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ABSTRACT

We describe the use of singular value decomposition in transforming genome-wide expression data from genes ×
arrays space to reduced diagonalized “eigengenes” × “eigenarrays” space, where the eigengenes (or eigenarrays) are
unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and
eigenarrays) that are inferred to represent additive or multiplicative noise, experimental artifacts, or even irrelevant
biological processes enables meaningful comparison of the expression of different genes across different arrays in
different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the
dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar
regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and
sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators,
or with measured samples, in which these regulators are overactive or underactive, respectively.
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INTRODUCTION

DNA microarray technology (1,2) and genome sequencing have advanced to the point that it is now possible to monitor
gene expression levels on a genomic scale (e.g., 3). These new data promise to enhance fundamental understanding
of life on the molecular level, from regulation of gene expression and gene function to cellular mechanisms, and may
prove useful in medical diagnosis, treatment and drug design. Analysis of these new data requires mathematical
tools that are adaptable to the large quantities of data, while reducing the complexity of the data to make them
comprehensible. Analysis so far has been limited to identification of genes and arrays with similar expression patterns
using clustering methods (e.g., 4–9).

We describe the use of singular value decomposition (SVD) (10), also known as Karhunen-Loève expansion (11)
and as principal-component analysis (12), in analyzing genome-wide expression data (13). SVD is a linear transfor-
mation of the expression data from the genes × arrays space to the reduced “eigengenes” × “eigenarrays” space.
In this space the data are diagonalized, such that each eigengene is expressed only in the corresponding eigenarray,
with the corresponding “eigenexpression” level indicating their relative significance. The eigengenes and eigenarrays
are unique, and therefore also data-driven, orthonormal superpositions of the genes and arrays, respectively.

We show that several significant eigengenes and the corresponding eigenarrays capture most of the expression
information, thus allowing for dimension reduction and estimation of missing data. Decorrelation of the eigengenes
(and eigenarrays) suggests the possibility that some of the significant eigengenes (and corresponding eigenarrays)
represent independent processes, biological or experimental (and corresponding cellular states), which contribute to
the overall expression. Decoupling of the eigengenes (and eigenarrays) allows filtering out any one of these processes
from the data without eliminating genes or arrays. Normalizing the data by filtering out the eigengenes (and the
corresponding eigenarrays) that are inferred to represent additive or multiplicative noise, experimental artifacts
or even irrelevant biological processes, enables meaningful comparison of the expression of different genes across
different arrays in different experiments. Such normalization may improve any further analysis of the expression
data. Sorting the data according to the correlations of the genes (and arrays) with eigengenes (and eigenarrays)
gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified
into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. These
groups of genes (or arrays) are not defined by overall similarity in expression, but only by similarity in the expression
of any chosen subset of eigengenes (or eigenarrays).

We also show that upon comparing two or more similar experiments, with a regulator being overactive or under-
active in one but normally expressed in the others, the expression pattern of one of the significant eigengenes may be
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correlated with the expression patterns of this regulator and its targets. This eigengene, therefore, can be associated
with the observed genome-wide effect of the regulator. The expression pattern of the corresponding eigenarray is
correlated with the expression patterns observed in samples in which the regulator is overactive or underactive. This
eigenarray, therefore, can be associated with these samples. We conclude that SVD provides a useful mathematical
framework for processing and modeling genome-wide expression data, in which both the mathematical variables and
operations may be assigned biological meaning.

MATHEMATICAL FRAMEWORK: SINGULAR VALUE DECOMPOSITION

The relative expression levels of N genes of a model organism, which may constitute almost the entire genome of
this organism, in a single sample, are probed simultaneously by a single microarray. A series of M arrays, which are
almost identical physically, probes the genome-wide expression levels in M different samples, i.e., under M different
experimental conditions. Let the matrix ê, of size N -genes × M -arrays, tabulate the full expression data. Each
element of ê satisfies 〈n|ê|m〉 ≡ enm for all 1 ≤ n ≤ N and 1 ≤ m ≤ M , where enm is the relative expression level
of the nth gene in the mth sample as measured by the mth array.∗ The vector in the nth row of the matrix ê,
〈gn| ≡ 〈n|ê, lists the relative expression of the nth gene across the different samples which correspond to the different
arrays. The vector in the mth column of the matrix ê, |am〉 ≡ ê|m〉, lists the genome-wide relative expression
measured by the mth array.

SVD is then linear transformation of the expression data from the N -genes × M -arrays space to the re-
duced L-“eigenarrays” × L-“eigengenes” space, where L = min{M,N} (see Fig. 13 in supplemental material at
http://genome-www.stanford.edu/SVD/),

ê = û ε̂ v̂T . (1)

In this space the data are represented by the diagonal nonnegative matrix ε̂, of size L-eigengenes × L-eigenarrays,
which satisfies 〈k|ε̂|l〉 ≡ εlδkl ≥ 0 for all 1 ≤ k, l ≤ L, such that the lth eigengene is expressed only in the corresponding
lth eigenarray, with the corresponding “eigenexpression” level εl. Therefore, the expression of each eigengene (or
eigenarray) is decoupled from that of all other eigengenes (or eigenarrays). The “probability of eigenexpression”

pl = ε2l /

L∑
k=1

ε2k, (2)

indicates the relative significance of the lth eigengene and eigenarray in terms of the fraction of the overall expression
that they capture. Assume also that the eigenexpression levels are arranged in decreasing order of significance, such
that ε1 ≥ ε2 ≥ . . . ≥ εL ≥ 0. The “normalized Shannon entropy” of a dataset,

0 ≤ d =
−1

log(L)

L∑
k=1

pk log(pk) ≤ 1, (3)

measures the complexity of the data from the distribution of the overall expression between the different eigengenes
(and eigenarrays), where d = 0 corresponds to an ordered and redundant dataset in which all expression is captured by
a single eigengene (and eigenarray), and d = 1 corresponds to a disordered and random dataset where all eigengenes
(and eigenarrays) are equally expressed.

The transformation matrices û and v̂T define the N -genes × L-eigenarrays and the L-eigengenes × M -arrays
basis sets, respectively. The vector in the lth row of the matrix v̂T , 〈γl| ≡ 〈l|v̂T , lists the expression of the lth
eigengene across the different arrays. The vector in the lth column of the matrix û, |αl〉 ≡ û|l〉, lists the genome-wide
expression in the lth eigenarray. The eigengenes and eigenarrays are orthonormal superpositions of the genes and
arrays, such that the transformation matrices û and v̂ are both orthogonal

ûT û = v̂T v̂ = Î , (4)

where Î is the identity matrix. Therefore, the expression of each eigengene (or eigenarray) is not only decoupled
but also decorrelated from that of all other eigengenes (or eigenarrays). The eigengenes and eigenarrays are unique,

∗In this manuscript, m̂ denotes a matrix, |v〉 denotes a column vector and 〈u| denotes a row vector, such that m̂|v〉, 〈u|m̂
and 〈u|v〉 all denote inner products and |v〉〈u| denotes an outer product.
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except in degenerate subspaces, defined by subsets of equal eigenexpression levels, and except for a phase factor
of ±1, such that each eigengene (or eigenarray) captures both parallel and antiparallel gene (or array) expression
patterns. Therefore, SVD is data-driven, except in degenerate subspaces.

SVD Calculation. According to Eqs. (1) and (4), the M -arrays × M -arrays symmetric correlation matrix
â = êT ê = v̂ε̂2v̂T is represented in the L-eigengenes × L-eigengenes space by the diagonal matrix ε̂2. The N -genes
× N -genes correlation matrix ĝ = êêT = ûε̂2ûT is represented in the L-eigenarrays × L-eigenarrays space also by ε̂2,
where for L = min{M,N} = M , ĝ has a null subspace of at least N −M null eigenvalues. We calculate the SVD of
a dataset ê, with M � N , by diagonalizing â, and then projecting the resulting v̂ and ε̂, onto ê to obtain û = êv̂ε̂−1.

Missing Data Estimation. The high entropy of an expression dataset, where the most significant eigengenes
(and eigenarrays) capture most of the expression information, suggests the possibility of dimension reduction, where
the eigenexpression levels corresponding to the least significant eigengenes (and eigenarrays) are approximated to be
zero. The inference that these significant eigengenes (and eigenarrays) represent independent processes (or cellular
states) (13, and see also 14–17) suggests the possibility of using the expression patterns of these eigengenes for
meaningful estimation of missing data. For the nth gene |gn〉, with missing data in M ′ < M of the arrays, we estimate
the missing expression level in the mth array 〈m|gn〉 to be a superposition of the expression levels of the L′ < M−M ′

significant eigengenes {|γ′l〉} in the mth array, as calculated for the subset of N ′ < N genes with no missing data in
any of the M arrays. The coefficients of this superposition are determined by the expansion of the expression of the
nth gene across all M −M ′ arrays with no missing data, |gn〉M ′ , in the subspace spanned by the expression patterns
of the significant eigengenes across the same M −M ′ arrays, {|γ′l〉M ′}, such that 〈m|gn〉 →

∑L′

l=1〈m|γ′l〉 M ′〈β′
l|gn〉M ′

where M ′〈β′
k|γ′l〉M ′ = δkl, i.e., {M ′〈β′

l|} span the L′ × (M − M ′) subspace (v̂′M ′)† that is pseudoinverse to the
(M − M ′) × L′ subspace v̂′M ′ , which is spanned by {|γ′l〉M ′}. We use the SVD of v̂′M ′ ≡ Û ω̂V̂ T to calculate
the pseudoinverse (v̂′M ′)† = V̂ ω̂−1ÛT , that according to Eq. (4) satisfies (v̂′M ′)†v̂′M ′ = Î, where V̂ V̂ T = Î for all
L′ < M − M ′. Assuming that the L′ significant eigengenes as calculated for the N ′ genes with no missing data
are meaningful patterns for missing data estimation, we expect these eigenegenes and corresponding probablities of
eigenexpression to be similar to those calculated for the full dataset of N genes after the missing data are estimated.

Pattern Inference. The decorrelation of the eigengenes (and eigenarrays) suggests the possibility that some
of the eigengenes (and eigenarrays) represent independent regulatory programs or processes (and corresponding
cellular states), which contribute to the overall expression. We infer that an eigengene |γl〉 represents a regulatory
program or process from its expression pattern across all arrays, when this pattern is biologically interpretable. This
inference may be supported by a corresponding coherent biological theme reflected in the functions of the genes,
whose expression patterns correlate or anticorrelate with the pattern of this eigengene. With this we assume that
the corresponding eigenarray |αl〉 (which lists the amplitude of this eigengene pattern in the expression of each gene
|gn〉 relative to all other genes 〈n|αl〉 = 〈gn|γl〉/εl) represents the cellular state which corresponds to this process.
We infer that the eigenarray |αl〉 represents a cellular state from the arrays whose expression patterns correlate or
anticorrelate with the pattern of this eigenarray. Upon sorting of the genes, this inference may be supported by the
expression pattern of this eigenarray across all genes, when this pattern is biologically interpretable.

Data Filtering and Normalization. The decoupling of the eigengenes and eigenarrays allows filtering the data
without eliminating genes or arrays from the dataset. We filter out any of the eigengenes |γl〉 (and the corresponding
eigenarray |αl〉) ê → ê − εl|αl〉〈γl|, by substituting zero for the eigenexpression level εl = 0 in the diagonal matrix
ε̂ and reconstructing the data according to Eq. (1). We normalize the data by filtering out those eigengenes (and
eigenarrays) which are inferred to represent additive or multiplicative noise or experimental artifacts.

Degenerate Subspace Rotation. The uniqueness of the eigengenes and eigenarrays does not hold in a
degenerate subspace, defined by equal eigenexpression levels. We approximate significant similar eigenexpres-
sion levels εl ≈ εl+1 ≈ . . . ≈ εm with εl = . . . = εm =

√∑m
k=l ε

2
k/(m− l + 1). Therefore, Eqs. (1)–(4) re-

main valid upon rotation of the corresponding eigengenes {(|γl〉, . . . , |γm〉) → R̂(|γl〉, . . . , |γm〉)}, and eigenarrays
{(|αl〉, . . . , |αm〉) → R̂(|αl〉, . . . , |αm〉)}, for all orthogonal R̂, R̂T R̂ = Î. We choose a unique rotation R̂ by sub-
jecting the rotated eigengenes to m− l constraints, such that these constrained eigengenes may be advantageous in
interpreting and presenting the expression data.

Data Sorting. Inferring that eigengenes (and eigenarrays) represent independent processes (and cellular states)
allows sorting the data by similarity in the expression of any chosen subset of these eigengenes (and eigenarrays),
rather than by overall similarity in expression (13, and see also 14–17). Given two eigengenes |γk〉 and |γl〉 (or
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eigenarrays |αk〉 and |αl〉), we plot the correlation of |γk〉 with each gene |gn〉, 〈γk|gn〉/〈gn|gn〉 (or |αk〉 with each
array |am〉) along the y-axis, vs. that of |γl〉 (or |αl〉) along the x-axis. In this plot, the distance of each gene (or array)
from the origin is its amplitude of expression in the subspace spanned by |γk〉 and |γl〉 (or |αk〉 and |αl〉), relative
to its overall expression rn ≡ 〈gn|gn〉−1

√
|〈γk|gn〉|2 + |〈γl|gn〉|2 (or rm ≡ 〈am|am〉−1

√
|〈αk|am〉|2 + |〈αl|am〉|2). The

angular distance of each gene (or array) from the x-axis is its phase in the transition from the expression pattern |γl〉
to |γk〉 and back to |γl〉 (or |αl〉 to |αk〉 and back to |αl〉) tanφn ≡ 〈γk|gn〉/〈γl|gn〉, (or tanφm ≡ 〈αk|an〉/〈αl|am〉).
We sort the genes (or arrays) according to φn (or φm).

BIOLOGICAL DATA ANALYSIS: ELUTRIATION-SYNCHRONIZED CELL CYCLE

Spellman et al. (3) monitored genome-wide mRNA levels, for 6113 ORFs of the budding yeast Saccharomyces cere-
visiae simultaneously, over approximately one cell cycle period, T ≈ 390m, in a yeast culture synchronized by elutria-
tion, relative to a reference mRNA from an asynchronous yeast culture, at 30m intervals. The elutriation dataset we
analyze (see supplemental dataset and Mathematica notebook at http://genome-www.stanford.edu/SVD/) tabulates
the measured ratios of gene expression levels for the N = 6018 genes, N ′ = 5986 of which with no missing data
in the M = 14 arrays, corresponding to the 14 measured time points, and 32 with no missing data in 13 of the 14
arrays. Of these genes, 791 were classified by Spellman et al. as cell cycle regulated and 103 were classified as cell
cycle regulated by traditional methods.

Missing Data Estimation. We use the L′ = 4 most significant eigengene patterns, as calculated for the subset
of 5986 genes with no missing data in the 14 arrays (13), in order to estimate the missing data in the remaining 32
genes, with no missing data in 13 of the 14 arrays. We find that these eigenegenes and corresponding probablities of
eigenexpression are similar to those calculated for the full dataset of 6018 genes after the missing data are estimated.

Pattern Inference. Consider the 14 eigengenes of the full elutriation dataset. The 1st and most significant
eigengene |γ1〉, which describes time-invariant relative expression during the cell cycle (Fig. 14a in supplemental
material at http://genome-www.stanford.edu/SVD/), captures more than 90% of the overall relative expression in
this experiment (Fig. 14b). The entropy of the dataset, therefore, is small d = 0.14 � 1. This suggests that the
underlying processes are manifested by weak perturbations of a steady state of expression. This also suggests that
time-invariant additive constants due to uncontrolled experimental variables may be superimposed on the data.
We infer that |γ1〉 represents experimental additive constants superimposed on a steady gene expression state, and
assume that |α1〉 represents the corresponding steady cellular state.

The 2nd, 3rd and 4th eigengenes, which show oscillations during the cell cycle (Fig. 2c), capture about 3%, 1%
and 0.5% of the overall relative expression, respectively. The time variation of |γ3〉 fits a normalized sine function
of period T ,

√
2/T sin(2πt/T ). We infer that |γ3〉 represents expression oscillation, which is consistent with gene

expression oscillations during a cell cycle, and assume that |α3〉 represents the corresponding cellular state. The time
variations of the 2nd and 4th eigengenes fit a cosine function of period T with

√
1/2 the amplitude of a normalized

cosine with this period,
√

1/T cos 2πt/T . However, while |γ2〉 shows decreasing expression on transition from t = 0
to 30m, |γ4〉 shows increasing expression. We infer that |γ2〉 and |γ4〉 represent initial transient increase and decrease
in expression in response to the elutriation, respectively, superimposed on expression oscillation during the cell cycle,
and assume that |α2〉 and |α4〉 represent the corresponding cellular states.

Data Filtering and Normalization. We filter out the 1st eigengene and eigenarray of the elutriation dataset,
ê → êC = ê−ε1|α1〉〈γ1|, removing the steady state of expression. Each of the elements of the dataset êC , 〈n|êC |m〉 ≡
eC,nm, is the difference of the measured expression of the nth gene in the mth array from the steady-state levels
of expression for these gene and array as calculated by SVD. Therefore, e2C,nm is the variance in the measured
expression of the nth gene in the mth array. Let êLV tabulate the natural logarithm of the variances in elutriation
expression, such that each element of êLV satisfies 〈n|êLV |m〉 ≡ log(e2C,nm) for all 1 ≤ n ≤ N and 1 ≤ m ≤ M ,
and consider the eigengenes of êLV (Fig. 15a in supplemental material at http://genome-www.stanford.edu/SVD/).
The 1st eigengene |γ1〉LV , which captures more than 80% of the overall information in this dataset (Fig. 15b),
describes a weak initial transient increase superimposed on a time-invariant scale of expression variance. The initial
transient increase in the scale of expression variance may be a response to the elutriation. The time-invariant scale
of expression variance suggests that a steady scale of experimental as well as biological uncertainty is associated with
the expression data. This also suggests that time-invariant multiplicative constants due to uncontrolled experimental
variables may be superimposed on the data. We filter out |γ1〉LV , removing the steady scale of expression variance,
êLV → êCLV = êLV − ε1,LV |α1〉LV LV 〈γ1|.
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Figure 1. Normalized elutriation eigengenes. (a) Raster display of v̂T
N , the expression of 14 eigengenes in 14 arrays,

with overexpression (red), no change in expression (black), and underexpression (green) around the steady-state level
of expression. (b) Bar chart of the probabilities of eigenexpression, showing |γ1〉N and |γ2〉N capture about 20% of
the overall normalized expression each, and a high entropy of d = 0.88. (c) Line-joined graphs of the expression
levels of |γ1〉N (red) and |γ2〉N (blue) in the 14 arrays, fit dashed graphs of normalized sine (red) and cosine (blue)
of period T = 390m and phase θ = 2π/13, respectively.

The normalized elutriation dataset êN , where each of its elements satisfies 〈n|êN |m〉 ≡ sign(eC,nm)
√

exp(eCLV,nm),
tabulates for each gene and array expression patterns that are approximately centered at the steady-state expression
level (i.e., of approximately zero arithmetic means), with variances which are approximately normalized by the steady
scale of expression variance (i.e., of approximately unit geometric means). The 1st and 2nd eigengenes, |γ1〉N and
|γ2〉N , of êN (Fig. 1a), which are of similar significance, capture together more than 40% of the overall normalized
expression (Fig. 1b). The time variations of |γ1〉N and |γ2〉N fit normalized sine and cosine functions of period T
and initial phase θ ≈ 2π/13,

√
2/T sin(2πt/T − θ) and

√
2/T cos(2πt/T − θ), respectively (Fig. 1c). We infer that

|γ1〉N and |γ2〉N represent cell cycle expression oscillations, and assume that the corresponding eigenarrays |α1〉N
and |α2〉N represent the corresponding cell cycle cellular states. Upon sorting of the genes (and arrays) according to
|γ1〉N and |γ2〉N (and |α1〉N and |α2〉N ), the initial phase θ ≈ 2π/13 can be interpreted as a delay of 30m between
the start of the experiment and that of the cell cycle stage G1. The decay to zero in the time variation of |γ2〉N at
t = 360 and 390m can be interpreted as dephasing in time of the initially synchronized yeast culture.

Data Sorting. Consider the normalized expression of the 14 elutriation arrays {|am〉} in the subspace spanned
by |α1〉N and |α2〉N , which is assumed to represent approximately all cell cycle cellular states (Fig. 2a). All arrays
have at least 25% of their normalized expression in this subspace, with their distances from the origin satisfying
0.5 ≤ rm < 1, except for the 11th array |a11〉. This suggests that |α1〉N and |α2〉N are sufficient to approximate the
elutriation array expression. The sorting of the arrays according to their phases {φm}, which describes the transition
from the expression pattern |α2〉N to |α1〉N and back to |α2〉N , gives an array order that is similar to that of the
cell cycle time points measured by the arrays, an order which describes the progress of the cell cycle expression from
the M/G1 stage through G1, S, S/G2, and G2/M and back to M/G1. Since |α1〉N is correlated with the arrays |a4〉,
|a5〉, |a6〉, and |a7〉 and is anticorrelated with |a13〉 and |a14〉, we associate |α1〉N with the cell cycle cellular state of
transition from G1 to S, and −|α1〉N with the transition from G2/M to M/G1. Similarly, |α2〉N is correlated with
|a2〉 and |a3〉, and therefore we associate |α2〉N with the transition from M/G1 to G1. Also, |α2〉N is anticorrelated
with |a8〉 and |a10〉, and therefore we associate −|α2〉N with the transition from S to S/G2. With these associations
the phase of |a1〉, φ1 = −θ ≈ −2π/13, corresponds to the 30m delay between the start of the experiment and that
of the cell cycle stage G1, which is also present in the inferred cell cycle expression oscillations |γ1〉N and |γ2〉N .

Consider also the expression of the 6018 genes {|gn〉} in the subspace spanned by |γ1〉N and |γ2〉N , which is inferred
to represent approximately all cell cycle expression oscillations. One may expect that genes that have almost all of
their normalized expression in this subspace with rn ≈ 1 are cell cycle regulated, and that genes that have almost no
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Figure 2. Normalized elutriation expression in the subspace associated with the cell cycle. (a) Array correlation
with |α1〉N along the y-axis vs. that with |α2〉N along the x-axis, color-coded according to the classification of the
arrays into the 5 cell cycle stages, M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and G2/M (orange). The dashed
unit and half-unit circles outline 100% and 25% of overall normalized array expression in the |α1〉N and |α2〉N
subspace. (b) Correlation of each gene with |γ1〉N vs. that with |γ2〉N , for 791 cell cycle regulated genes, color-coded
according to the classification by Spellman et al. (3). (c) Correlation of each gene with |γ1〉N vs. that with |γ2〉N ,
for 103 cell cycle regulated genes, color-coded according to the traditional classification (3).
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Figure 3. Genes sorted by relative correlation with |γ1〉N and |γ2〉N of normalized elutriation. (a) Normalized
elutriation expression of the sorted 6018 genes in the 14 arrays, showing traveling wave of expression. (b) Eigenarrays
expression; the expression of |α1〉N and |α2〉N , the eigenarrays corresponding to |γ1〉N and |γ2〉N , displays the
sorting. (c) Expression levels of |α1〉N (red) and |α2〉N (green) fit normalized sine and cosine functions of period
Z = N − 1 = 6017 and phase θ ≈ 2π/13 (blue), respectively.
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expression in this subspace with rn ≈ 0, are not regulated by the cell cycle at all. Indeed, of the 791 genes that were
classified by Spellman et al. (3) as cell cycle regulated, 646 have more than 25% of their normalized expression in
this subspace (Fig. 2b). Also, 92 of the 103 genes that were classified as cell cycle regulated by traditional methods
(including, for example, CDC8, which was not classified by Spellman et al. as cell cycle regulated) have more than
25% of their normalized expression in this subspace (Fig. 2c). We sort all 6018 genes according to their phases
{φn}, to describe the transition from the expression pattern |γ2〉N to that of |γ1〉N and back to |γ2〉N , starting
at φ1 ≈ −2π/13. One may expect this to order the genes according to the stages in the cell cycle in which their
expression patterns peak. However, for the 791 cell cycle regulated genes this sorting gives a classification of the
genes into the 5 cell cycle stages, which is somewhat different than the classification by Spellman et al. Similarly, for
the 103 cell cycle regulated genes this sorting gives a classification which is somewhat different than the traditional
classification. This may be due to the poor quality of the elutriation expression data, as synchronization by elutriation
was not very effective in this experiment. For the CDC15- and α factor-synchronized yeast cell cycle expression there
is much better agreement between the two classifications (see below, Figs. 7 and 11).

With all 6018 genes sorted, the gene variations of |α1〉N and |α2〉N fit normalized sine and cosine functions
of period Z ≡ N − 1 = 6017 and initial phase θ ≈ 2π/13, −

√
2/Z sin(2πz/Z − θ) and −

√
2/Z cos(2πz/Z − θ),

respectively, where z ≡ n− 1 (Fig. 3b and c). The sorted and normalized elutriation expression approximately fits a
traveling wave of expression, varying sinusoidally across both genes and arrays, such that the expression of the nth
gene in the mth array satisfies 〈n|êN |m〉 ∝ −2 cos[2π(t/T − z/Z)]/

√
ZT (Fig. 3a).

BIOLOGICAL DATA ANALYSIS: CDC15-SYNCHRONIZED CELL CYCLE

Spellman et al. (3) also monitored genome-wide mRNA levels, for 6113 ORFs simultaneously, over approximately
two and a half cell cycle periods, in a yeast culture synchronized by CDC15, relative to a reference mRNA from
an asynchronous yeast culture, at 10m intervals (except at t = 20, 40, 60, 260, and 280m) for T = 290m. The
arrays corresponding to samples from t = 10 to 290m at 20m intervals were all hybridized on one day, while these
corresponding to samples from t = 80 to 240m at 20m intervals were all hybridized on another day. Experimental
artifacts due to array hybridization appear to vary from one day to another, and therefore these two groups of arrays
could be thought of as corresponding to two different experiments. The dataset for these two CDC15 experiments we
analyze (see supplemental dataset and Mathematica notebook at http://genome-www.stanford.edu/SVD/) tabulates
the ratios of gene expression levels for the N = 6026 genes, N ′ = 5611 of which with no missing data in the the
M = 24 arrays, and 415 with no missing data in at least 22 of the 24 arrays. Of these genes, 791 were classified by
Spellman et al. as cell cycle regulated and 102 were classified as cell cycle regulated by traditional methods.
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Figure 4. CDC15 eigengenes. (a) Raster display of v̂T , the expression of 24 eigengenes in 24 arrays. (b) Bar chart
of the probabilities of eigenexpression showing about 90% of the overall relative expression in |γ1〉, and about 3% in
|γ2〉. (c) Line-joined graphs of the expression levels of |γ1〉 (red) and |γ2〉 (blue) in the 24 arrays; |γ1〉 is inferred to
represent the steady-state expression and |γ2〉 is inferred to represent additive artifacts due to array hybridization.
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Figure 5. Eigengenes of the natural logarithm of the variances in CDC15 expression êLV . (a) Raster display of v̂T
LV .

(b) |γ1〉LV captures about 90% and |γ2〉LV captures about 2% of the overall expression information in this dataset.
(c) Line-joined graphs of the expression levels of |γ1〉 (red) and |γ2〉 (blue); |γ1〉LV is inferred to represent the steady
scale of expression variance and |γ2〉LV is inferred to represent multiplicative artifacts due to array hybridization.

Missing Data Estimation. We use the L′ = 6 most significant eigengene patterns, as calculated for the
subset of 5611 genes with no missing data in the 24 arrays, in order to estimate the missing data in the remaining
N −N ′ = 415 genes, 335 of which with no missing data in 23 of the 24 arrays, and 80 with no missing data in 22 of
the 24 arrays. We find that these eigenegenes and corresponding probablities of eigenexpression are similar to those
calculated for the full dataset of 6026 genes after the missing data are estimated.

Pattern Inference and Data Filtering and Normalization. Consider the 24 eigengenes of the full CDC15
dataset (Fig. 4a). The entropy of this dataset d = 0.21 (Fig. 4b) is higher than that of the elutriation dataset, because
the CDC15 dataset combines two experiments, and therefore is less redundant. The 1st eigengene |γ1〉, which captures
about 90% of the overall relative expression, descibes time (and experiment) invariant relative expression (Fig. 4c).
We infer that |γ1〉 represents the steady-state expression, and filter it out, approximately centering the dataset.
The 2nd eigengene |γ2〉, which captures about 3% of the overall relative expression, describes expression which
is approximately invariant within each experiment, but varies between the experiments (Fig. 4c). This suggests
that time-invariant additive constants due to uncontrolled variables in the process of array hybridization may be
superimposed on the data. We infer that |γ2〉 represents such additive artifacts due to array hybridization, and filter
it out. The eigengenes |γl〉 for 7 ≤ l ≤ L = 24 all show rapidly varying expression during the cell cycle (Fig. 4a), and
we filter them out as well, such that ê → êC = ê−

∑2
l=1 εl|αl〉〈γl|−

∑24
l=7 εl|αl〉〈γl| =

∑6
l=3 εl|αl〉〈γl|. The remaining

eigengenes |γl〉 for 3 ≤ l ≤ 6 show expression oscillations of about two and a half periods during the cell cycle (Fig. 16
in supplemental material at http://genome-www.stanford.edu/SVD/). We infer that these eigengenes represent cell
cycle expression oscillations and assume that the corresponding eigenarrays represent the corresponding cell cycle
cellular states.

Let êLV tabulate the natural logarithm of the variances in expression in the CDC15 experiments, such that
each element of êLV satisfies 〈n|êLV |m〉 ≡ log(e2C,nm), and consider the eigengenes of êLV (Fig. 5a). The 1st
eigengene |γ1〉LV , which captures about 90% of the overall information in this dataset (Fig. 5b), describes a time
(and experiment) invariant scale of expression variance (Fig. 5c), and we filter it out. The 2nd eigengene |γ2〉LV ,
which captures about 2% of the overall information in this dataset (Fig. 5b), describes a scale of expression variance
which is approximately invariant within each experiment, but varies between the experiments (Fig. 5c). This suggests
that time-invariant multiplicative constants due to uncontrolled variables in the process of array hybridization may
be superimposed on the data. We infer that |γ2〉 represents such multiplicative artifacts due to array hybridization,
and filter it out, êLV → êCLV = êLV −

∑2
l=1 εl,LV |αl〉LV LV 〈γl|.

The normalized CDC15 dataset êN , where each of its elements satisfies 〈n|êN |m〉 ≡ sign(eCS,nm)
√

exp(eCLV,nm),
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Figure 6. Normalized CDC15 eigengenes. (a) Raster display of v̂T
N , the expression of 24 eigengenes in 24 arrays.

(b) |γ1〉N and |γ2〉N capture about 30% and 24% of the overall normalized expression, respectively. (c) Line-joined
graphs of the expression levels of |γ1〉N (red) and |γ2〉N (blue) in the 24 arrays, fit dashed graphs of normalized sine
(red) and cosine (blue) of period 2T/5 ≈ 120m and phase θ ≈ π/4, respectively.

tabulates for each gene and array expression patterns that are approximately centered at the steady-state expression
level (i.e., of approximately zero arithmetic means), with variances which are approximately normalized by the steady
scale of expression variance (i.e., of approximately unit geometric means). Note that the entropy of êN is d = 0.52,
suggesting that êN is less redundant (and maybe more informative) than ê. The eigengenes |γ1〉N and |γ2〉N (Fig. 6a),
which are of similar significance, capture together about 50% of the overall normalized expression (Fig. 6b). Their
time variations fit normalized sine and cosine functions of two and a half 2T/5 ≈ 120m periods and initial phase
θ ≈ π/4,

√
2/T cos(5πt/T − θ) and

√
2/T sin(5πt/T − θ), respectively (Fig. 6c). We infer that |γ1〉N and |γ2〉N

represent cell cycle expression oscillations, and assume that the corresponding eigenarrays |α1〉N and |α2〉N represent
the corresponding cell cycle cellular states. Upon sorting of the genes (and arrays) according to |γ1〉N and |γ2〉N
(and |α1〉N and |α2〉N ), the initial phase θ ≈ π/4 can be interpreted as a delay of 30m between the start of the
experiment and that of the cell cycle stage G1.

Data Sorting. Consider the normalized expression of the 24 CDC15 arrays {|am〉} in the subspace spanned by
|α1〉N and |α2〉N (Fig. 7a). All arrays have at least 25% of their normalized expression in this subspace, except for
|a11〉, |a22〉, |a23〉, and |a24〉, which measure t = 140, 250, 270, and 290m in the cell cycle. This can be interpreted
as dephasing in time of the initially synchronized yeast culture. The sorting of the arrays according to their phases
{φm}, which describes the transition from the expression pattern |α1〉N to |α2〉N and back to |α1〉N , gives an array
order that is similar to that of the cell cycle time points measured by the arrays, an order which describes the progress
of the cell cycle expression from the M/G1 stage through G1, S, S/G2, and G2/M and back to M/G1 about two
and a half times. Even though the arrays measure equally spaced cell cycle time points, the arrays are not equally
spaced, suggesting that the initially synchronized culture dephases in time, or that the cell cycle may not progress
linearly in time. Since |α1〉N is correlated with the arrays |a2〉 and |a3〉 and is anticorrelated with |a5〉 and |a6〉, we
associate |α1〉N with the cell cycle cellular state of transition from M/G1 to G1, and −|α1〉N with the transition
from S to S/G2. Similarly, |α2〉N is correlated with |a12〉, |a13〉, and |a14〉, and therefore we associate |α2〉N with the
transition from G1 to S. Also, |α2〉N is anticorrelated with |a8〉, and |a9〉, and therefore we associate −|α2〉N with
the transition from G2/M to M/G1. With these associations the phase of |a1〉, φ1 = −θ ≈ −π/4, corresponds to
the 30m delay between the start of the experiment and that of the cell cycle stage G1, which is also present in the
inferred cell cycle expression oscillations |γ1〉N and |γ2〉N .

Consider also the expression of the 6026 genes {|gn〉} in the subspace spanned by |γ1〉N and |γ2〉N . Of the 791
genes that were classified by Spellman et al. (3) as cell cycle regulated, 769 have more than 25% of their normalized
expression in this subspace (Fig. 7b). Also, 98 of the 102 genes that were classified as cell cycle regulated by traditional
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Figure 7. Normalized CDC15 expression in the subspace associated with the cell cycle. (a) Array correlation with
|α2〉N along the y-axis vs. that with |α1〉N along the x-axis, color-coded according to the classification of the arrays
into the 5 cell cycle stages, M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and G2/M (orange). The dashed unit
and half-unit circles outline 100% and 25% of overall normalized array expression in the |α1〉N and |α2〉N subspace.
(b) Correlation of each gene with |γ2〉N vs. that with |γ1〉N , for 791 cell cycle regulated genes, color-coded according
to the classification by Spellman et al. (3). (c) Correlation of each gene with |γ2〉N vs. that with |γ1〉N , for 102 cell
cycle regulated genes, color-coded according to the traditional classification (3).
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Figure 8. Genes sorted by relative correlation with |γ1〉N and |γ2〉N of normalized CDC15. (a) Normalized
CDC15 expression of the sorted 6026 genes in the 24 arrays, showing traveling wave of expression. (b) Eigenarrays
expression; the expression of |α1〉N and |α2〉N , the eigenarrays corresponding to |γ1〉N and |γ2〉N , displays the
sorting. (c) Expression levels of |α1〉N (red) and |α2〉N (green) fit normalized sine and cosine functions of period
Z = N − 1 = 6025 and phase 2θ/5 ≈ π/10 (blue), respectively.
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methods (including, for example, CDC8, which was not classified by Spellman et al. as cell cycle regulated) have
more than 25% of their normalized expression in this subspace (Fig. 7c). We sort all 6026 genes according to their
phases {φn}, to describe the transition from the expression pattern |γ1〉N to that of |γ2〉N and back to |γ1〉N , starting
at φ1 ≈ −π/4, ordering the genes according to the stages in the cell cycle in which their expression patterns peak,
and describing the progress of the cell cycle along the genes. For the 791 cell cycle regulated genes this sorting gives a
classification of the genes into the 5 cell cycle stages, which is in good agreement with the classification by Spellman
et al. Similarly, for the 103 cell cycle regulated genes this sorting gives a classification which is in good agreement
with the traditional classification.

With all 6026 genes sorted, the gene variations of |α1〉N and |α2〉N fit normalized sine and cosine functions of
period Z ≡ N − 1 = 6025 and initial phase 2θ/5 ≈ π/10, −

√
2/Z sin(2πz/Z− 2θ/5) and −

√
2/Z cos(2πz/Z− 2θ/5),

respectively, where z ≡ n − 1 (Fig. 8b and c). The sorted and normalized CDC15 expression fits approximately a
traveling wave of expression, varying sinusoidally across both genes and arrays, such that the expression of the nth
gene in the mth array satisfies 〈n|êN |m〉 ∝ −2 cos(5πt/T − 2πz/Z − 3θ/5)/

√
ZT (Fig. 8a).

BIOLOGICAL DATA ANALYSIS: α FACTOR-SYNCHRONIZED CELL CYCLE
AND CLB2 AND CLN3 OVERACTIVATIONS

Spellman et al. (3) also monitored genome-wide mRNA levels, for 6113 yeast ORFs simultaneuosly, over approxi-
mately two cell cycle periods, in a yeast culture synchronized by α factor, relative to a reference mRNA from an
asynchronous yeast culture, at 7m intervals for 119m. They also measured, in two independent experiments, mRNA
levels of yeast strain cultures with overactivated CLB2, which encodes a G2/M cyclin, both at t = 40m relative to
their levels at the start of overactivation at t = 0. Two additional independent experiments measured mRNA levels
of strain cultures with overactivated CLN3, which encodes a G1/S cyclin, at t = 30 and 40m relative to their levels
at the start of overactivation at t = 0. The dataset for the α factor, CLB2 and CLN3 experiments we analyze (see
supplemental dataset and Mathematica notebook at http://genome-www.stanford.edu/SVD/) tabulates the ratios
of gene expression levels for the N = 6013 genes, N ′ = 5035 of which with no missing data in the the M = 22 arrays,
and 978 with no missing data in at least 19 of the 22 arrays. Of these genes, 790 were classified by Spellman et al. as
cell cycle regulated and 103 were classified as cell cycle regulated by traditional methods.

Missing Data Estimation. We use the L′ = 11 most significant eigengene patterns, as calculated for the subset
of 5035 genes with no missing data in the 22 arrays (13), in order to estimate the missing data in the remaining
N − N ′ = 978 genes, 835 of which with no missing data in 21 of the 22 arrays, 127 with no missing data in 20 of
the 22 arrays, and 16 with no missing data in 19 of the 22 arrays. We find that these eigenegenes and corresponding
probablities of eigenexpression are similar to those calculated for the full dataset of 6013 genes after the missing data
are estimated.

Pattern Inference and Data Filtering and Normalization. Consider the 22 eigengenes of the full α
factor, CLB2, and CLN3 dataset (Fig. 17a in supplemental material at http://genome-www.stanford.edu/SVD/).
The entropy of this dataset d = 0.29 (Fig. 17b) is higher than those of the elutriation and the CDC15 datasets,
because the α factor, CLB2, and CLN3 dataset combines three experiments, and therefore is less redundant. The
1st eigengene |γ1〉, which captures about 80% of the overall relative expression, descibes time (and experiment)
invariant relative expression (Fig. 17c). We infer that |γ1〉 represents the steady-state expression, and filter it out,
approximately centering the dataset. The eigengenes |γ2〉 and |γ3〉 describe initial transient increase and decrease,
respectively, in relative expression superimposed over time-invariant relative expression during the cell cycle. We
infer that |γ2〉 and |γ3〉 represent the responses to synchronization by α factor, and filter them out. The eigengenes
|γ10〉 and |γl〉 for 12 ≤ l ≤ L = 22 all show rapidly varying expression during the cell cycle and steady-state
expression in the CLB2- and CLN3-overactive arrays (Fig. 17a), and we filter them out as well, such that ê → êC =
ê−

∑3
l=1 εl|αl〉〈γl| − ε10|α10〉〈γ10| −

∑22
l=12 εl|αl〉〈γl| =

∑9
l=4 εl|αl〉〈γl|+ ε11|α11〉〈γ11|. The remaining eigengenes |γl〉

for 4 ≤ l ≤ 9 and |γ11〉 show expression oscillations of two periods during the α factor-synchronized cell cycle, from
t = 7 to 119m for a duration of T = 112m (Fig. 17d–f), suggesting a delay of 7m from the start of the experiment
to the start of the progress of a cell cycle of period T/2 = 66m in the initially arrested culture. We infer that these
eigengenes represent cell cycle expression oscillations and assume that the corresponding eigenarrays represent the
corresponding cell cycle cellular states.

Let êLV tabulate the natural logarithm of the variances in expression in the α factor, CLB2, and CLN3 ex-
periments, such that each element of êLV satisfies 〈n|êLV |m〉 ≡ log(e2C,nm), and consider the eigengenes of êLV
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Figure 9. Normalized α factor, CLB2, and CLN3 eigengenes. (a) Raster display of v̂T
N . (b) |γ1〉N , |γ2〉N , and

|γ3〉N capture more than, about and less than 20% of the overall normalized expression, respectively, and span an
approximately degenerate subspace. (c) Line-joined graphs of the expression levels of |γ1〉N (red), |γ2〉N (blue), and
|γ3〉N (green) fit dashed graphs of periodic functions with period T/2 = 66m superimposed on periodic functions
with period T = 112m from t = 7 to t = 119m during the cell cycle.

(Fig. 18a in supplemental material at http://genome-www.stanford.edu/SVD/). The 1st eigengene |γ1〉LV , which
captures about 90% of the overall information in this dataset (Fig. 18b), describes a time (and experiment) invariant
scale of expression variance, and we filter it out, êLV → êCLV = êLV − ε1,LV |α1〉LV LV 〈γ1|. The normalized α

factor, CLB2, and CLN3 dataset êN , where each of its elements satisfies 〈n|êN |m〉 ≡ sign(eCS,nm)
√

exp(eCLV,nm),
tabulates for each gene and array expression patterns that are approximately centered at the steady-state expres-
sion level (i.e., of approximately zero arithmetic means), with variances which are approximately normalized by
the steady scale of expression variance (i.e., of approximately unit geometric means). Note that the entropy of êN

is d = 0.61, suggesting that êN is less redundant (and maybe more informative) than ê. The eigengenes |γ1〉N ,
|γ2〉N , and |γ3〉N of êN (Fig. 9a), which are of similar significance, capture together about 60% of the overall
normalized expression (Fig. 9b). The time variations of |γ1〉N , |γ2〉N , and |γ3〉N fit normalized sine and cosine func-
tions of two T/2 = 66m periods superimposed on normalized sine function of one T = 112m period from t = 7
to 119m during the cell cycle,

√
2/T sin(4πt/T ) +

√
1/T sin(2πt/T ),

√
2/T cos(4πt/T ) −

√
1/T sin(2πt/T ), and√

2/T sin(4πt/T − π/4)−
√

1/T sin(2πt/T ), respectively (Fig. 9c). While |γ1〉N and |γ3〉N describe underexpression
in both CLB2-overactive arrays |a19〉 and |a20〉, and overexpression in both CLN3-overactive arrays |a21〉 and |a22〉,
|γ2〉 describes the antiparallel expression pattern of overexpression in |a19〉 and |a20〉 and underexpression in |a21〉
and |a22〉.

Degenerate Subspace Rotation. We approximate the eigenexpression levels ε1,N ≈ ε2,N ≈ ε3,N with ε1,RN =

ε2,RN = ε3,RN =
√

(ε21,N + ε22,N + ε23,N )/3. First, we rotate the eigengenes |γ1〉N → R̂1|γ1〉N = cos ρ1|γ1〉N +

sin ρ1|γ2〉N , and |γ2〉N → R̂1|γ2〉N = − sin ρ1|γ1〉N +cos ρ1|γ2〉N , and corresponding eigenarrays |α1〉N → R̂1|α1〉N =
cos ρ1|α1〉N +sin ρ1|α2〉N , and |α2〉N → R̂1|α2〉N = − sin ρ1|α1〉N +cos ρ1|α2〉N . Requiring the rotated 2nd eigengene
R̂1|γ2〉N to describe equal expression in the CLB2-overactive array |a20〉 and the CLN3-overactive array |a21〉, both
measured at t = 40m after the start of overactivation, such that N 〈a20|R̂1|γ2〉N = N 〈a21|R̂1|γ2〉N , gives the unique
rotation angle ρ1 ≈ −π/8. Second, we rotate the eigengenes R̂1|γ1〉N → R̂2R̂1|γ1〉N = cos ρ2R̂1|γ1〉N + sin ρ2|γ3〉N ,
and |γ3〉N → R̂2|γ3〉N = sin ρ2R̂1|γ1〉N − cos ρ2|γ3〉N , and corresponding eigenarrays R̂1|α1〉N → R̂2R̂1|α1〉N =
cos ρ2R̂1|α1〉N + sin ρ2|α3〉N , |α3〉N → R̂2|α3〉N = sin ρ2R̂1|α1〉N − cos ρ2|α3〉N . Requiring the rotated 3rd eigengene
R̂2|γ3〉N to describe equal expression in the arrays |a20〉 and |a21〉, such that N 〈a20|R̂2|γ3〉N = N 〈a21|R̂2|γ3〉N , gives
the unique rotation angle ρ2 ≈ π/5.

After these rotations (Fig. 10c), the time variations of |γ1〉RN = R̂2R̂1|γ1〉N and |γ2〉RN = R̂1|γ2〉N fit normalized
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Figure 10. Rotated normalized α factor, CLB2, and CLN3 eigengenes. (a) Raster display of v̂T
RN after rotation,

where |γ1〉RN = R̂2R̂1|γ1〉N , |γ2〉RN = R̂1|γ2〉N , and |γ3〉RN = R̂2|γ3〉N . (b) |γ1〉RN , |γ2〉RN and |γ3〉RN capture 20%
of the overall normalized expression each. (c) Expression levels of |γ1〉RN (red) and |γ2〉RN (blue) fit dashed graphs
of normalized sine (red) and cosine (blue) of period T/2 = 66m and phase π/4, respectively, and |γ3〉RN (green) fits
dashed graph of normalized sine of period T = 112m and phase −π/8, from t = 7 to t = 119m during the cell cycle.

sine and cosine functions of two T/2 = 66m periods during the cell cycle, from t = 7 to 119m, and initial phase
θ ≈ π/4,

√
2/T sin(4πt/T − θ), and

√
2/T cos(4πt/T − θ), respectively. Upon sorting of the genes (and arrays)

according to |γ1〉RN and |γ2〉RN (and |α1〉RN = R̂2R̂1|α1〉N and |α2〉RN = R̂1|α2〉N ), the initial phase θ ≈ π/4 can
be interpreted as a delay of 7m between the start of the cell cycle progres at t = 7m and that of the cell cycle stage G1
at t = 14m. The time variation of |γ3〉RN = R̂2|γ3〉N fits normalized sine function of one T = 112m period from t = 7
to 119m and initial phase −θ/2 ≈ −π/8,

√
2/T sin(2πt/T +θ/2), suggesting differences in expression during the first

cell cycle 66m period and the successive 66m period, which may be due to dephasing of the initially synchronized
yeast culture. While |γ2〉RN and |γ3〉RN describe steady-state expression in the CLB2- and CLN3-overactive arrays,
|γ1〉RN describes underexpression in the CLB2-overactive arrays and overexpression in the CLN3-overactive arrays.
We, therefore, infer that |γ1〉RN represents cell cycle expression oscillations that are CLB2- and CLN3-dependent,
whereas |γ2〉RN represents cell cycle expression oscillations that are CLB2- and CLN3-independent, and |γ3〉RN

represents variations in the cell cycle expression from the first period to the second, which also appear to be CLB2-
and CLN3-independent. We assume that |α1〉RN , |α2〉RN , and |α3〉RN represent the corresponding cellular states.
With this we also infer that the subspace spanned by |γ1〉RN and |γ2〉RN approximately represents all cell cycle
expression oscillations, and we assume that the subspace spanned by |α1〉RN and |α2〉RN approximately represents
all cell cycle cellular states.

Data Sorting. Consider the normalized expression of the 22 α factor, CLB2, and CLN3 arrays {|am〉} in the
subspace spanned by |α1〉RN and |α2〉RN (Fig. 11a). All arrays have at least 25% of their normalized expression in
this subspace, except for |a1〉, |a14〉, and |a16〉, which measure t = 0, 91, and 105m in the cell cycle, respectively,
and |a19〉, and |a21〉, which measure CLB2- and CLN3-overactivation at t = 40m after the start of overactivation,
respectively. The sorting of the arrays according to their phases {φm}, which describes the transition from the
expression pattern |α2〉RN to |α1〉RN and back to |α2〉RN , gives an array order that is similar to that of the cell cycle
time points measured by the arrays, an order that describes the progress of the cell cycle expression from the M/G1
stage through G1, S, S/G2, and G2/M and back to M/G1 twice. Even though the arrays measure equally spaced
cell cycle time points, the arrays are not equally spaced, suggesting that the initially synchronized culture dephases
in time, or that the cell cycle may not progress linearly in time.

Since |α1〉RN is correlated with the arrays |a13〉 and |a14〉, as well as with |a21〉 and |a22〉, which measure the
CLN3-overactive samples, we associate |α1〉RN with the cell cycle cellular state of transition from G1 to S, which
is simulated by CLN3 overactivation. Also, |α1〉RN is anticorrelated with the arrays |a9〉 and |a10〉, as well as with
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Figure 11. Rotated normalized α factor, CLB2, and CLN3 expression in the subspace associated with the cell cycle.
(a) Array correlation with |α1〉RN along the y-axis vs. that with |α2〉RN along the x-axis, color-coded according to
the classification of the arrays into the 5 cell cycle stages, M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and
G2/M (orange). The dashed unit and half-unit circles outline 100% and 25% of overall normalized array expression
in the |α1〉RN and |α2〉RN subspace. (b) Correlation of each gene with |γ1〉N vs. that with |γ2〉N , for 790 cell cycle
regulated genes, color-coded according to the classification by Spellman et al. (3). (c) Correlation of each gene with
|γ1〉N vs. that with |γ2〉N , for 103 cell cycle regulated genes, color-coded according to the traditional classification (3).
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Figure 12. Genes sorted by relative correlation with |γ1〉RN and |γ2〉RN of rotated normalized α factor, CLB2, and
CLN3. (a) Normalized expression of the sorted 6013 genes in the 22 arrays, showing traveling wave of expression
from t = 0 to 119m during the cell cycle and standing waves of expression in the CLB2- and CLN3-overactive
arrays. (b) Eigenarrays expression; the expression of |α1〉RN and |α2〉RN , the eigenarrays corresponding to |γ1〉RN

and |γ2〉RN , displays the sorting. (c) Expression levels of |α1〉RN (red) and |α2〉RN (green) fit normalized sine and
cosine functions of period Z = N − 1 = 6012 and phase π/8 (blue), respectively.
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|a19〉 and |a20〉, which measure the CLB2-overactive samples. We associate −|α1〉RN with the cellular transition
from G2/M to M/G1, which is simulated by CLB2 overactivation. Similarly, |α2〉RN appears to be correlated with
|a2〉, |a3〉, |a11〉, and |a12〉, anticorrelated with |a6〉, |a7〉, |a15〉, and |a17〉, and uncorrelated with |a19〉, |a20〉, |a21〉, or
|a22〉. We therefore associate |α2〉RN with the cellular transition from M/G1 to G1 (which appears to be CLB2- and
CLN3-independent), and −|α2〉RN with the cellular transition from S to S/G2 (which also appears to be CLB2- and
CLN3-independent). With these associations the phase of |a1〉, φ1 ≈ −π/4, corresponds to the 7m delay between
the start of the progress of the cell cycle at t = 7m and the start of the cell cycle stage G1 at t = 14m, which is also
present in the inferred cell cycle expression oscillations |γ1〉RN and |γ2〉RN .

Consider also the expression of the 6013 genes in the subspace spanned by |γ1〉RN and |γ2〉RN . Of the 790 genes
that were classified by Spellman et al. (3) as cell cycle regulated, 683 have more than 25% of their normalized
expression in this subspace (Fig. 11b). Also, 88 of the 103 genes that were classified as cell cycle regulated by
traditional methods (including, for example, CDC8, which was not classified by Spellman et al. as cell cycle regulated)
have more than 25% of their normalized expression in this subspace (Fig. 11c). We sort all 6013 genes according
to their phases {φn}, to describe the transition from the expression pattern |γ2〉RN to that of |γ1〉RN and back to
|γ2〉RN , starting at φ1 ≈ −π/4, ordering the genes according to the stages in the cell cycle in which their patterns
of expression peak, and describing the progress of the cell cycle along the genes. For the 790 cell cycle regulated
genes this sorting gives a classification of the genes into the 5 cell cycle stages, which is in good agreement with the
classification by Spellman et al. Similarly, for the 103 cell cycle regulated genes this sorting gives a classification of
the genes, which is in good agreement with the traditional classification. For example, classification of CLN3, which
uses the elutriation- and CDC15-synchronized yeast cell cycle expression data, suggests that the expression of CLN3
peaks in the cell cycle stage G2/M (see above, Figs. 2 and 7), and is in agreement with the classification by Spellman
et al. However, classification of CLN3, which uses the α factor-synchronized yeast cell cycle expression data together
with the expression data for CLB2- and CLN3-overactivation, suggests that the expression of CLN3 peaks late in
the cell cycle stage G1 (Fig. 11). This classification may be in better agreement with the classification by traditional
methods, which suggests that CLN3 peaks early in the cell cycle stage G1.

Since |γ1〉RN is correlated with genes that peak late in the cell cycle stage G1 and early in S, among them CLN3,
we associate |γ1〉RN with the cell cycle expression oscillations that start at the transition from G1 to S, and are
dependent on CLN3, which encodes a G1/S cyclin. Also, |γ1〉RN is anticorrelated with genes that peak late in G2/M
and early in M/G1, among them CLB2, and therefore we associate −|γ1〉RN with the oscillations that start at the
transition from G2/M to M/G1 and are dependent on CLB2, which encodes a G2/M cyclin. Similarly, |γ2〉RN is
correlated with genes that peak late in M/G1 and early in G1, anticorrelated with genes that peak late in S and
early in S/G2, and uncorrelated with CLB2 and CLN3. We, therefore, associate |γ2〉RN with the oscillations that
start at the transition from M/G1 to G1 (and appear to be CLB2- and CLN3-independent), and −|γ2〉RN with the
oscillations that start at the transition from S to S/G2 (and appear to be CLB2- and CLN3-independent).

With all 6013 genes sorted the gene variations of |α1〉RN and |α2〉RN fit normalized sine and cosine functions of
period Z ≡ N − 1 = 6012 and initial phase π/8,

√
2/Z sin(2πz/Z − π/8), and

√
2/Z cos(2πz/Z − π/8), respectively,

where z ≡ n − 1 (Fig. 12b and c). The normalized and sorted cell cycle expression approximately fits a traveling
wave, varying sinusoidally across both genes and arrays, such that the expression of the nth gene in the mth array
satisfies 〈n|êN |m〉 ∝ 2 cos(4πt/T − 2πz/Z − π/8)/

√
ZT . The normalized and sorted expression in the CLB2- and

CLN3-overactive arrays approximately fits standing waves, constant across the arrays and varying sinusoidally across
genes only, which appear similar to −|α1〉RN and |α1〉RN , respectively (Fig. 12a).

CONCLUSIONS

We conclude that SVD provides a useful mathematical framework for processing and modeling genome-wide expres-
sion data, in which both the mathematical variables and operations may be assigned biological meaning. Normalizing
the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent additive or multiplicative
noise, experimental artifacts, or even irrelevant biological processes enables meaningful comparison of the expression
of different genes across different arrays in different experiments. Sorting the data according to the eigengenes (and
eigenarrays) gives a global picture of the dynamics of gene expression, in which individual genes (and arrays) appear
to be classified into groups of similar regulation and function (or similar cellular state and biological phenotype).
Upon comparing two or more similar experiments, with a regulator being overactive or underactive in one but nor-
mally expressed in the others, one of the significant eigengenes may be correlated with the expression patterns of
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this regulator and its targets, while the corresponding eigenarray is correlated with the expression patterns observed
in samples in which the regulator is overactive or underactive.
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