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Oll~ sunny afternoon Socrates 
wahdered into the bar, wilen 
Achilles was about to win 
a pool game. 

Socrates greet~d him 

I see that you're lucky today! 

Lucky? It's time you learned something '-__ 
from others, Socrates. I'm tile master of 
calculated shots. I know how to Ilit this red 
ball, so that it will hit the black one. --" 
and roll it right into the hol e. 

I understand tllat from the mom e nt 
you Ilit the red ball , there 's 110 mealling 
to the question whether the bl ac k ball wellt 
into tIle hole. All you need in order to 
know the state of the balls in any given 
moment, is their state at the moment 
you hit one of tllem. 

That's what makes me the cluilllpion, Socrates. 
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Acllilles flnislled the game, 
alld tlley both joined tIle Turtle, 
WIIO was eat ing a Ceaser Salad 
at the bar. 

.:.. .~\ ;;;.:;~ ' ' /~.}-: 
":. -- "---

Socrates asked them 

Suppose the billiard balls have a spin. 
and Instead of knowing their velocities at a 
moment , we know their spill orielltation. For 
example: Suppose we measure on Sunday &.=+1 
for one ball. Is there a meaning to the 
question: Hhat will be the values of ~ 
or 6j of that ball on Monday? FX.,- __ ~ 

Ac hilles jumped and answered 

This quest ion is trivial . From the 
uncertainty principle it is clear that 
we can't give a definite answer to tIle value 
of ~~, while we can be certa in that 6. =+1. 

And I f I reveal that on Tuesday 6~ 
was measul'ed to be 6j =+1. Hhat would 
answer now? 

That's very simple. Now I know 
that I f 6 ~ was measured on Monday 

would be found to be 6~=+1. 

So we can see that in tile quantum 
information from tIle future adds 
we call say about the present. 

case, 
to what 



Socrates, if we exchallge the 
order of the measurements - 6,=+1 
on Sunday and &.=+1 on Tuesday, 
we would still cOllclude the same for 
the measurements perfo~med on Monday. 

y6u're quicker than I thought. 
W~ see that for a system at an intermediate 
t~ere ' s a symmetry in tIle informatioll given 
p~st and future measurements . 

quantum formalism 
a description. 

Socrates replied 

The reason is tllat in the conventional description 
we don't assume any state (not even an unknown one) 
c.ming from the future. TIle difference between past 
a~d future is not an intrillsic property of Quantum 
T~eory . but is a feature of our approach to the arrow 
of time. We view the past as existing, and tIle future as 
non-existing (yet). But if we deal with the des c ription 
of a quantum system betweell two successive measur emellts, 
t~en we kllOW tIle boundry conditions in the future as well 
a~ in the past. Therefore for the intermediate time 
interval we have a symmetr i c description under time-reversal. 

That's very interesting. 
As a turtle, I encoullter symmetry under 
time-reversal in Quantum Theory of 
Measurement for the f irst time. 



Socrates continued 

Let's describe three consecutive measurements 
in' the conventional formalism: 
a, First. measurement. at. t., , after whlch the 

system is at the state 1'1', >, 
b. An intermediate measurement at t, of the 

observable A - AloI , ' ,cl.i/c;I,>. 
c . Second measurement at t., after which the 

system is at the state I\j\>. 
Tile probability for the transition from the 
state 1'1', > to the state 1'1', ' via the state J",;> is: 

~, 1<\jI,IU(L,t) lol; ><J, ciV(t,t, ) j'l', >/' 
Note that it can also be written in the form: 

f, 'o 1< (flu, l)\f',LJ,;><J. ;i U(t , t,)'t;>I ~ , 
This form expresses an important change in our 
meas urement's description: lIere we describe 1<1-, > 
evolving backwards in time towards the intermediate 
measurement (Whi c h also implies that the collapse 
of the wave-function due to a measureme nt evolves 
In both directions of tim e symmetrically). 
If we repeat tllis serie of measur e ments many tim es 
we'll get an ensemble, for whicll tile specific results 
of the bOllndry measureme n ts at t, (prese 1 ec t i on) and 
at t. (postselection), define the sub-ensemble that 
interests us. Normalization of Pi in this sub-ensemble 
will be defined by -

f ) = f; 
\ S PK 

k 

Achilles became entllusiastlc 

t,+--rr-
t --+--+--j 

t,+-----'-

t,-I--.-

t -f----!--V_ 

f t, -I-----!-

With this new description we can really see that tile 
measurments at times t, and ta form tile boundry 
cOllditions of the system at any intermediate time. 
It makes the symmetry so evident. 

That' s really ni c e, 
but we Ilaven't seen any new results 

that emerge from tllis new description. 
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ybur complaint is a serious one. But I 
claim that the new formalism will enable us 
to predict interesting results which would 
h~ve been difficult to anticipate using tile 

ventional formalism. The new formalism will 
so give us a better intuitive understanding 

these results. 

Socrates continued 

Par tills purpose let us define a new type of 
measurement: The Weak Measurement. Weak, in 
the sense that it does not significantly disturb 
t~e state of the system . If before the measurement 
t~e system was at the state ,~> , tllen after the 
m~asurement it will beat a state only slightly 
different from ''1'>. 
The first new result is for the weak measuremeJlts 
of non-commuting variables: [A}I)] io, 
To a system where a measurement of A at time t, gave 
A~t, ):: cJ.., and a measurement of B at t, >t, gave 
B(t,):: ~, let us add two intermrdiate weak 
m~asurements: B~(t) and afterwards Aw(t'), where 
t\.>t'>t>t,. Since Bw is a weak measurement, it 
WOll't change tile state I~~ , and we can be certain 
t\lat the result of A",,( t') will be c/.,. Symmetrically 
we can be certain of the result Bw(t):: ~. Even if 
w~ exchange the order of the weak measuremeJlts 
(A(t,); Aw(t); B;"'(t'); B(t,)), their results would 
sti 11 be the same. But 
the later would also be tile case if all the measurements 
were strong. Surprjsingl~ we found that the order of 
weak measurements is not important even if we deal with 
non-commuting variables. Tllis means that , we could perform 
weak measurements of non-commuting variables 
simultaneously. 

': ~ there a contradiction here wIth the uncertainty 
principle? 

No. In our experiments the error in the result 
of a single weak measlJrement is greater than 
th~ m~nimal uncertainty due to the Heisenberg 
prillciple, so that 6A' 6B »fi. Weakening 
the interaction reduces tIle accul'acy of a 
single measUremeJlt, so that it provides almost 
no information. In order to get meaningful I 
information from such measurement s we will 
have to perform them on an ensemble of 

"",~---~ identical particles. 
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The Turtle doesn't seem to understand. 

~~ 
know 

Acllilles, you make me wonder whether you 
didn't take part in Prof. Allaronov's course 
"Quantum ~Ieasurement Theory." Let me remind 
you briefly: a measurement is all interaction 
of a system with a measuring device. In tile case 
of a lillear interaction the interaction 
Ilamiitonian is: H=-g(t)qA, where A is the 
measured varible of the system, and q is 
t~e canon ical variable of the measurement 
device which interacts with A. n, the 
coJugate momentum of q, will change in time 
according to Hamilton's equation: 
A!.... - ~ 0 3(t)A 
n '<1-

We read the resu lt from tile T scale of the 
measuring device, that is 

A -'- J 7r " JT I - 1T, . 

From here it is evident that a precise measurement 
of A means se tting precise -rr values. which resul ts 
in a large uncertainty in q (significant 
probability for large q values). 
If we want a weak measurement, we can reason in 
tile reverse order and demand a preparation 
of the measuring device so tllat the probability 
of meas uring large q values is small enough. 

From H i.1 =-g(t)qA it is easy to realise tllat 
small q values meall weak coupling. For example 
in a Stern-Gerlach experiment H iht =-g(t)!!·~, 
and our demand for small q values represents 
a weak magnetic field . 
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Many functions have ~ small spread around zero. 
For tile sake of simplicity we shall clloose 
the initial state of the measuring device 
to be a Gauss ian of q wi th a spread Ll. 

/MD Ct,") > .L exp [- (,\J'J 
Now the initial total state of the measuring 
device alld the measured system will be: 

IIf,) 1 flD (t ,0». 
The time-evoilltion operator for this state is: 

U (T)' QXI' (-i r H,H) 
Adding the post selection requirement. that the 
system is at the state l'h> at the end of the 
measurement, we wi ll get the final state of 
the measuring device: 
'" <V,. 1 e < p (- , SO -rH d tll 'Y, ? e x I' [- (-t,; Y J ~ 
,< <¥,. lexe(i'j.AJI'IP expf- (~)'-]~ 

- I '1-)' ) ! ~ (('1ft'" - r )"J\ [-( '1-)'] = <'I',/'Y,' exP(''lIl"Jo<r -('0 +-<0/,1'1','1,":.'" (A JUT 1/1", Jexp '" 

Aohilles interupts him 

Wait a minute. 
I,hat's A.,? 

As we can see from the second line of the 
mathematical derivation , the total effect 
of 'the measurement is expressed in exp( iqA). 
Notice t hat if the sum component (J,.- - ) is 
neglected, then we will get that the total effect 
of tile measurement is exp(iqA w). 
Tile condition for neglecting the sum component is: 

n ref) I I 
(2Ll) (n-,)I (1I" )w- - (Aw)" «1., Y 11 1-2 

The Turtle is puzzled Is tllis the cOlldition 
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That is a good question. The weakness condition 
was initially defined by preparing the q state of the 
m~asuring device with a small spread A around zero. 
I ' remind you that this was in order to minimize the 
d~sturbance of the system's state by the , " " 

measurement. To be precise , we want a neglectahle 
vpriation of /4',> t forward projected), i'i',> (backward 
projected) and <'f, /<jI, >, across the weak measure ment. 
But what will be the result of such a measurement? 
wh are looking for a universal result in order 
tb give the weak measurement a meaning. The 
condition we imposed on b.-

" r( ['J }) hi (eLI) In-1J! (A" or - (f)w) «{ I f Yl ~2-

A - ('\$'alAI'I1' . . 1 
g~ve us w~ <'h''', ' as the unlversa result. As "e 
shall see, tllis expression has interesting properties. 

notice that the derivation 
"e made befol"e is exact 
and that we've us ed 
no approximations. 

Good . In fac t we can see 
measurement as a sum of 
the first expresses the 
the undisturbed state -

the res ult of any 
two contributions: 
int.eraction with 

<0/,1<+-,' oxr ('-'I flu,') e'f [- (~)'J 
and the second expresses the interaction 
with all of the disturbed states -

<'I',I '/-;> 1 ~,{i~r [(I1")4}" -((}"j'Jexr T- ('{",)'j" 

L------L----~7u1 



The Turtle is stoked 

I can finisll the derivation by myself. We've 
said A oL 6 ... Let's see how we can get it in 
here: The initial state of the measuring 
device in its n- representation is the Fourier 
transform of the q representation -

o,pf- (~)'J---'>e , f' (-6' Ii') 
The final stat e in its 
Gaussian, wllose center 
f)'om tile center of the 

W representation is a 
is moved by Re(A w) 
initial Gaussian 

e x I' (i q.. A w) e,f' [- (:?i;)'] ----) exf' [_!J2 (If-I/w)'' ] , 

Socrates is sloked too 

I've promised you interesting features o f Aur ••• 

Achilles interupts him 

<~t.IAI'+',> 

I th i nk I can see one. The A uf va I ue < 4',I,/-: > , 

is not limi ted even when the A Spectrum is 
bounded. This is because of the product 
in the denominator which call be as small 
as we wish (according to the transition 
probability from the initial to the final state~ 
For example, for spin measurement we can 
choose the initial state - /4-,' ~ 1/'10 ~ +1,> 

the final state - )4',' ~ / 1,'0 ~ ~,p 
and perform a weak measurement of /,. . 
The resul t wi 11 be , 
(/' 6 )"" C"oS~ 
This means we can get the sUl'prising result 
(6~) w- ).)1. ! 
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The Turtle turtlizes 

Can we check these ideas experimentally? 
I can't see how it is possible to perform 
the postselection. 

Actually there are two ways of realizing 
our I,rocedure. Remember tllat we should 
perfol"m it on an ense mble of systems in 
order to reduce the uncertainty in the 
m~asured value Aw. 
One possihility is to measure each system 
separately by coupling it to its own measuring device. 
With these measuring devices we shall perform tIle three 
measurements: preselection at t, , postselection 
at t. and a weak measurement at time t 
(t,etet,). We shall consider tIle results 
of tIle weak measurement~ of only tIle 
systems in which the pre and post 
measurements gave the specific boundry 
states we have defined. 
T~e second possibility is to perform one 
weak measurement on tIle wllole ensemble. 
Here the weakness condition is for the 
i6teraction of each individual system with the 
m~asuring device. For example, tIle interaction 
of a compass' needle with each spin in a 
ferromagnet. In this case we can prepare 
the ferromagllet at t, with magnetization 
aiong tIle x-axis " (preselection). We will 
get the postselection by considering only 
those cases in whicll the fel"romagnet had 
its magnetization along the y-axis at t •. 

,·' 110 , 

Actually the magnetization measured by the 
compass' needle is the average of the magnetic 
moments of all the individual systems (spins). 

Obviously, almost always wilen you measure 
an ensemble of identical systems with a single 
measuring device, the result is an average value. 
For every operator A, we CAn define the average 
opera tor I tJ 

Ii ~ Ai 
c= j 
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Very Good, Turtle. And what will be the 
interaction Ilamiitonian in such a case? 

And the Turtle gets excited 

E ~ .. ..,.---
~:A'~~ ~~.4'--

-} 

From tllis expression we can see that tIle 
interaction of the measuring device with each 
individual system is reduced by ~ . Tllis means that 
measuri llg the average operator over a large 
ellsemble is a weak measurement of each 
individual system. 

Quite rIght, Turtle. We can SIIOW mathematically 
that since an operator's action can be 
written as: 

f\ 11jI,· i\)'I' 7 + 6A I'l'.' 
" and 1 f the ensemb Ie's s ta te is ,If, I<l', > 

the action of the average operator on it 
will give: 
I' , -' 01\ ( I I) N ~, II, (~, i'l'i» < A (r,,)<l';')' IT 4'i1> Jf., 'IP 

For large N the second term can be neglected, 
and the state of the system after the measurement 
is similar to what it was before the measurement. 
As you recall, tIle requirement of not disturbing 
significantly tile system's state Is how we 
de fIned the weak measuremen t. 

-, 
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Achilles scratched his nose. 

I'm stIll botllered by tile fact tllat Aw could 
be very large, even when the A Spectrum Is 
bounded! Isn't there a contradiction with 
the conventional quantum formalism? 

you've seen, the matllematics we've used 
so' far is the same mathematics of the 
conventional formalism. Thel"efore, there 
has to be a way to get this special 
re~ult of Aw using the conventional 
formalism. We have chosen the distributioll 
of the quantum variable "to be a GaussIan 
with a well defined center. Still the 
Gaussian has non-zero values even far 
from the center. 

The spectrum of the average operators 
is discrete and bounded. For example, 
tile average spin of an ensemble ~ ~&i 
can obtain values from -1 to 1 , with 
equal steps of fr . 
In tile convelltional quantum description 
eatll discrete eigenvalue will Sllift tile 
Gaussian's center respectively. It turns 
out that describing tile weak measuremellt 
in the conventional formalism will result 
in such Gaussians, that in superposition 
will cancel everywhere except in a certain 
small region of the discrete values' domain. 

How is it possible tllat Gaussians 
ca llcel each other if they are positive 
evervwhere? 
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The measurement process is expressed 
by the factor exp (- ( Jo'" IJJt). 
Each different eigenvalue of the 
Hamiltonian , will give a different 
relative phase to its corresponding 
Gaussian. This is how, witll tile appropriate 
relative phases, Gaussians can cancel eac h 
other out. Again we see the importance 
of the relative pllases of states in 
quantum theory and thei r respons ibi Ii ty 
for its uniqlle phenomena. 

\ 

-5 o 

The waiter arrives 
with the bi 11. 

\ , 

5 

Sorry; if we don't close now, 
we'll be fined. 
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A mathematical "miracle": superposition 

or Gaussians shifted by values 

between -I and I equals to 

a Gaussian shifted by the value 3. 

(Aharonov, Anandan, Vaidman 3). 

Achilles yawlls and the Turtle 
stretclles in his chair. 
Socrates smiles. 

O.K. guys , I see that you are 
tired. But if you are interested 
you can check out the refrences. 
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