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One sunny afternoon Socrates
wandered into the bar,

Achilles was about
a pool game.

Socrates greeted him
when

to win
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I see that you're lucky today!

Lucky? It's time you learned
from others, Socrates. I'm the master of
calculated shots. I know how to hit this red

ball, so that it will hit the black one
and roll it right into the hole.

something
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I understand that from the moment

you hit the red ball, there®s no meaning
to the question whether the black ball went
into the hole. All you need in order to
know the state of the balls in any given

moment, is their state at the moment
you hit one of then.

That's what makes me the champion, Socrates.
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Achilles finished Lthe game,
and they both joined the Turtle,
who was eating a Ceaser Salad

at the bar.

Socrates asked them

Suppose the billiard balls have a spin,
and instead of knowing their velocities at a given
moment, we know their spin orientation. For
example: Suppose we neasure on Sunday &‘=+1
for one ball. Is there a meaning to the
question: What will be the values of
or &5 of that ball on Monday?

e
Achilles jumped and answered

This question is trivial. From the
uncertainty principle it is clear that
we can't give a definite answer to the value
of &y, while we can be certain that b, =*1.

e

And if I reveal that on Tuesday J

was measured to be ¢y =+1. What would you
answer now?

That's very simple. Now 1 know
that if ¢y was measured on Monday
it would be found to be &3=+1.

(//f;;‘:: can see that in the quantum case,

information from the future adds to what
we can say about the present.




But Socrates, if we exchange the
order of the measurements - (y=+1
on Sunday and ¢&,=+1 on Tuesday,

we would still conclude the same for
the measurements performed on Monday.

Ypu're quicker than I thought.
We see that for a system at an intermediate time,
there®s a symmetry in the information given by

\\Eiii,?nd future measurements.
1\_,_—/.\__/“\

But Socrates, the quantum formalism
doesn®t give such a description.

o

Socrates replied

The reason is that in the conventional description
we don*t assume any state (not even an unknown one)
coming from the future. The difference between past
and future is not ap intrinsic property of Quantum
Theory, but is a feature of our approach to the arrow
of time. We view the past as existing, and the future as
non-existing (yet). But if we deal with the description
of a quantum system between lwo successive measurements,
then we know the boundry conditions in the future as well

as in the past. Therefore for the intermediate time

interval we have a symmetric description under time-reversal,

That®s very interesting.
As a turtle, I encounter symmetry under
time-reversal in Quantum Theory of
Measurement for the first time.
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Socrates continued

Letts describe three consecutive measurements
in the conventional formalism:
a, First measurement at t,, after which the
system is at the state I¥,>,
b. An intermediate measurement at t, of the
observable A - Aldi>=dild>. t A
c. Second measurement at t,, after which the
system is at the state |¥,>
The probability for the transition from the L,
state 1¥> to the state I%> via the state I|d:> is: @:

P s l<wluct, tlde> <A ULt el %2]?
Note that it can also be written in the form:
N ERVAICSE S LA PYSEF N RV RD] Ad e

This form expresses an important change in our
measurement ‘s description: Here we describe ¥~ 3 v
evolving backwards in time towards the intermediate N
measurement (Which also implies that the collapse
of the wave—-function due to a measurement evolves t 4
in both directions of time syvmmetrically). '
If we repeat this serie of measurements many times
we‘ll get an ensemble, for which the specific results
of the boundry measurements at t, (preselection) and
at t, (postselection), define the sub-ensemble that
interests us. Normalization of P; in this sub-ensemble
will be defined by -

oY g

L = 2P

Achilles became enthusiastic

With this new description we can really see that the
measurments at times t, and t, form the boundry

conditions of the system at any intermediate time.
It makes the symmetry so evident.

That's really nice,
but we haven't seen any new results
that emerge from this new description.




Your complaint is a serious one. But I

claim that the new formalism will enable us
to predict interesting results which would
have been difficult to anticipate using the
conventional formalism. The new formalism will
also give us a better intuitive understanding
of these results.

Socrates continued

For this purpose let us define a new tvpe of
measurement: The Weak Measurement. Weak, in

the sense that it does not significantly disturb
the state of the system. If before the measurement
the system was at the state |¥> , then after the
measurement it will be at a state only slightly
different from |¥> .

The first new result is for the weak measurements
of non-commuting variables: [a,B] #o0.

To a system where a measurement of A at time t, gave
A(t,)=4, and a measurement of B at t,>t, gave
B(t,)=#, let us add two intermrdiate weak
measurements: B,(t) and afterwards Ayu(t'). where
t,>t'>t>t,. Since B, is a weak measurement, it

won't change the state |d> , and we can be certain
that the result of A,(t') will be & . Symmetrically
we can be certain of the result Buy(t)=pf. Even if

we exchange the order of the weak measurements
(A(t,); Au(t); Bw(t'):s B(t,)), their results would
still be the same. But

the later would also be the case if all the measurements
were strong. Surprisingly we found that the order of

weak measurements is not important even if we deal with
non-commuting variables. This means that we could perform
weak measurements of non-commuting variables

. simultaneously.

\Q\ ﬁ: there a contradiction here with the uncertainty
:l \ 3 %‘/
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No. In our experiments the error in the result
of a single weak measurement is greater than
the minimal uncertainty due to the Heisenberg
principle, so that AA AB >> h. Weakening

the interaction reduces the accuracy of a
single measurement, so that it provides almost
no information. In order to get meaningfull
information from such measurements we will
have to perform them on an ensemble of
identical particles.




The Turtle doesn't seem to understand.

AN N

How do we know that a measurement is a weak

one?
How would you define
a measurement?
GTART., .
_LaipgdVns
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Achilles, you make me wonder whether you
didn't take part in Prof. Aharonov's course
"Quantum Measurement Theory." Let me remind
yvou briefly: a measurement is an interaction
of a system with a measuring device. In the case
of a linear interaction the interaction
Hamiltonian is: H=-g(t)qA, where A is the
measured varible of the system, and q is

the canonical variable of the measurement
device which interacts with A. T, the
cojugate momentum of g, will change in time
according to Hamilton's equation:

dr _ _ a4

Frah 29 ° 9(t)A

We read the result from the T scale of the
measuring device, that is

A -+ JTFE Teg - Te .

From here it is evident that a precise measurement
of A means setting precise T values, which results
in a large uncertainty in q (significant
probability for large q values).

If we want a weak measurement, we can reason in

the reverse order and demand a preparation

of the measuring device so that the probability

of measuring large q values is small enough.

From H j,t =-g(t)qA it is easy to realise that

small q values mean weak coupling. For example
in a Stern-Gerlach experiment H int =—g8(t)B L,
and our demand for small q values represents
a weak magnetic field.




Many functions have a small spread around zero.

For the sake of simplicity we shall choose

the initial state of the measuring device

to be a Gaussian of q with a spread 4.

IMD (t=a)> L gixp [“ (‘%—)1]

Now the initial total state of the measuring

device and the measured system will be:

1¥,;> | MD (E=0)>.

The time-evolution operator for this state is:
o

U(T) = exp (-, Hat)

Adding the post selection requirement, that the
system is at the state /%> at the end of the
measurement, we will get the final state of

the measuring device:

""\bl,l gxp(- :',(OTHdt)H’; ? pxp [‘ ,(%)L];‘
= (\PLIQKP (U]_A)]‘-Pr;’ QKP [— (%)L]z -
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Achilles interupts him

Wait a minute.
What's Aw?

As we can see from the second line of the

mathematical derivation, the total effect

of the measurement is expressed in exp(iqA).

Notice that if the sum component (% ... ) is

neglected, then we will get that the total effect

of the measurement is exp(iqA.).

The condition for neglecting the sum component is:
o M

RAY war N - wa i o4, Vam

Is this the condition for
a measurement to be weak?

The Turtle is puzzled




That is a good question. The weakness condition
was initially defined by preparing the q state of the
measuring device with a small spread .A around zero.
I remind you that this was in order to minimize the
disturbance of the system's state by the
measurement. To be precise, we want a neglectable
variation of |¥> (forward projected), ¥> (backward
projected) and <¥,1%>, across the weak measurement.
But what will be the result of such a measurement?
We are looking for a universal result in order
to give the weak measurement a meaning. The
conditio? we imposed on A=

neo
(z0)° Gﬁﬂ J{!qn)w' = (ﬂw)hj ey s ¥ hz2
gave us A*¢ ‘ﬁ“ﬁﬁ; as the universal result. As we
shall see, this expression has interesting properties.
b L
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I notice that the derivation
we made before is exact
and that we've used

no approximations.

b

Good. In fact we can see
measurement as a sum of
the first expresses the

the undisturbed state -

the result of any
two contributions:
interaction with

Y ¥ 2 exp (fq Aur) exp (- (%)IJ

and the second expresses the interaction
with all of the disturbed states

% G5 [0 Taxp |- ().
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The Turtle is stoked

I can finish the derivation by myself. We've
said A +dm . Let's see how we can get it in
here: The initial state of the measuring \‘i
device in its 7 representation is the Fourier \

transform of the q representation -
2 2
expf~(%) J——aexp(lALFU
The final state in its 7 representation is a

Gaussian, whose center is moved by Re(Aw)
from the center of the initial Gaussian -

exp ((C’_Hm) eka [" (1&0‘)1] ""—‘)QKP [__ﬂz(—.",_‘qw)m]'

Socrates is stoked too

I've promised you interesting features of Aw...

Achilles interupts him

<Y, lal¥>
I think I can see one. The A« value <%Wl¥> ,
 is not limited even when the A Spectrum is

bounded. This is because of the product
in the denominator which can be as small
as we wish (according to the transition
probability from the initial to the final state).
For example, for spin measurement we can
choose the initial state - I¥4>=1};~+4>

the final state - 2= | g = 447
and perform a weak measurement of ),

The result will be
{

(le)w * Fame
This means we can get the surprising result

(ZJc)l«r >>i |'
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The Turtle turtlizes 15\\_ o

Can we check these ideas experimentally?
I can't see how it is possible to perform
the postselection.

Actually there are two wavs of realizing
our procedure. Remember that we should
perform it on an ensemble of systems in
order to reduce the uncertainty in the
measured value Ay.

One possibility is to measure each system
separately by coupling it to its own measuring device.
With these measuring devices we shall perform the three
measurements: preselection at t,, postselection

at t; and a weak measurement at time t

(t,<t<t,). We shall consider the results

of the weak measurements of only the

syvstems in which the pre and post

measurements gave the specific boundry

states we have defined.

The second possibility is to perform one

weak measurement on the whole ensemble.

Here the weakness condition is for the

interaction of each individual system with the
measuring device. For example, the interaction

of a compass' needle with each spin in a

ferromagnet. In this case we can prepare

the ferromagnet at t, with magnetization

along the x-axis (preselection). We will

get the postselection by considering only

those cases in which the ferromagnet had

its magnetization along the y-axis at t,.

Actually the magnetization measured by the
compass' needle is the average of the magnetic
moments of all the individual systems (spins).

Obviously, almost always when you measure
an ensemble of identical systems with a single
measuring device, the result is an average value.
For every operator A. we can define the average
operator:




Very Good, Turtle. And what will be the
interaction Hamiltonian in such a case?

EAM P

Erom this expression we can see that the
interaction of the measuring device with each

individual system is reduced by ﬁ-. This means that

measuring the average operator over a large
gnsemble is a weak measurement of each
individual svstem.

Quite right, Turtle. We can show mathematically
that since an operator's action can be
written as:

AV = AJe7 + pp 1YL 2

and if the ensemble's state is [T %>
the action of the average operator on it
will give:

}5_ élﬁ( (ﬁ—l H"{>)= ﬁ (i:lf‘-{’l->)}~ 9;9—- (NJ“_) kﬂ;f}%c>)

For large N the second term can be neglected,

and the state of the svstem after the measurement
is similar to what it was before the measurement.
As you recall, the requirement of not disturbing
significantly the system's state is how we
defined the weak measurement.




Achilles scratched his nose.

I'm still bothered by the fact that A could
be very large, even when the A Spectrum is
bounded! Isn't there a contradiction with
the conventional quantum formalism?

“As’ you've seen, the mathematics we've used
50 far is the same mathematics of the
conventional formalism. Therefore, there
has to be a way to get this special

result of Ay using the conventional
formalism. We have chosen the distribution
of the quantum variable to be a Gausslan
with a well defined center. Still the
Gaussian has non-zero values even far

from the center.

The spectrum of the average operators
is discrete and bounded. For example,
the average spin of an ensemble 5 Zk
can obtain values from -1 to 1, with
equal steps of +.

In the conventional quantum description
each discrete eigenvalue will shift the
Gaussian's center respectively. It turns digérait un éléphant,
out that describing the weak measurement
in the conventional formalism will result
in such Gaussians, that in superposition

un scrpent boa qui

will cancel everywhere except in a certain
small region of the discrete values' domain.

How is it possible that Gaussians
cancel each other if they are positive
evervwhere?




The measurement process is expressed
by the factor exp (~¢J, Hdt). L__,_—~"’/’
Each different eigenvalue of the

Hamiltonian, will give a different

relative phase to its corresponding
Gaussian. This is how, with the appropriate
relative phases, Gaussians can cancel each
other out. Again we see the importance

of the relative phases of states in

quantum theory and their responsibility
for its unique phenomena,

A mathematical "miracle": superposition

of Gaussians shifted by values

between -1 and 1 eqlials to
a Gaussian shifted by the value 3.

(Aharonov,Anandan,Vaidman 5l
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The waiter arrives

Achilles vawns and the Turtle
with the bill.

stretches in his chair.
Socrates smiles.

0.K. guys, I see that you are
tired. But if you are interested
you can check out the refrences.

- LRl
) \l{Mlun‘"

Sorry, if we don't close now,
we'll be fined.
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