) = f dii, P(iil ) iii. From this we obtain the third condition, 

J dii, X(g, iid Ii; = q' +~;. . (5) 
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After the first measurement, the system is described by the density operator 

• _ P( - )-' y' • y't p- q, Pu . (6) 

The corresponding probability density of q is P(q, iii ) = ,(qlplq). = P(iid-' X(q , lid Po(q). 
Note that P(q, iii) depends on iii. The measurement process, therefore, modifies the wave
function of the measured system according to the measurement resulL. Next, the conjugate 
observable p is measured. We assume that the change in the probability density of q from 
P(q,iit) to P1(q,ih) is the minimum change possible. In th is case, the center position is 
unchanged, J dq P, (q, iii) q = J dq P( q, ii,) q, but the width increases due to L'.~, the back· 
action noise, JdqP,(q,lidq' = JdqP(q,iil)q' + L'.~. Now Ii is me;u;ured for the second 
time. Following the treatment of the first me;u;urement of q in Eqs. (2)·(5), the condi
tional proba bility to obtain ih in this measurement, after iii is obtained in the previous 
measurement, is 

(7) 

Now, consider the statistics of iiI and ih. Obviously, each of the measurement results, 
iiI or (h, est imates the initial center position , (qo), since (QI) = (1]2) = (qo). Also, one can 
est imate the second order moment (q~) using either iit or iil, since 

(ii; ) = J dli, P(ii,)ii; = (q~ ) + L'.~ , (8) 

(ii;) = J dli,P(ii,) J dij,P(ihliidli; = ( q~ ) +L'.;'+L'.~ (9) 

However, one can not estimate the ini tial width, (~q5), using a single measurement result, 
because a single measurement result does not contain information about (QO)2. If ql and q2 
were independent results , obtained from two different quantum systems, which are initially 
in the same quantum state, their correlation would provide the missing information about 
(qO )2, and (~q5) could be estimated using both measurement resul ts. Tn our case the 
second measurement result , ih, depends on the first, 1]1, and their correlation does not 
give information about (qO )2 , rather it g,ives 

(10) 

In fact , in order for ii,ii, to give an est imate of (qo )', the transition probability X(q , ii) 
should be a function of (qo ). This is impossible, since X(q , Ii) does not depend on the 
state of the measured system, as can be seen from Eq. (2). The conditions of Eqs. (3)
(5) are, therefore, not necessary for our conclusion to be valid. This treatment can be 
easily extended to include as many measurements of q as we want, by way of mathematical 
induction, and a similar treatment can be used to analyze the results of the measurements 
of p. Always the conclusion is the same: While it is possible to est imate the initial center 
positions of Po(q) and Po(p) with a linear function of the corresponding measurement 
results , no quadratic function of the measurement resu lts can estimate the ini tial widths 
of Po(q) and Po(p). Since no information about the widths of the probability densit ies 
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is obtained, the process of repeated measurements is equivalent to measurements of the 
observables q and p, and cannot be considered as a determination of the wavefunction. 

Let us consider now the case in wh ich the back-action evading condition, (D , <II = 0, 
does not necessarily hold. 

Using Eq. (1), the probabili ty to obtain iii in the first measurement can be written 
in general as P(iid = fdq 6(q- iidP(q) = fdq ,(qIYpoY'tlq)" The probabili ty density 
of Ii after this measurement is PI(q) = P(iid- I 6(q - iid P(q), where Eq, (6) is used, 
The next measurement is a precise measurement of q which results with ih· P(q2i<1.) = 
f dq6(q - q,)PI(q) is the conditional probability to obtain ii, in this measurement. The 
statistics of iiI and ii, give (iiI) = (<i,) and «m = (iii) = (iilq, ), These statistics show 
that with or without the second measurement result, the variance of P(iit ) cannot be 
est imated due to the lack of an estimate of (ql )2, since ih depends on iit. While an 
ensemble measurement gives the probability density P(ijd from which Po(q), the initial 
probability density of the measured observable, may be inferred, a series of measurements 
of a single system does not, since the wavefunction of the measured system changes each 
time a measurement is performed in accordance with the measurement result. This change 
cannot be corrected for using unitary time evolution in between the two measurements 
without a-priori knowledge of the initial wavefunction of the measured syslem, just as one 
cannot devise a protective measurement (1 ,2] for a system in an unknown state. It may 
be possible to correct for that change using a measurement process, as in the case of the 
"reversible measurements» that was suggested by Royer (5}. However, the probabili ty that 
the measurement process be reversed successfully is finite, and it is not certain that the 
wavefunction of the measured system will return to its original unknown state. Taking into 
account this finite success probability Huttner [6] showed, that the statistics of the results 
of a series of successfully reversed measurements of a single system are independent of the 
initial state of the measured system, and cannot be used to infer the initial wavefunclion 
of the system. 

To conclude, we have shown that the unknown wavefunction of a single system cannol 
be inferred using a series of quantum measurements. Each time a measurement is per
formed, the wavefullction changes in accordance with the measurement result. Therefore, 

. the statistics of the measurement results contain no information about the initial uncer
tainties of the measured observables. This physical mechanism, which originates in the 
projection postulate, limits the quantum wavefunction to have a statistical meaning only. 
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