
An Algorithm for ODES from Atmospheric Dispersion

Problems.

I. Ahmad and M. Berzins

School of Computer Studies, The University of Leeds, Leeds LS2 9JT, UK.

Abstract

The solution of large systems of ordinary differential equations o.d.e.s, arising
from atmospheric dispersion problems is considered. An algorithm using a method
due to Klopfenstein is adopted as the main method and combined with an approx-
imate Jacobian factorisation and a Gauss-Seidel iteration to provide an efficient
solver. The approach is contrasted with that of using implicit-explicit multistep
methods. Numerical experiments are presented to illustrate the performance of the
method.

1 Introduction.

The increasing level of air pollution makes it ever more desirable to use sim-
ulation to help increase awareness and understanding of the problem. One
example is that of power station plumes which are concentrated sources of
NOx emissions, [7]. The photo-chemical reaction of this NOx with polluted air
leads to the generation of ozone at large distances downwind from the source.
The transport of the plume and the chemical reactions are modelled by the
atmospheric diffusion equation:

∂cs

∂t
= −

∂ucs

∂x
−

∂wcs

∂y
+

∂

∂x

(

Kx
∂cs

∂x

)

+
∂

∂y

(

Ky
∂cs

∂y

)

(1)

+Rs(c1, c2, ..., cq) + Es − (κ1s + κ2s)cs,

where cs is the concentration of the s’th compound, u and w are wind ve-
locities, Kx and Ky are diffusivity coefficients and κ1s and κ2s are dry and
wet deposition velocities respectively. Es describes the distribution of emis-
sion sources for the s’th compound and Rs represents the chemical reaction
rates which may contain nonlinear terms in cs. The simple chemical mech-
anism used by [5] contains only 10 species, and 8 coupled p.d.e.s, but does

Preprint submitted to Elsevier Science 5 January 2005

however represent the main features of a tropospheric mechanism, namely the
competition of the fast inorganic reactions with the slower reactions of volatile
organic compounds. This separation in time-scales generates severe stiffness
and so requires the use of an implicit o.d.e. method.

The general trend in atmospheric chemistry is to use models incorporating an
ever large number of reactions in the chemical schemes describing the atmo-
spheric chemistry. The chemical kinetics arising from the atmospheric chem-
istry are non-autonomous, because generally the reaction rates are both time
and temperature dependent, thus giving rise to abrupt and sudden changes in
the concentration of the chemical species and hence also the timesteps.

The spatial discretization scheme used by [5] for the p.d.e. (1) results in a sys-
tem of differential equations, which can be written as the initial value problem:

Ẏ = F (t, Y (t)) , Y (0) given , (2)

where the vector, Y (t), is defined by Y (t) = [Y1(t), ..., YN(t)]T . Yi(t) is a
numerical approximation to the exact solution to one of the p.d.e.s evaluated
at the centroid of a triangle. A method of lines approach is used to numerically
integrate equation (2) thus generating an approximation, y(t), to the vector of
exact p.d.e. solution values at the mesh points. At present the Theta method
with the iterative method of [4] has been used with some success to solve
atmospheric dispersion problems, [5]. Recently the second order backward
differentiation method (BDF2 from hereon) with Gauss-Seidel iteration has
worked well in solving o.d.e.s from atmospheric chemistry, see [14].

The aim of the paper is to consider alternatives to both the Theta method
and to BDF2 by investigating whether or not the NDF method of Klopfenstein
[11], as suggested by Shampine [12] [13] forms a viable alternative. and to try
and understand the best approach to be used in dealing with the combination
of transport and chemistry in atmospheric problems. The form of the paper is
that Section 2 contains a description of the method of Klopfenstein [11] and
discusses the differences between this method and the BDF2 method. Section
3 describes the method used to solve the large systems of nonlinear equations
arising at each timestep, including an adaptive Gauss-Seidel iteration. The
numerical experiments in Section 4 on realistic chemistry problems show that
the NDF method provides a good alternative to the existing methods. In sec-
tion 5 consideration is extended to the IMEX approach of Ascher et al. [1] and
the properties of the NDF method considered in relation to the BDF2 method.
This makes it possible to understand the differences between the IMEX and
nonlinear equations splitting approaches in terms of both convergence of the
iteration and accuracy. The result of this comparison is that a single constraint
is identified which appears to be important for both approaches.

2

2 Klopfenstein NDF Method

In 1971 Klopfenstein published a class of multistep methods, modified from
BDF methods in such a way that they have better stability properties and
lower error constants in some cases. For example the second order method
stepsize may be 20% larger then BDF2, see [11]. The methods are termed
numerical differentiation methods or NDFs. The method was recommended by
Shampine many years ago [12], but does not appear to have been implemented
in general purpose software until recently [13]. The cost of the improvements
over BDF2 is that one more back value is used. No extra storage is required
however as the back value is already present in the Milne-type error estimate
already used by the BDF code. For simplicity the Klopfenstein method of
order 2, NDF2 hereafter, will be described by starting from the BDF2 formula
given by

y
n+1

−
∑2

i=1 y
n+1−i

αi

kγ
− F (tn+1, yn+1

) = 0 (3)

where the coefficients αi and γ are well known, e.g. [2]. Using the Nordsieck
vector form of the BDF the predicted values of the solution and the first two
time derivatives are given by yp

n
(tn), y(1)p

n
(tn), and y(2)p

n
(tn) are given in terms

of the existing derivatives by

y(l) p
n+1

=
2
∑

i=l

y(i)
n

ki−l
n+1

(i − l)!
l = 0, . . . , 2 (4)

The corrected vector, α =
y

n+1
−yp

n+1

kγ
can be found by solving the system of

non-linear equations, see [2],

y(1)p
n+1

+ α − F (tn+1, y
p
n+1

+ kγα) = 0 , γ = 2/3 , (5)

The predictor values are then corrected by

y(i)(tn+1) = y(i)p(tn+1) + γik
1−i
n+1α (6)

where γ0 = γ2 = 2/3 and γ1 = 1 . The NDF2 formula [11] may be implemented
in the same Nordsieck framework by writing it as a correction to equation (4)

y
n+1

−
∑2

i=1 y
n+1−i

αi

kγ
− α̂

(y
n+1

− yp
n+1

)

kγ
− f(tn+1, yn+1

) = 0, (7)

3

where −1/9 ≤ α̂ ≤ 1/3 . We define the new variable γ∗ = γ
(1−α̂)

, and write

equation (7) as

y(1)p
n+1

+ β − f(tn+1, y
p
n+1

+ kγ∗β) = 0 (8)

where β is defined by
yn+1−yp

n+1

kγ∗
. Hence on comparing the coefficients of y

n+1
,

in equations (7) and (8) it follows that γ∗ = γ
(1−α̂)

and as α̂ = − 1
9
, then

γ∗ = 0.9γ. One property of the q th order NDF method is that the leading
term of the truncation error is α̂ + 1/(q + 1), where for BDF α̂ = 0. Hence
the leading term of local truncation error associated with the BDF2 (α̂=0) is
1
3

and that of Klopfenstein formula (α̂ = −1
9
) is 1

6
, which is still twice that of

the trapezoidal rule however. Hence the local error estimate is halved and the
stepsize at the order two is increased by the factor of about 1.26 over BDF2 for
the same error. A recent comparison of BDF and NDF methods by Shampine
and Reichelt [13] shows that on a range of stiff test problems the NDF code
is on average about 8% faster and uses an average of about 11% fewer steps
on all problems except one.

2.1 Stability Properties

The fixed step NDF2 formula, (α̂ = −1/9), as will be used below is:

F (tn+1, yn+1
) −

1

6k
(10y

n+1
− 15y

n
+ 6y

n−1
− y

n−2
) = 0. (9)

In order to determine the stability property of the method Klopfenstein con-
sidered the single equation ẏ = ηy and showed that A-stability of the method
requires that −1

9
≤ α̂ ≤ 1

3
. The stability region has been plotted for three

different values of α̂ i.e. α̂ = 0, − 1
9
, − 2

9
as shown in Figure (1). Recalling

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Im
ag

in
ar

y
A

xi
s

Real Axis

alpha=-2/9

alpha = 0

alpha=-1/9

Fig. 1. Stability Region

4

that α̂ = 0 is BDF2 and α̂ = −1
9

is NDF2, the comparison of stability region
corresponding to these two values of α shows that the stability region in the
right half plane corresponding to α̂ = −1

9
is (desirably) smaller than the BDF2

stability region corresponding to α̂ = 0, see Klopfenstein [11].

3 Nonlinear Equations Splitting Algorithm.

In the case when a modified Newton method is used to solve the nonlinear
equations at each timestep, the system of linear equations to be solved for the
m + 1 th correction to the solution ∆y are:

[I − kγJ] ∆y
m

= r
(

tmn+1

)

(10)

where J = ∂ F
∂y

, r
(

tmn+1

)

= − ym
n+1

+ zn + γkF (tn+1, y
m
n+1

) ,

∆y
m

=
[

y(tm+1
n+1) − y(tmn+1)

]

and zn =
∑2

i=1 y
n+1−i

αi in the fixed timestep

case. The solution of the system of equations (10) constitutes the major com-
putational task of a method of lines calculation. In cases where large o.d.e.
systems that result from the discretization of the flow problems with complex
chemistry the c.p.u. times may be excessive unless special iterative methods
are used to solve the system linear equations given by (10).

One common approach, e.g. [4] and the references therein, is to consider the
o.d.e. function F (t, y(t)) defined by equation (2) and decompose it into two
parts:

F (t, y(t)) = F f (t, y(t)) + F s (t, y(t)) (11)

where F f (t, y(t)) represents the discretization of the advective flux terms
ucs and wcs in equation (1) and F s (t, y(t)) represents the discretization
of the of the diffusion and source terms in the same equation. The nonlinear
equations splitting method uses the approximate factorisation of Jacobian
matrix employed by the time integrator method within a Newton iteration:

I − kγJ ≈ [I − kγ Jf] [I − kγ Js] + O(k2). (12)

where Jf =
∂ F f

∂y
, and Js =

∂F s

∂y
.

The approach taken here follows [4] in neglecting the advective terms Jf and
thus in the case when no source or diffusion terms are present corresponds

5

to using functional iteration for the advective calculation, see [3]. In the case
when diffusion is absent or sufficiently small to be neglected in the Jacobian
matrix, the matrix I − kγJs is the Jacobian matrix of that part of the o.d.e.
system corresponding to the discretization of the time derivatives and the
source terms. This matrix is thus block-diagonal with as many blocks as there
are spatial elements and with each block having as many rows and columns as
there are p.d.e.s. The fact that the block relate only to the chemistry within
each cell means that each block’s equations may be solved independently.

The nonlinear equations splitting iteration may thus be written as

[I − kγJs] ∆y∗
m

= r
(

tmn+1

)

(13)

where ∆y∗
m

is an approximation to ∆y
m

. As the splitting is only used to speed
up the solution of the nonlinear equations and providing that the iteration is
continued until the residual r

(

tmn+1

)

is sufficiently small this splitting error
does not have the same impact as introducing splitting at the p.d.e. level. In
order for the nonlinear equations splitting iteration defined by equation (13)
to converge with a rate of convergence rc it is necessary, [10] p.77, that

|| [I − kγJs]
−1 k γJf || = rc where rc < 1. (14)

This condition will also turn out to be important for the IMEX method con-
sidered in Section 5.

3.1 Gauss-Seidel Iterations

Recently the Gauss-Seidel method, has been used with great success for at-
mospheric chemistry problems, [14] . The Jacobian matrix [I − kγJs] is split
into L, the strictly Lower triangular, D, the Diagonal and U the strictly Upper
triangular matrices. and equation (13) rearranged to get

(I − γkD − γkL)∆y∗
m+1

= γkU∆y∗
m

+ r(tpn+1). (15)

Although one approach is to use a fixed number of iterations, an adaptive
approach based on that of DASSL [6] has been used here. A minimum of two
iterations is used to estimate the convergence rate, ρ,

where ρ =
(

||∆y∗
m+1

−∆y∗

m
||

||∆y∗

1
−∆y∗

0
||

)1/m

The iteration is continued only if ρ < 0.95 and

if ||∆y∗
m+1

− ∆y∗
m
|| < ITOL, where ITOL = 0.01 or 0.001, then the iteration

is halted successfully. The effect of varying ITOL is considered by Verwer [14]
and in the next section.

6

4 Numerical Results

In this section four test problems are used to compare the performance of
the NDF2 method with the Theta method and the BDF2 method. The code
described here was implemented by at first changing a few constants in a
BDF2 code. Testing on standard DETEST problems with analytic solutions
confirmed the predicted accuracy improvement was achieved in practise. It was
observed that the NDF and BDF codes used more timesteps for atmospheric
problems than the Theta method code we had been using [3], but did less
work per step. This hypothesis will be explored on three test problems and
the effect of using the Gauss Seidel method demonstrated.

(1) This problem [14] consists of 20 species and 25 reactions with constant
reaction rates from atmospheric chemistry For this ODE system the Lip-
schitz constant is about 1.5x107 and the simulation period is (0,60) min-
utes, which makes the ODE system stiff.

(2) Simplified Chemistry [5] only 8 species and 12 reactions photolysis rates
time-dependent. The simulation time is 1.8105 .

(3) This problem with lumped chemistry was obtained from systematic re-
duction of the Extended Carbon Bond Mechanism CBMEx [7] and has
29 species and 55 reactions with nonconstant reaction rates. The full Ex-
tended Carbon Bond Mechanism ,see [7], with 205 reactions (nonconstant
reaction rates) and 90 species was also used as a test problem but pro-
duces almost identical performance profiles to the lumped version. The
simulation time is 1.8105 .

The following notation is used to present the test results:
Steps = the number of integration steps,
Fun = the number of residual evaluations,
Jac = the number of Jacobian evaluations,
TOL = error tolerance used to define RTOL and ATOL
ATOL = Absolute error tolerance = 10−6TOL
RTOL = Relative error tolerance = TOL
ITOL = Gauss Seidel Tolerance
G-S = Number of Gauss Seidel iterations
SDT = The number of significant digits for the maximum relative error at the

specified time T, defined by SDT = − log10

(

maxi

(

|yn
i
−yi(T))|

yi(T)

))

represents the accuracy of the calculated results, and yi(T) is the ”exact”
solution at the specified time as estimated by using a DASSL [6] high accuracy
run to approximate the true solution. The Jacobian matrix in all cases is
formed directly from the chemistry without residual evaluations.

The numerical results on Problem 1 show that the number of Gauss-Seidel
iteration per step are comparable with those in [14] albeit obtained using a

7

Full Problem 1 Problem 2 Problem 3

Matrix Theta BDF2 NDF2 Theta BDF2 NDF2 Theta BDF2 NDF2

Steps 36 40 39 780 973 1019 744 968 946

Jac 11 14 13 48 69 70 67 77 71

Fun 354 352 337 2418 1074 1115 2370 1126 1083

SD 2.33 1.36 1.66 2.23 2.21 2.28 1.41 1.42 1.43

Table 1
Results with Full Linear Algebra TOL = 0.1

Full Problem 1 Problem 2 Problem 3

Matrix Theta BDF2 NDF2 Theta BDF2 NDF2 Theta BDF2 NDF2

Steps 59 74 64 794 1064 1034 700 983 1069

Jac 20 14 16 46 74 73 60 76 75

Fun 630 399 426 2464 1187 1144 2257 1152 1214

SD 2.53 2.88 2.68 2.42 2.21 2.28 1.43 1.42 1.44

Table 2
Results with Full Linear Algebra TOL = 0.01

Gauss NDF2 Prob.1 Prob.2 Prob.3

Seidel ITOL 0.01 0.001 0.01 0.001 0.01 0.001

TOL Steps 51 71 991 1019 1034 979

Jac 17 29 69 68 83 81

0.1 Fun 431 715 1082 1116 1186 1120

G-S 221 460 2174 2325 2925 3398

SD 1.99 2.02 2.71 2.14 1.40 1.44

TOL Steps 71 112 987 1045 1004 1034

Jac 18 42 73 70 80 93

0.01 Fun 476 1045 1136 1165 1198 1217

G-S 379 647 2340 2617 3451 4545

SD 2.71 2.84 2.70 2.7 1.44 1.45

Table 3
Results with Gauss-Seidel Iteration

somewhat different nonlinear Gauss-Seidel method without Aitken Extrapola-
tion. A particular point to note n the results here is that when ITOL = 0.001
for Problem 1 then the work increases by 50 % . A comparison between the
Theta and NDF2 methods shows that NDF2 uses less function evaluations

8

but takes more steps and Jacobian evaluations. This is probably due to the
Theta method’s sophisticated error estimator [3] and its double or halving
stepsize strategy. It is also worth noting that the Theta codes error estimator
requires one extra function evaluation and backsolve per step, and so accounts
for the much larger number of function calls. A comparison between Tables 1
and 2 shows that when the Gauss Seidel method is used there are a few more
Jacobian evaluations for Problem 3. This seems to arise because of the fact
that for Problem 3 19 of 29 equations are not diagonally dominant. Analysis
of the Jacobian matrices shows that species 8, the OH radical, destroys the
diagonal dominance of a large part of the matrix. Table 2 also shows that
there is a significant cost penalty in terms of numbers of iterations associated
with using ITOL = 0.001 but that there is also an increase in accuracy.

5 IMplicit EXplicit Multistep Methods

This section will begin to consider if the improved performance of the NDF
method over BDF methods carries across to the IMEX approach used by
Ascher et al. and to characterise the relationship between the IMEX approach
and the nonlinear equations splitting method described above.

The approach of Ascher , [1] , effectively replaces the nonstiff part of the o.d.e
with an explicit method e.g. for the NDF2 in equation (9) the term

F (tn+1, yn+1
) = F f(tn+1, yn+1

) + F s(tn+1, yn+1
)

is replaced by

2F f(tn, y
n
) − F f (tn−1, yn−1

) + F s(tn+1, yn+1
)

or alternatively, see [9], by a form which is equivalent for linear F s, and which
gives the NDF IMEX method considered here:

F f(tn+1, y
∗
n+1

) + F s(tn+1, ŷn+1
) −

1

6k
(10ŷ

n+1
− 15y

n
+ 6y

n−1
− y

n−2
) = 0

(16)

where y∗
n+1

= 2y
n
− y

n−1
and ŷ

n+1
is the solution computed by this method

at the end of the step. The Newton iteration is identical to that defined by
equation (13) except that the residual on the righthand side is now defined by

r̂ (tpn+1) = − ŷp
n+1

+ zn + γkF f (tn+1, y
∗
n+1

) + γkF s(tn+1, ŷ
p
n+1

) .

9

In this case a crude approximation to the norm of the inverse iteration matrix,
[12], is provided by the observed rate of convergence rimax

c

|| [I − kγJs]
−1 || ≈ rimex

c where rimex
c < 1. (17)

It is worth remarking that the cost of the first IMEX iteration is identical to
that of one iteration of the splitting method in Section 3, but thereafter the
term F f(tn+1, y

∗
n+1

) does not have to be evaluated.

5.1 The Test Equation of Ascher et al. [1]

Ascher et al. [1] consider the test equation

ẏ = (α + iβ)y , α, β real, (18)

which is derived from Fourier analysis of the advection diffusion equation. In
this equation β models the advective terms and α the diffusive terms. In this
case the BDF2 characteristic polynomial (α̂ = 0) is

φ(z) = (
3

2
− αk)z2 − (2 + 2iβk)z + (

1

2
+ iβk).

while the NDF2 characteristic polynomial is

φ(z) = (
10

6
− αk)z3 − (

5

2
+ 2 iβk)z2 + (1 + iβk)z −

1

6
. (19)

The stability contours of this polynomial are shown in Figure 2 in which the
horizontal axis is α and the vertical axis β . A comparison between Figure 2

 0.200
 0.300
 0.400
 0.500
 0.600
 0.700
 0.800
 0.900
 1.000
 2.000

 -10.00 -8.99 -7.98 -6.97 -5.96 -4.95 -3.94 -2.93 -1.92 -0.91
 0.00
 0.15
 0.31
 0.46
 0.61
 0.77
 0.92
 1.07
 1.22
 1.38

Fig. 2. IMEX Stability Region

and Figure 5 in [1] shows that the NDF2 method is stable for purely imaginary
eigenvalues, unlike BDF2.

10

In the case when the nonlinear equations splitting method of Section 3 is
applied to the same model equation (18) used by Ascher , then from equation
(14), the convergence condition is

| [I − kγα]−1 k γiβ | < rc .

and so the method is stable for purely imaginary kβ in the range [0, rc/(γk)].

5.2 The Extended Test Equation of Frank et al. [9]

Frank et al. [9] point out that the stability decomposition used by Ascher
needs to be generalised to model some aspects of the atmospheric diffusion
equation. This may be achieved by allowing α and β in equation (18) to be
both complex. There are then two situations considered by Frank et al. The
first is to consider values of β for which the method is A-stable with respect to
alpha. The second option , [9], is to recognise that while A-stability is valuable;
it is, in many practical situations, possible to settle for A(α) stability. With
this in mind the latter case is considered here in that β is forced to lie in the
stability region of the explicit NDF2 method given by:

F f(tn+1, y
∗
n+1

) −
1

6k
(10ŷ

j+1
− 15y

n
+ 6y

n−1
− y

n−2
) = 0 (20)

and a similarly modified BDF2 method. In these two cases the stability re-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Im
ag

in
ar

y
A

xi
s

Real Axis

alpha = 0

alpha=-1/9

Fig. 3. Explicit Stability Region

gions are the interiors of the semi-circular domains shown in Figure 3 and
the maximum possible values of |βk| ≤ 1.775 for NDF2 and ≤ 1.3 for BDF2.
The NDF2 stability polynomial in this case is given by extending α and iβ
in equation (18) to have both real and imaginary parts. Figure 4 shows the
boundaries of the stability region for NDF2 (α̂ = −1/9) and for BDF2 (
α̂ = 0) in the case when β may take any of the stable values in Figure 3.

11

The stability regions in Figure 4 are the exteriors of the semi-circular regions.
Figure 4 shows that NDF2 has a desirably smaller stability region than BDF2
in the right half plane but a less desirable slightly smaller one in the left half
plane than BDF2. Both methods are A(α) stable however.

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Im
ag

in
ar

y
A

xi
s

Real Axis

alpha = 0

alpha=-1/9

Fig. 4. Modified Stability Region

The convergence condition of the nonlinear equations splitting method of Sec-
tion 3 for the model equation (18) used by [9] in which both α and β are
complex is, from equation (14),

| [I − kγα]−1 | <
rc

γ k|β|
.

The maximum values for k|β| to remain in the stability region are 1.3 and
1.8 for BDF2 and NDF2 respectively and γ = 2/3 and γ∗ = 0.6. Hence if
kβ lies on the edge of the explict stability region then γ k|β| ≈ 1 and this
requirement is very similar to the IMEX convergence requirement, which from
equation (17) is,

| [I − kγα]−1 | < rimex
c . (21)

Hence in both cases αk must satisfy a very similar condition if the iterations
are to be stable and to converge at the same rate.

5.3 Estimating the local splitting error.

In order to understand the form of error introduced by using the IMEX method
let eŷ

n+1
=

[

y
n+1

− ŷ
n+1

]

be the local IMEX splitting error where ŷ
n+1

is

the value computed by the IMEX method defined by equation (16) and let
y

n+1
be the approximation to the solution at tn+1 defined as in equation (9).

Assuming that the the past values y
j
, j = n, n − 1, n − 2 for both methods

12

are identical, subtracting equation (16) from equation (9) , multiplying by γk
and linearising gives

[I − kγJs] eŷ
n+1

= γk
[

F f(tn, yn+1
) − F f(tn−1, y

∗
n+1

)
]

. (22)

Addition and subtraction of the term F f (tn+1, ŷn+1
) and further linearisation

gives (after ignoring the higher order terms):

[I − kγJs] eŷ
n+1

= γk
[

Jf(eŷn+1
) + F f (tn+1, ŷn+1

) − F f (tn+1, y
∗
n+1

)
]

(23)

Applying the inverse matrix [I − kγJs]
−1 and assuming that equation (14)

holds gives:

||eŷ
n+1

|| ≤ rc||eŷn+1
|| +

||[I − kγJs]
−1 γk

[

F f (tn+1, ŷn+1
) − F f (tn+1, y

∗
n+1

)
]

|| .

On collecting terms together this may be written as:

||eŷ
n+1

|| ≤
γk

1 − rc

||[I − kγJs]
−1
[

F f (tn+1, ŷn+1
) − F f (tn+1, y

∗
n+1

)
]

|| .

The righthand term ||.|| may be calculated using one extra evaluation of
F f(tn+1, ŷn+1

) and a backsolve, (the value of rc is not known however). Equa-

tion (17) may be used to bound the norm of the inverse Jacobian ||[I−kγJs]
−1||

by the rate of convergence rimex
c to get

||y
n+1

− ŷ
n+1

|| ≤
rimex
c γk

1 − rc
||
[

F f (tn+1, ŷn+1
) − F f (tn+1, y

∗
n+1

)
]

|| . (24)

The righthand term γk||.|| is related to the extra local truncation error due
to splitting, see [8], and may be written as:

−k
[

F f(tn+1, ŷn+1
) − F f(tn+1, y

∗
n+1

)
]

= − kJf (ŷn+1
− y∗

n
) + h.o.t.

where ŷ
n+1

− y∗
n+1

= (ŷ
n+1

− 2y
n

+ y
n−1

) may be interpreted as an O(k2)

error. Alternatively by using equation (14) again it is possible to derive the
expression

||eŷ
n+1

|| ≤
rc

1 − rc
||ŷ

n+1
− y∗

n+1
|| .

13

In both cases the quantity rc plays an important role in the relation ship
between the IMEX splitting error and the quantity ŷ

n+1
− y∗

n+1
. As the

restriction on rc is also required for convergence of the nonlinear splitting
method, this restriction thus appears to be important to both methods for
different reasons.

6 Conclusions

This paper has shown that the NDF2 method has slightly superior accuracy
and stability properties to the more widely used BDF2 method for the type of
o.d.e. systems considered here. A comparison between the IMEX and nonlinear
splitting approaches has shown some interesting similarities and has indicated
a way of measuring the IMEX splitting error. The advantage of the splitting
approach -that it more closely couples the flow and chemistry- is balanced
by its greater cost after the first two iterations, (if the local splitting error
estimation is included). The close coupling of flow and chemistry may be
more important for combustion type problems e.g. [4] than for atmospheric
problems. The numerical experiments have shown that the new NDF2 code
works well but have also indicated that some tuning of the stepsize strategy
and Jacobian evaluation criteria may be needed. At present the approach
described here is already being used successfully in large scale experiments in
computational atmospheric modelling.

Acknowledgement. The authors would like to thank their many collabora-
tors on the atmospheric modelling project for their help, notably A.Tomlin
and G.Hart. W. Hunsdorfer and L.F. Shampine are thanked for supplying
pre-publication versions of their papers.

References

[1] U.M.Ascher, S.J.Ruuth and B.T.R.Wetton. Implicit-explicit methods for time-
dependent p.d.e.s. SIAM J.Numer. Anal., Vol. 32, No 3 pp797-823, June 1995.

[2] M. Berzins, A C1 Interpolant for codes based on Backward Differentiation
Formulae, Appl.Numer. Math. 2 (1986) 109-118.

[3] M. Berzins and R.M. Furzeland. An adaptive theta method for the solution of
stiff and non-stiff differential equations. Appl. Numer. Math. 9 (1992), 1–19.

[4] M Berzins and J M Ware. Solving convection and convection reaction problems
using the M.O.L. Appl. Numer. Math. , 20:83–99, 1996.

[5] M Berzins, P H Gaskell, A Sleigh, W Speares, A Tomlin, and J M Ware.
An adaptive CFD solver for time dependent environmental flow problems.

14

pp.311-318 in Numerical Methods for Fluid Dynamics V, Eds K.W.Morton and
M.J.Baines, Clarendon Press, Oxford 1995.

[6] K. Brenan, S. Campbell and L.R. Petzold, Numerical Solution of Initial Value

Problems in Differential-Algebraic Equations ,SIAM , Philadelphia 1996.

[7] A.C. Heard, M.J. Pilling, A.S. Tomlin Mechanism reduction techniques applied
to tropospheric chemistry. in press Atmospheric Environment (1997)

[8] W.Hunsdorfer and J.G. Verwer. A note on splitting errors for advection reaction
equations. Appl. Numer. Math. 18:191-199 (1995),

[9] J.Frank, W.Hunsdorfer and J.G. Verwer. Stability of implicit-explicit linear
multistep methods. submitted to Appl. Numer. Math. (1997),

[10] C.T. Kelly, Iterative Methods for Linear and Nonlinear Equations . SIAM,
Philadelphia, 1995.

[11] R. W. Klopfenstein. Numerical Differentiation Formulae for stiff systems of o.
d. e.s , RCA Review Vol. 32, pp447-462, September 1971.

[12] L. F. Shampine, Type-insensitive ode codes based on implicit A-stable formulas,
Math. of Comp. , Vol. 36, April 1981, 499-510.

[13] L. F. Shampine and M.W. Reichelt, The Matlab ODE Suite, SIAM J. on Sci.

Comput To appear .

[14] J.G. Verwer, Gauss-Seidel iteration for stiff odes from chemical kinetics, SIAM

J. on Sci. Comput Vol.15 1243-1250, 1994.

15

