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Abstract

A method-of-lines solution solution algorithm for reacting flow problems modelled
by hyperbolic p.d.e.s with stiff source terms is presented. Monotonicity preserving
advection schemes are combined with space/time error balancing and a Gauss-Seidel
iteration to provide an efficient solver. Numerical experiments on two challenging
examples are presented to illustrate the performance of the method.

1 Introduction

A currently active area of research is the numerical solution of hyperbolic
partial differential equations (p.d.e.s) with stiff non-linear source terms [9,11].
Tang [11] and others have concentrated on the convergence while Papalexan-
dris et al. [9] and others (e.g. Leveque) have considered new spatial discretiza-
tion methods. The difficulty of solving such problems was illustrated by [8]
who showed that spurious numerical solution phenomena, such as incorrect
wave speeds may occur when insufficient spatial and temporal resolution are
used.

In this paper the application of the method of lines to such problems is con-
sidered. Monotone spatial discretization schemes are used to reduce the PDE
to a system of ordinary differential equations (ODEs) in time. For reacting
flow problems the spatial mesh points should be chosen with great care to
reflect the true solution of the PDE and to avoid generating significant but
spurious numerical solution features. One way of achieving this is to use one
of the many adaptive mesh algorithms, [3], to control the spatial discretisa-
tion error by refining and coarsening the mesh. The aim here is not only to
use such algorithms but also to integrate in time with sufficient accuracy so
that the spatial error is not degraded while maintaining the efficiency of the
time integrator. This has been achieved by varying the time accuracy toler-
ance with spatial error rather than keeping it fixed thus extending the work
of Berzins [3] to problems with stiff source terms. Such problems require the

Preprint submitted to Elsevier Science 5 July 2000



use of implicit methods to resolve the fast transients associated with some
chemistry species. For problems involving many species the cost of using im-
plicit methods may be high unless great care is taken with numerical linear
algebra. In the present work this is done by making use of a method developed
for method of lines solvers applied to atmospheric chemistry problems, [13,2].
The approach uses a Gauss-Seidel iteration applied to the source terms alone.
The advective terms are effectively treated explicitly but without introducing
a splitting error. The first part of this paper deals with the implementation of
these ideas for a 1D hyperbolic conservation law with a nonlinear source term,
[8]. while the second part will show results for the more complex problem of

Fedkiw [6,7].

2 Spatial Discretisation and Time Integration

The 1D Leveque and Yee problem [8], is given by

Ju  Ju
MO ) welodd V()= D -05) ()
and is the linear advection with a source term that is ”"stiff” for large p. The
initial and boundary values (at © = 0) are defined by

u(z,0) =wup(x)=uy, = la<ag up = 0, v > a4

where 4 = 0.1 or 0.3 in the cases considered here. The infinite domain will
also be truncated to [0, 1] for the cases considered here, as this is sufficient
to demonstrate the behaviour of the methods employed. A simple outflow
boundary condition is then used at = 1. The solution of equation (1) is a
discontinuity moving with constant speed and has a potentially large source
term that only becomes active at the discontinuity, [8].

Defining a spatial mesh 0 = #; < ... < zxy = 1 and the vector of values U
with components U;(t) ~ u(x;,t) where u(x,t) is the exact solution to the
p.d.e. and U;(t) is the exact solution to the o.d.e. system derived by spatial
semi-discretization of the p.d.e. and given by

U = Fn(t,U(1)), U(0) given, (2)

and this true solution [U(%,)]._, is approximated by [V (¢,)]5—y at set of dis-

crete time 0 = 15 < t; < ... <1, = 1. by the time integrator. The form of the
ODEs system given by equation (2) at time ¢ is given by

Fyv(t, U(ta)) = FA(t, U(ta)) + Fie(tn, U(t)): (3)



where the vector Ffv(tn,U(tn)) is the second-order limited discretisation of
the advective terms in equation (1) whose components are given by
(B(rj, 1) Blri-, )| (Ui(t) = U (1))

F(t0(n) = - [14 55 - S0 ~ (4

where B is a limiter such as that of van Leer: (see [3])

el L R - Uir1(t) — Uj(t)
L+ r Us(t) — Uj_a(t)

B(rj,1) = ()

The vector F (¢, U(t)) represents the approximate spatial integration of the
Tl

source term which is defined by ﬁf%ﬁf Y(U(x,t))dx and is evaluated by
-%

using the midpoint quadrature rule so tha tits jth component is:

F(6U(1) = o (U;(R)- (6)

The time integration method used here (mostly for simplicity of analysis) is

the Backward Euler method defined by

Vitat) = V(L) + Fnllags, Vitet))- (7)

In the case when a modified Newton method is used to solve the nonlinear
equations at each timestep, this constitutes the major computational task of
a method of lines calculation. In cases where large o.d.e. systems that result
from the discretization of the flow problems with many chemistry species the
c.p.u. times may be excessive unless special iterative methods are used.

The approach taken here follows [4] in neglecting the advective terms J; = %
, and concentrates on the Jacobian of the source terms J;, = ZE* when form-

5V
ing the Jacobian matrix used in the Newton iteration. This approach, in the

case when no source terms are present, corresponds to using functional it-
eration for the advective calculation, see [2,4]. The matrix I — Atv.J; is the
Jacobian matrix of that part of the o.d.e. system corresponding to the dis-
cretization of the time derivatives and the source terms. This matrix is thus
block-diagonal with as many blocks as there are spatial elements and with each
block having as many rows and columns as there are p.d.e.s. The fact that
a single block relates only to the chemistry within one cell means that each
block’s equations may be solved independently by using a Gauss-Seidel iter-
ation, which has also been used with great success for atmospheric chemistry
problems, [13]. The nonlinear equations iteration employed here may thus be
written as

(1= AL J) [V (tyr) = V(L)) = v (£24) (8)



where r (t?_l_l) = —V"(t,11)+ V(tn) + AtFEn(tus1, V™ (tn41)). This approx-
imation is only used to speed up the solution of the nonlinear equations and,
providing that the iteration converges, has no adverse impact on accuracy. In
order for this iteration to converge with a rate of convergence r. it is necessary,

[2], that

| [ = AtT)Y At Je || = 7. where r. < 1. 9)

Using the identity || ab ||<]| @ ||| b ||, and noting that .J; may be written as
(Ax)~'J7 gives:

At
[ RN [T NTAY D (10
For the p.d.e. in (1), [/ — AtJ] is a diagonal matrix with entries 1 + Aty 22
where

o ) (1)

and where p(V) = 3V? — 3V + 0.5 gives a CFL type condition that allows
larger timesteps as y increases. The function p(V') is bounded between the
values 0.5 and —0.25 for solution values in the range [0, 1].

3 Space-Time Error Balancing Control.

Hyperbolic PDEs are often solved by using a CFL condition to select the
timestep. One alternative approach developed by Berzins [3,4] is to use a local
error per unit step control in which the time local error ( denoted by le(?)) is
controlled so as to be smaller than by the local growth in the spatial error over
the timestep (denoted by est(?)). In the case of the Backward Euler method
the standard local error estimate at t,,41 is defined as le(#,41) and is estimated

in standard ODE codes by

le(tp1) = o Fx{er. Vi)~ Fx(t, V(L]

At? .

The error control of [3] is defined by

[enia(boga) | < el est(toga) || (13)



where 0 < € < 1 is a balancing factor and est(,41) represents the local growth
in time of the spatial discretisation error from t, to t,11, assuming that the
error is zero at t,. Once the primary solution has been computed using the
method of Section 2, a secondary solution is estimated at same time step with
an upwind scheme of different order and a different quadrature rule for source
term integration. The difference of these two computed solution is then taken
as an estimate of the local growth in time of the spatial discretization error
in the same way as in [3]. The primary solution V(t,41) starting from V(#,)
is computed in the standard way as described in Section 2. The secondary
solution W(%,,11) is computed by solving

W(t) = G/(t, W) + G* (t, W(t)), W(t,) = V(i,). (14)

with initial value V,,, where Gf and G* are the first order advective term and
the source terms which are evaluated using a linear approximation on each
interval and the trapeziodal rule i.e.

(W;(t) = Wia(®)
AN, ’

G W)= {06(Wia(t)) + 26(W;(0) + (Wi (1), (15)

Gt Wi(t) = -

Estimating es(t,+1) by applying the Backward Euler Method to (14) sub-
tracted from (7) with one iteration of the modified Newton iteration of the
previous section, as in [4], gives

17— At fes{tns)] = Bt (fr1, V(i) = G (b, Vi) (16)
+ F*(t41, V(tut1)) — G*(tnug1, V(tny1)) |

where es(t,+1) &~ V(t,41) — W(t,41). From this the estimate of the local

growth in time of the spatial discretization error and is given at the jth grid
point by

(L4 At p (Vi(taga))]estj(tog)

AL N
= 35 B D) = =Bl DIViltasr) = Vit (b))
b 2 W sltarn)) = 200V ) + 6Vt ()

Vi1 (1) =V, (t
M. The term

involving the limiter B(.,.) may be rewritten as in [3], equation (5.13), as:

where p(V') is defined as in equation(10) and 7; =



[B(75:1) = =B DIV () = Vialtns)) =
o Vit 3 vt ] (18)

where a; and f3; are both in the range [0,1] and where V"I" = Vi (t41) —
2Vj(tus1) + Vioa(tasr) and V25

1.z 18 similarly defined. Hence

((Vim1(tns1)) = 20(Vi(tar)) + 0 (Viga (o)) = p(Vi) VI

where p(V') is defined by equation (11), then gives est;(¢,41 as

A
(14 0 Vi) est i) o [y Vi o 35 Vi
At .
b V) VI (19)

Let V* —ma:Jc(Vn‘I'1 V”‘"1

o i we)/O2? and then rewrite this equation as

AtAz |O‘J + ﬁ] +p Ax p(V( n+1)/4|

est;(t, <
|estj(tny1)] |1+ Aty p(Vi(ta41))]

Ve ]

and define the vector E(z, V) as having components E;(x,V;,1) where

2+ Az p(Vi(toy1)/4]
114 At p(Viltayr))|

E]‘(l’,‘/]‘,t) -

Taking norms after defining the vector V

. v
>, as having components V*  gives

Js

[est(tn) || < Aalt| E(z, Vit) Il Vo, |-

Combining this equation with (12) shows that another CFL type condition is
inherent in the error control defined by (13):

ot INE@ Vi) Il VE |
Dz — IV (tr) |

(20)

4 Numerical Solution with Fixed Meshes

In initial fixed mesh experiments with the problem defined by equation (1)
comparisons were made between the standard local error control approach



in which absolute and relative tolerances RTOL and ATOL are defined, see
Pennington and Berzins, [10], and the new approach defined by (13). The
choice of the parameter ¢ is an important factor in the performance of the
second approach. In selecting this parameter the local growth in the spatial
discretization error should dominate the temporal error and the work needed
should not be excessive. Obviously the larger the value of € the fewer ODE time
steps there will be, and the smaller the value of ¢ the more steps there will be.
A good compromise between efficiency and accuracy is to use € in the range
0.1 to 0.3. The numerical experiments described by Ahmad [1] confirm the
results of Berzins [3] although it is noted that for some combustion problems,
e may have to be reduced below 0.1.

An important feature of solving the problem defined by equation (1) is that
the numerical solution may move with an incorrect wave speed. Leveque and
Yee [8] showed that the step size and the mesh size should be O(%), to avoid
spurious solutions being generated. In order to illustrate these results we have
taken x4 = 0.3 in equation (1), Az =0.02 and used a fixed time step At=
0.015. The product of time step At and the reaction rate p determines the
stiffness of the system. Fgure(1) shows the comparison of the computed solu-
tion and exact solution at ¢ = 0.3 for ¢ =100, and 1000 (Atu= 1.5 and 15)

respectively. It is evident from Figure (1) that for smaller Aty the strategy

o 0.2 0.4 06 08 1 ) o 0.2 0.4 06 08 1

Solution with Aty = 1.5 Solution with Aty = 15

Fig. 1. Comparison of True Solution(line) and Num. Solution(dots) using local error
control with 0.01 relative tolerance and 1 x 107> absolute tolerance

works well and good results are obtained. But when Aty = 15, the discon-
tinuity has stopped at x = 0.3 and when a trapezoidal quadrature rule was
used for the source term, a large undershoot and overshoot occurred in the
numerical solution.



5 Local Grid Refinement

In the previous section it was shown that the front is moving with the wrong
speed, due to lack of proper spatial resolution. Leveque and Yees [8] pointed
out that the source of difficulty is the discontinuity in the solution and that
a much finer grid is needed there. One solution, suggested by [8] to such
problems is to deploy a method that is capable of essentially increasing the
spatial resolution rather than excessive refinement of the overall grid.

For this purpose a monitor function was used to guide the decision where to
refine or coarsen the mesh. A commonly used monitor function is the second
spatial derivative which however tends to infinity around a shock [10] as the
mesh is refined. In order to overcome this we have introduced a new monitor
function based upon the local growth in time spatial error est as defined by
equation (13). This leads to the use of local grid refinement, and with the
help of the error balancing approach described in Section 3 it is possible to
create a new refined grid directly surrounding of the location of the source.
For this purpose we have modified the approach described by Pennington and
Berzins [10]. The remesh routine bisects the mesh cell if the monitor function
is too large or combines two cells into one if the monitor function is well below
the required value. In the experiments here remeshing routine is called on
every second time step. The adaptive mesh initially starts with 26 points and
when the error was larger that specified limit then the corresponding cell is
subdivided into two with a 75 maximum points being allowed for the case
shown in Figure 2, which shows the front moving correctly.
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Fig. 2. Comparison of True Solution (lines) and Computed Solution(Dots) with grid
refinement technique at time equal to 0.6.



6 Combustion Problem

Modelling reactive flow in combustion problems is based on a generally ac-
cepted set of time-dependent coupled partial differential equations maintaining
conservation of density, momentum and energy. There are basically four types
of physical processes represented in reactive flow equations. These processes
are chemical reactions, diffusive transport, convection and wavelike properties,
[6]. The chemical kinetics represents the production and loss of the chemical
species, convection describes the motion of fluid quantities in space. The wave-
like behaviour are described implicitly in the reactive flow equations by the
coupled continuity equations. The important point about wavelike motion is
that energy is transferred from one element of the fluid to others by waves
that can travel much faster than the fluid velocity.

The main type of wave considered here is a shock wave, which moves as a
discontinuity through the domain. The shock wave heats and compresses the
undistributed reactive mixture as it passes through it. The raised temperature
triggers chemical reactions; energy release eventually occurs and the pressure
waves are generated, some of which propagate forward and accelerate the shock
wave. The reactions may proceed very rapidly after the initiation, which will
make the source term stiff [12,13] in time, hence it is possible that the solution
will yield non-physical waves with incorrect speed and incorrect discontinuous
in flow properties [6,12].

The governing equations of the combustion problem considered here are the
Euler equations modified in such a way that the flow of more than one species
can be considered, Ton et al. [12] and Fedkiw [6]:

wo+ M)l = (), (1)
where
R [ pu ] _ 0 |
pU pu? +p 0
E (E+pu 0
- flu) - s =]
p}/l pux/l wl(T7p7}/17"'7YNS—1)
| pYNs—1 | | puYns_q | wns—1 (T, p, Y1, -+, Ys—1) |

and w; represents the mass production rate of the ith species and where the



energy equation is given by
pu’
2

E = —p+ + ph, (22)

where h is the enthalpy. N.S represents the number of species (nine in all) and
Y; is the mass fraction of species i and Yys = 1 — Y ¥571Y;. The equation of

state for the mixture of gas is given by p = p [vaﬁ YZ»RZ'] T.

In this one-dimensional shock tube test problem with chemistry, as given in
[1,6,7], a shock hits a solid wall boundary and is reflected. Then, after a delay,
a reaction wave kicks in at the boundary. The reaction wave eventually merges
with the shock causing a split into 3 waves. From wall to outflow (left to right)
these waves are a rarefaction, a contact discontinuity and a shock (see Fedkiw
[6,7]). Following Fedkiw [6,7] we have taken 2/1/7 molar ration of H2/02/Ar

and all the gases are assumed to be thermally perfect with initial data values

kg

’
m3

p = .072 u=>0

m J
S

, p = 7173%’ (23)

on the left and on the right the initial data is given by

k J
p o= A8T0-L = —4RT34° p = 35594, (24)
m S m

The length of domain is 10cm and time is 230y s. The left side boundary con-
ditions are reflective, while transmissive boundary conditions have been im-
plemented on right hand side of the domain. The domain has been discretized
into 400 equally spaced grid cells. To handle the steep spatial fronts, it is nat-
ural to apply modern shock-capturing numerical methods for the convective
terms. The spatial discretization method was that of Section 2 combined with
the Marquina flux method [5] whose excellent shock-capturing behaviour on
non-reacting flows, has motivated its use here for reacting flow. The theta
method, [3], together with Gauss Seidel iterative method has been used for
the time integration. Thus the methods used are somewhat different to the

ENO approach adopted in Fedkiw[6,7]. For full details see Ahmad [1].

The results obtained from the code are not entirely oscillation free - there is
small oscillation due to fact the numerical method has to resolve a one cell
thick shock. For many of the chemistry components the solution values in all
cases were very similar. Substantial differences were observed in the H;O, and
HO; species and these are displayed from left to right as cases A,B and C in
Figues 3 and 4. The results with new error control strategy given by equation
(13) are given in Figures (3,4) as case A. For time of 230us and the code took
6532 steps and the results are comparable to Fedkiw[6,7]. The code has also
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been run with a standard local error per step control strategy as given by
equation with different relative (RTOL) and absolute (ATOL) values. With
RTOL= 0.1 and ATOL=1 x 107%, in this case, the code halted after some time
due to negative pressure being generated near the boundary and consequently
a slightly tighter tolerance has been used and the code has been run with
RTOL=0.1 and ATOL= 107°. In this case the code took 5549 steps to reach
the final time=230us and got small oscillations as given in case B of Figures
(3,4). When the code was run with RTOL=0.01 and ATOL=10"°, the code
took 8207 steps and the results are given as case C in Figures (3,4). Again
small oscillations are visible in this case.

004 006 008 o1 012 o 002 004
Distance in mets

Fig. 3. Cases A,B,C: H02 Component Values at time=230us.

o
004 006 008 o1 012 o 002 004
Distance in meter

Fig. 4. Cases A,B,C, H202 Component Values at time=230us.

With both strategies, the results are of comparable accuracy except for the
species HOy and Hy0Oy. When the LEPS strategy is being used, a comparison
of results with Fedkiw [6,7] shows that for 0.1 relative tolerance the HO;
peak is higher and the Hy0, peak is smaller while for 0.01 relative tolerance
the HO; peak is comparable to Fedkiw [6] but the peak of H,0, is smaller.
On the other hand when LEPUS strategy is being used HO; is identical to
Fedkiw [6] and H,0; is only slightly smaller than Fedkiw [6,7]. From this we
again draw the conclusion that LEPUS control strategy gives solution with
the comparable accuracy to that of the LEPS control strategy, but for this
extremely stiff and nonlinear problem, there is a need to reduce the balancing
factor € to 0.025.
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