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Purpose: To develop and test a nonlocal means-based
reconstruction algorithm for undersampled 3D dynamic
contrast-enhanced (DCE) magnetic resonance imaging
(MRI) of tumors.

Materials and Methods: We propose a reconstruction
technique that is based on the recently proposed nonlocal
means (NLM) filter which can relax trade-offs in spatial
and temporal resolutions in dynamic imaging. Unlike the
original application of NLM for image denoising, the MR
reconstruction framework here can offer high-quality
images from undersampled k-space data. The method is
based on enforcing similarity constraints in terms of
neighborhoods of pixels rather than individual pixels. The
method was applied on undersampled 3D DCE imaging of
breast and brain tumor datasets and the results were
compared to sliding window reconstructions and to a
compressed sensing method using total variation con-
straints on the images.

Results: Undersampling factors of up to five were
obtained with the proposed approach while preserving the
spatial and temporal characteristics. The NLM recon-
struction method offered improved performance over the
sliding window and the total variation constrained recon-
struction techniques.

Conclusion: The reconstruction framework here can give
high-quality images from undersampled DCE MRI data
and has the potential to improve the quality of DCE tu-
mor imaging.
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DYNAMIC CONTRAST-ENHANCED (DCE) magnetic
resonance imaging (MRI) of tumors offers a promising
means to assess tumor vascularity and vessel perme-

ability (1,2). It can also be a valuable means to track
the treatment response of novel drug therapies (3–5).
The uptake and washout temporal characteristics
along with the shape and spatial boundaries of the
tumors offer useful information about their malig-
nancy (6,7). High spatial resolution is required in
order to be able to delineate the boundaries of small
enhancing lesions (8). It has been demonstrated that
high temporal resolution can increase the diagnostic
accuracy by obtaining semiquantitative/quantitative
parameters for kinetics of tumor enhancement follow-
ing the injection of contrast agent using pharmacoki-
netic models (9,10). However, conventional data ac-
quisition and reconstruction schemes are limited in
terms of achieving desirable spatial and temporal res-
olutions simultaneously.

A number of frameworks have been proposed to
overcome the trade-off in spatial and temporal resolu-
tions in dynamic MRI. A comprehensive overview of
all the reconstruction techniques is beyond the scope
of this article; however, we mention some of the meth-
ods that have been applied or that are directly appli-
cable to DCE tumor imaging. Parallel imaging techni-
ques like SENSE (11) and GRAPPA (12) acquire
undersampled k-space data for each time frame and
use the coil sensitivity information to resolve the arti-
facts and are commercially available on most clinical
scanners. SENSE was recently applied on a large
breast cancer population and was found to shorten
scan times over conventional acquisitions (13). These
techniques, however, do not take into account the
temporal redundancy in dynamic imaging, limiting
achievable accelerations. In addition, parallel imaging
techniques result in a signal-to-noise ratio (SNR) pen-
alty in the reconstructed images.

Data sharing methods have been proposed that use
data acquired from adjacent time frames to fill in the
missing data (14,15), taking advantage of temporal
correlations. A view-sharing method that fills in miss-
ing radial k-space lines in the current frame from ad-
jacent time frames was applied on breast DCE acquis-
itions to remove streaking artifacts and to obtain high
spatial resolution images (15). However, these meth-
ods cause temporal blurring of rapidly changing sig-
nals, especially around the spatial edges of small
enhancing structures (15,16). The UNFOLD method is
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a popular approach to capture rapid physiological
changes in dynamic imaging by achieving high under-
sampling factors in k-space without significant loss in
image quality. The method is based on application of
a temporal lowpass filter (17). The method uses inter-
leaved undersampling of data over different time
frames to move the ghosting artifacts toward the ends
of the temporal frequency spectrum and then removes
them using a lowpass filter. The method was used to
accelerate functional MRI (fMRI), cardiac cine imag-
ing, and cardiac perfusion imaging (17,18). k-t BLAST
method extended the UNFOLD approach by spatio-
temporal filtering the undersampled data (19). The
approach is based on a Wiener filter in which training
data are used to obtain an estimate of the power spec-
trum of the signal estimate and a spatiotemporal filter
is built to remove Nyquist undersampling artifacts in
x-f space.

Hybrid methods combining dynamic imaging tech-
niques with parallel imaging methods have also
been proposed. A radial view-sharing method in-
plane was combined with SENSE encoding in slice
dimension for accelerating bilateral breast DCE
acquisitions (20). TSENSE approach (21) combined
the UNFOLD method with SENSE reconstruction
and was applied to 3D spiral breast imaging (22).
Postprocessing methods like Independent Compo-
nent Analysis have also been applied to remove
streak artifacts from radial undersampling in breast
DCE imaging (23). The feasibility of using the HYPR
approach (24) for high spatial and high temporal re-
solution breast imaging has been demonstrated
(25).

Recently, an inverse problem based total variation
(TV) filtering has been extended to remove undersam-
pling artifacts when reconstructing both static and
dynamic MRI data (26–28). In the original application,
the filter was applied to denoise images by iteratively
minimizing a cost function consisting of an image fi-
delity term and an L1 norm penalty term on image
gradients (29). The method produced high-quality
edge-preserving denoising for a variety of images
including MR images (30). Unlike the denoising case,
in the MR reconstruction problem data are acquired
in k-space and we can incorporate information about
the sampling pattern; fidelity is preserved only at the
sampled locations and the same TV filter is applied to
resolve the undersampling artifacts. This approach
fits in the framework of compressed sensing, which
suggests that exact reconstruction of sparse objects
from undersampled Fourier data (below the Nyquist
limit) is possible by minimizing the L1 norm of sparse
estimate (31,32). The approach was applied to a num-
ber of imaging scenarios and led to improvements in
quality over conventional approaches. However, one li-
mitation with the TV constraint is that it does not
fully exploit the redundancies in images, as the inten-
sity gradients are local and this results in a staircase
effect in the reconstructed images with loss of fine
texture (33). Also, since most MR images do not sat-
isfy the piecewise constant model for TV, small image
features which may be important can be lost
(26,27,34).

Nonlocal means (NLM) is an image denoising
method recently proposed by Buades et al (35). The
fundamental idea of NLM is to reduce noise by averag-
ing similar pixels regardless of whether they are spa-
tially close or not. Based on a more statistical frame-
work, an iterative unsupervised information-theoretic
adaptive filtering (UINTA) denoising method was pro-
posed at the same time (36). The methods produced
state-of-the-art denoising results on a wide variety of
images including ones with fine structures and tex-
ture. In the context of MRI, NLM was applied to
denoise brain MR images after correcting the magni-
tude images for bias (37,38). Improved noise removal
was achieved when the approach was extended to use
multimodal images jointly (39). NLM denoising was
also recently applied to real-time cardiac MRI acquisi-
tions to improve the SNR (40). Unlike its previous
applications for denoising, here we extend the NLM
method to reconstruct images from undersampled k-
space data. Motivation for using such a nonlocal con-
straint for MR reconstruction arises from the success
of the neighborhood or patch-based nonlocal means
denoising method over previous methods based on
local features (37,38). Nonlocal constraints can serve
as a better model for artifact-free MR images than gra-
dient-based constraints and enforce self-similarity in
terms of patches rather than individual pixels. Here
we broaden the NLM-based reconstruction method
used for 2D static MRI (41) to 3D dynamic imaging of
tumors and also take into account the multicoil na-
ture of MRI to obtain higher reduction factors.

The article is organized as follows. In the next sec-
tion we first give an overview of the original NLM filter
for general denoising and then build an MR recon-
struction framework based on the filter for 3D
dynamic reconstruction. Results are then presented
using DCE data acquired from patients with breast
and brain tumors and compared to existing methods.
A discussion of aspects of the reconstruction includ-
ing possible extensions follows.

MATERIALS AND METHODS

Nonlocal Means

A wide spectrum of images have inherent redundancy
and this can be exploited to remove noise. In the NLM
method, each pixel in a given noisy image is modeled
as a weighted average of pixels in a large neighborhood
surrounding it. These weights are assigned based on
the amount of similarity to the given pixel. Similarity
here is defined in terms of a distance between spatial
neighborhoods surrounding the pixels. The distance
between neighborhoods is computed based on differ-
ences in pixel intensities, as described below. The
mathematical formulation of NLM is given as:

m̂ðpÞ ¼

P
q2VðpÞ

wðp;qÞmðqÞ
P

q2VðpÞ
wðp; qÞ ½1�

Where m̂ is the filtered version of the given image, m.
p is the pixel of interest andV(p) is a large neighborhood
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of pixels around p (search window), w(p,q) is the weight
for pixel q inV(p) which is computed as:

wðp;qÞ ¼ e
�dðp;qÞ

h2 ;dðp; qÞ ¼ jjmðNpÞ �mðNqÞjj22;a ½2�

Np and Nq are identical in size and shape, smaller
neighborhoods around p and q, respectively (compari-
son windows). d(p,q) is a Gaussian weighted Euclid-
ean distance between the pixel intensities around p
and q, and the parameter a is the variance of a Gaus-
sian that gives decaying weights to pixel differences
away from p and q (35). The parameter h controls the
decay of the weights.

Reconstruction of Undersampled Dynamic Data

When k-space data are undersampled, artifacts arise
in the images. The degradation in image quality
depends on the amount and the type of undersam-
pling and is not the same as that caused by adding
more noise to the images. In order to resolve these
undersampling artifacts we use a model-based
approach built on a realistic nonlocal model for
images (35). We apply the model constraints on the
spatial and temporal characteristics of dynamic MR
images. The spatial neighborhood constraint, Snbd for
a given time frame is a penalty functional given by:

snbd ¼
X
p2tfr

X
q2VSðpÞ

wsðp; qÞ k mp �mq k22 ½3�

In Eq. [3], m is the reconstructed image estimate for
the dynamic data, mp and mq are individual pixels p
and q in a given time frame tfr, XS represents the 2D
spatial search window and ws represents the spatial
weighting. Unlike gradient-based penalty terms, this
constraint enforces similarity in terms of neighbor-
hoods rather than adjacent pairs of pixels. In order to
also model the temporal correlations, another neigh-
borhood-based penalty term is used. For a given pixel
time curve, tcr, this is computed as

Tnbd ¼
X
p2tcr

X
r2VT ðpÞ

wtðp; rÞ k mp �mr k22 ½4�

Where mp and mr represent pixels at timepoints p
and r, VT represents the 1D temporal window and wt

represents the temporal weight.
Along with these spatial and temporal image con-

straints (Snbd and Tnbd), a data fidelity constraint is
needed to form the image reconstruction approach.
Incorporating the k-space sampling pattern informa-
tion and applying the Fourier transform, the data fi-
delity constraint is given by k Am� d k22. A denotes
the forward modeling operator on the image m to
match the acquired data d from a single coil. In order
to exploit the multicoil nature of the data acquisition,
we modify this data fidelity constraint as:

F ¼k Em�D k22 ½5�

where E represents an operator with both coil sensi-
tivity and k-space sampling information for all the

coils and D is the data acquired from all coils (26).
This penalty term ensures that the final reconstructed
image estimate matches data acquired simultaneously
from multiple coils.

Putting the above model constraints together,
dynamic joint multicoil reconstruction uses the sum
of Tnbd over all time curves and Snbd over all time
frames:

minm

X
8tcr

Tnbd ;
X
8tfr

Snbd

 !

s:t: k Em�D k22< e

½6�

where e is a small positive constant related to the
noise level.

This approach represents a general framework that
results in reconstructed MR images that have similar-
ity in neighborhoods rather than only in adjacent
pixel values.

Implementation of the constrained reconstruction is
performed in an iterative projections onto convex sets
(POCS) framework (42). In every main iteration, the
reconstructed image estimate is projected onto the
multicoil data fidelity term and then Eq. [1] is applied
in time and space in order to minimize Eqs. [4] and
[5]. A similar alternating minimization POCS scheme
has been used for L1 constrained reconstruction. Note
that applying the NLM filter in Eq. [1] on the image in
space and time is equivalent to minimizing Eqs. [3]
and [4], respectively. This is mathematically shown
previously (43), where NLM was applied for super-re-
solution reconstruction of naturally occurring images.

The NLM formulation is more general than the
gradient-based constraints, which minimize the
local difference between pixels, for example,
Tgradient ¼

P
p2tcr

k mp �mp�1k1 represents a temporal L1

norm gradient constraint (28). In contrast to TV, the
difference between each pixel and a larger neighbor-
hood of pixels is minimized with a certain weighting
in NLM. Figure 1 illustrates the idea of modeling the
spatial and temporal characteristics using the neigh-
borhood constraints using a DCE breast dataset. One
single time frame from the dynamic sequence along
with a time curve for pixel p is shown for illustrative
purposes. The above NLM framework results in recon-
structed images where each pixel p is modeled as a
weighted average of pixels not only in the spatial
search window Xs but also in the temporal search
window XT. The weights for pixels in the search win-
dow are such that higher weights are given to pixels
with similar comparison windows, for example, Sp

and Sq have similar spatial comparison windows and
Tp and Tr are similar in the temporal search window.
This pushes similar pixels to be more similar while
allowing differing pixels to be penalized less for main-
taining their difference.

The implementation for NLM reconstruction of DCE
MRI is:

1. Choose an initial guess: m0

2. Project the current image estimate onto the data
consistency term: mm

data ¼ mn þ E0ðD� EmnÞ, E0 is
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the adjoint operator of E. Superscript n is the
index for main iterations starting with 0.

3. Minimize the temporal penalty term by applying
the NLM separately on the real and imaginary
time curves of the current complex image esti-
mate and update the estimate: mn

TNL ¼ mn
data þ

a(NLT(m
n
data)�mn

data), a is the relaxation para-
meter which is set between (0,2] to ensure con-
vergence (44). NLT represents the 1D temporal
version of the filter in Eq. [1] applied on all time
curves. The weights wt are computed using mn

data

according to Eq. [2] but with 1D temporal
neighborhoods.

4. Minimize the spatial penalty term by applying
the NLM separately on the real and imaginary
images of the current complex image estimate:
mn

STNL ¼ mn
TNL þ a(NLS(m

n
TNL) � mn

TNL). NLS repre-
sents the 2D spatial version of the filter in Eq. [1]
applied on all time frames. The weights ws are
computed using mn

TNL according to Eq. [2] with
2D spatial neighborhoods.

5. Initialize the next iteration with the new image
from all three constraints: mnþ1 ¼ mn

STNL.

Steps (2–5) are repeated until the difference between
new image estimate, mnþ1 and current image mn is
below a certain threshold or a certain maximum num-
ber of iterations is reached.

For 3D dynamic tumor imaging, 3D k-space data
are acquired at each time frame. In order to reduce
the computation time, we perform a 1D Inverse Fou-
rier Transform (IFT) along the fully sampled readout
dimension of each 3D data frame and process the 2D
slices of phase encoded data separately. Processing
with 3D data was slower by �15% than calculating all
of the slices separately and has higher memory bur-
den than cropping in the read dimension and using
2D FTs. Since the computationally intensive neigh-
borhood constraints are applied on image estimate m,
using a joint multicoil approach saves reconstruction

time and yields improved results. This is in contrast
to reconstructing individual coil images separately
and combining them.

The parameters for the reconstruction are as fol-
lows. For computing the weights wt and ws, search
window size ¼ 7, comparison window size ¼ 5, and
square neighborhoods were chosen for the spatial
case. The decay parameter for the weights, h, was
chosen as 0.2st for temporal, and 0.05ss for spatial
penalty terms. st and ss represent the temporal and
spatial standard deviations of pixel intensities in the
background region of the undersampled real images
reconstructed with IFT. The initial estimate m0 was
chosen by combining complex IFT images of the
undersampled data from different coils (45). a was
chosen as 0.1. These parameters were empirically
chosen using one fully sampled dataset as the gold
standard and sensitivity of results to the parameters
is presented in the Discussion section.

In Vivo DCE Data

Fully sampled raw k-space data were acquired with a
Siemens scanner using a 3D spoiled gradient echo
sequence in four breast cancer patients and one brain
tumor patient. For the bilateral breast data acquisi-
tion with left to right read direction, scan parameters
were TR ¼ 2.35–3.16 msec, TE ¼ 0.99–1.24 msec, flip
angle ¼ 10–15�. A seven channel dedicated breast coil
was used. The acquisition matrix, kx-ky-kz-t, varied
between 256 � (80–104) � 80 � (42–60). Temporal re-
solution was 12–15 seconds and 6/8 partial Fourier
was used in ky and kz. 0.1 mL/kg dose of Omniscan
was injected at a rate of 4 mL/sec followed by a 20-
mL saline flush at a rate of 2 mL/sec. For the brain
acquisition TR ¼ 2.82 msec, TE ¼ 1.04 msec, flip
angle ¼ 17�. Acquisition matrix was 256 � 70 � 26 �
60 with 6/8 partial Fourier in ky and kz. The tempo-
ral resolution was 5 seconds. Informed consent was

Figure 1. Illustration of modeling of DCE data with spatiotemporal neighborhoods. (a) Single time frame from a DCE breast
sequence with a spatial search window VS around pixel p, and spatial comparison windows Sp and Sq around pixels p and q,
respectively. (b) Illustrative time curve corresponding to pixel p along with 1D temporal search window VT around pixel p and
temporal comparison windows Tp and Tr around timepoints p and r, respectively. Gaussian weighting is used for these spa-
tial and temporal comparison windows to weigh more the central pixels.

1220 Adluru et al.



obtained and all patient data were acquired in accord-
ance with the Institutional Review Board guidelines.

In order to test the NLM constrained reconstruction
approach, data for each coil were undersampled off-
line in a variable density fashion in which nine contig-
uous central phase encoding lines in each of nine cen-
tral planes in 3D k-space were kept and the phase
encodes in the outer planes were discarded in a uni-
formly random pattern for each time frame. The ky-kz
sampling pattern for a single time frame is shown in
Fig. 2. This type of sampling pattern produces ‘‘softer’’
artifacts as compared to those arising from an inter-
leaved undersampling pattern. Figure 2a,c shows the
fully sampled and undersampled images, respectively,
of a single slice of breast data from a single timepoint
from a single coil reconstructed using IFT. The under-
sampled image is blurry and has noise-like artifacts
as opposed to discrete ghosts found with interleaved
undersampling. For both breast and brain datasets
the last time frame in the dynamic sequences was
generated by a sliding window reconstruction as out-
lined below in order to obtain the coil sensitivity infor-
mation. Each individual complex coil image was di-
vided by the sum-of-squares image and fit to a third-
order polynomial to obtain the sensitivity information
(11).

Comparison to Existing Methods

Total Variation Constrained Reconstruction

We compare the nonlocal means approach to the TV
constrained reconstruction with spatial and temporal
constraints. The 2D L1 norm spatial constraint (total
variation) is given by k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirxm2 þrym2

p k1, where !x

and !y are spatial gradients in x and y, respectively.
The corresponding temporal constraint is given by
k rtmk1 where !t is the gradient along time dimen-
sion for each pixel. Reconstruction is performed itera-
tively by minimizing the cost functional consisting of
the multicoil data fidelity term in Eq. [5] but using the
total variation constraints on the image estimate. A
gradient descent approach was used for the minimiza-
tion process (28). We note that when the data D are
fully sampled according to the Nyquist limit, this is
equivalent to the original TV application for denoising.
POCS-based alternating minimization can also be
applied to the TV constrained reconstruction. Typi-

cally a few iterations of gradient descent or conjugate
gradient are performed for the TV minimization in a
serial POCS framework (46).

Sliding Window Reconstruction

We also compare the NLM reconstruction to the noni-
terative sliding window reconstruction method. In this
method, for a given time frame, the missing phase
encoding lines in 3D k-space are filled in from the
nearest sampled k-space lines in neighboring time
frames to give a full 3D k-space at each time frame.
After filling in the missing k-space data for multiple
coils, 3D IFT was applied and the individual coil
images were combined using the complex coil sensi-
tivities (45).

Evaluation of Reconstructions

Reconstructed images from undersampled data were
compared qualitatively as well as quantitatively to
fully sampled ground truth images. Difference images
were computed and visual analysis was done to iden-
tify residual artifacts and loss of any information.
Mean signal intensity time curves in different enhanc-
ing regions were computed and compared. Quantita-
tive analysis was done in terms of SNR indices and
root mean square (RMS) errors. An SNR index was
computed as m/s; m is the mean signal estimate com-
puted from the average of signal from a uniform
region in two different time frames in the dynamic
sequence and s is the standard deviation of the differ-
ence in signals obtained from the same region of in-
terest (47). The regions used are from gray matter or
soft tissue regions and the calculated SNRs are most
useful for comparison between the methods since
noise varies spatially in these reconstructions (48).

RESULTS

Breast Imaging

Figure 3 shows the results of reconstructions of a
sagittal slice using the NLM based approach and
compares the NLM results with TV and sliding win-
dow reconstruction methods. Figure 3a–g compares
the spatial characteristics and Fig. 3h–k compares
the temporal characteristics. The NLM and sliding

Figure 2. Illustration of under-
sampling. (a) Single time frame
for a sagittal slice from a 3D
DCE sequence for a breast
dataset from a single coil. (b)
Undersampling pattern in ky-
kz space for a single time
frame. The white region repre-
sents the phase encodes that
are kept. (c) Corresponding IFT
reconstruction of the under-
sampled data.
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window time frames are less pixelated and have over-
all improved contrast and higher fidelity to Fig. 3a
than the TV reconstruction. The difference image cor-
responding to NLM reconstruction has fewer defined
structures as compared to the TV method, suggesting

more faithful preservation of spatial features. In
terms of temporal characteristics, time curves from
the NLM reconstructions for both of the tumors
match the true time curves better than the time
curves from the TV reconstructions. While the sliding

Figure 3. Comparison of breast data reconstructions: spatial and temporal characteristics. (a) Single time frame recon-
structed using IFT from fully sampled data from all coils with complex coil sensitivities. ROIs are circled in the tumors. (b)
NLM multicoil reconstruction image from R ¼ 5 data. (c) TV multicoil reconstruction from R ¼ 5 data. (d) Corresponding slid-
ing window image from R ¼ 5 data. (e) Difference image (a–b). (f) Difference image (a–c). (g) Difference image (a–d). (h,i) Com-
parison of mean intensity time curves for large tumor ROI for: (h) full data, NLM and TV reconstructions (i) full data, NLM
and SW reconstructions. (j,k) Corresponding time curves for small tumor ROI curves. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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window result in Fig. 3d visually matches the true
reconstruction spatially, its performance is poor in
terms of preserving the crucial temporal characteris-
tics. This is a known limitation of this view-sharing
method, which causes temporal blurring of rapidly
varying signals (15,16). This temporal blurring is
more prominent in Fig. 3k, which compares the
curves for the smaller tumor ROI. The baseline inten-
sities for the sliding window curves are also elevated
due to the fact that for the initial time frames the
missing data are taken only from the future time
frames. Even though the data are undersampled by a
factor of five since variable density sampling pattern
is used, some data are filled in from more than five
frames apart. Mean SNR index over all the four data-
sets was computed by taking an ROI from the uni-
form soft tissue. For NLM and TV reconstructions it
was higher than fully sampled images by 23.5%
(614.3) and 27% (630), respectively. For SW recon-

struction it was lower than full data reconstruction
by 7.3% (66.1). The mean RMS error for the NLM
method was lower than TV by 8.9% (63.6) and was
lower than SW by 10.3% (613.1).

Brain Imaging

Figure 4 compares the three undersampled recon-
structions and the fully sampled image on an axial
slice. Fidelity in terms of spatial characteristics is
higher for the NLM image than the TV reconstructed
image. This difference can be appreciated better in
the zoomed images. The arrows point to fine struc-
tures in the images that are lost and have poor con-
trast in the TV image. This type of loss can affect not
only the visual analysis but also pixelwise quantita-
tive analysis (9,10). NLM and TV methods preserve
the temporal characteristics of the fully sampled data
and outperform the sliding window method as shown

Figure 4. Comparison of brain data reconstructions: spatial and temporal characteristics. (a) Single time frame recon-
structed using IFT from fully sampled data with a region of interest encircling the tumor (arrow). (b) NLM multicoil recon-
struction image from R ¼ 5 data. (c) TV multicoil reconstruction from R ¼ 5 data. (d) Corresponding sliding window image
from R ¼ 5 data. (e–h) Zoomed images corresponding to (a–d) respectively. The corresponding arrows in (f,g) point to the dif-
ferences in the images. (i,j) Comparison of mean intensity time curves from the ROI for: (i) full data, NLM and TV reconstruc-
tions (j) full data, NLM and SW reconstructions. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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in Fig. 4j. RMS errors for TV and SW images were
comparable. NLM’s RMS error was lower than TV and
SW images by 12%. The SNR index in the gray matter
region for both the NLM and TV reconstructions was
higher than fully sampled reconstructions by 41%
and 28%, respectively. For SW reconstruction, the
SNR index was comparable to full data reconstruction
(within 2%).

DISCUSSION

NLM-based reconstruction offers a promising way to
obtain quality images from severely undersampled
DCE tumor data. Unlike gradient-based constraints
that ensure similarity of adjacent pixels, the current
approach is based on a more realistic neighborhood
similarity model for MR images.

Reconstruction Parameters

The NLM-constrained reconstruction, like most itera-
tive reconstruction methods, has several parameters
that need to be chosen carefully to obtain good
results. The most important part in the reconstruction
is the computation of weights wt and ws in steps 3
and 5. For computing these weights, optimal choice of
the window sizes depends on image resolution and
these windows form the key idea of the nonlocal
approach. Choosing a very large search window may

not be optimal, as it not only increases computation
time but also can result in inclusion of unwanted
neighborhoods, albeit with low weights. Choosing too
large of a comparison window results in finding fewer
neighborhoods that are similar and can result in
incomplete suppression of the aliasing artifacts.

When individual pixels are compared for similarity
solely in terms of their intensities as opposed to their
similarity in neighborhoods around them (or equiva-
lently, the neighborhoods become single points), the
NLM approach reduces to an application of the bilat-
eral filter (49). It was recently reported for nondy-
namic MR reconstruction that using a bilateral filter
in an iterative fashion while preserving data fidelity is
equivalent to homotopic minimization of the L0 norm
of the underlying signal (50). The results with the
bilateral filter were reported to be comparable to the
L1 norm/TV approach (50). The framework presented
here is based on a more general filter and results in
improvements over the L1 norm/TV approach for 3D
dynamic MR images. For the tumor datasets here
with spatial resolution in the phase-encode directions
ranging from 1.5–2 � 1.5–2 mm2 and temporal resolu-
tion ranging from 6–15 seconds, an empirically deter-
mined search window size of 7 and comparison win-
dow size of 5 for computing the weights gave good
results. Although not shown here, the reconstructions
were robust to variations (62) in the window sizes.

Figure 5. Effect of decay control parameter ‘‘h’’: (a) Image corresponding to 100 times the optimal ‘‘h’’ values for both tempo-
ral and spatial constraints. (b) Image corresponding to 1/100 times the optimal ‘‘h’’ values for both temporal and spatial con-
straints. (c) Comparison of mean intensity curves for the large tumor ROI in Fig. 3a. (d) Comparison of mean intensity time
curves for the small tumor ROI in Fig. 3a. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Another important parameter is the decay parame-
ter, h, which controls the relative weighting of the dis-
tance between neighborhoods. Choosing a large value
for h results in a slower decay rate of the neighbor-
hood distance and results in excessive smoothing in
the reconstruction. On the other hand, choosing a
very small h results in inclusion of very few neighbor-
hoods with significant weights, leading to incomplete
artifact suppression. Figure 5 compares the spatial
and temporal characteristics of the reconstructed
images when h is varied for both wt and ws. The
images and the time curves are oversmoothed for a
large h, while the results are noisy when a small value
of h is chosen.

For all of the reconstructions here, convergence was
achieved within 300 iterations, as shown in Fig. 6.
The reconstruction error, as compared to full data
reconstruction, drops substantially in the first few
iterations and then at a slower rate in the later itera-
tions. The same trend is also observed with the plot in
Fig. 6b for the difference between the current image
estimate, mn and the previous image estimate, mn�1.

All of the reconstruction parameters were empiri-
cally determined using one dataset and were fixed for
all other datasets and resulted in similar performance
with graceful degradation in quality for nonoptimal
parameters.

Spatial vs. Temporal Penalty Terms

In order to exploit the dynamic nature of the tumor
imaging we model the spatial as well as the temporal
characteristics of fully sampled images using neigh-
borhood penalty terms and perform a joint multi-
image reconstruction. This is in contrast to directly
using parallel imaging techniques for accelerations
where each time frame is reconstructed independently
(11,12). Figure 7 compares the effects of temporal and
spatial constraints separately towards artifact re-
moval. While using each constraint independently
results in partial recovery of the true image estimate,
the joint approach results in overall superior quality.
Also, the order in which the temporal and spatial

Figure 6. Illustration of convergence of the NLM reconstruction. (a) Plot showing the reconstruction error (total absolute dif-
ference in pixel intensities) with iterations compared to full data reconstruction for the breast data. (b) Plot showing the total
absolute difference between the current and previous iteration image estimates for the breast data.

Figure 7. Spatial vs. temporal NLM constraints. (a) Image reconstructed using neighborhood penalty term only on the time
curves. (b) Image reconstructed using only spatial neighborhood penalty on individual time frames. (c) Image with both spa-
tial and temporal constraints is also shown for reference.

DCE MRI Reconstruction 1225



constraints are applied in the POCS framework did
not make a significant difference in the final results.

There are alternative approaches towards modeling
dynamic images, for example, using an NLM approach
with an enhanced spatial window (51). In (51), a 3D
search window was used, where the third dimension
is time. This resulted in improved denoising perform-
ance even when motion is present between the time
frames. Since there is minimal motion in the DCE tu-
mor images and the enhanced spatial window method
requires considerably more computation, we applied
spatial and temporal windows separately. For
dynamic MRI applications where motion is an issue,
the enhanced spatial window may offer improved
reconstructions.

Also, in Eqs. [3] and [4], while the weights wt and
ws are computed using patch distances, we are mini-
mizing the L2 norm difference between a single pixel
and individual pixels within a search window. An
even more general neighborhood based penalty term
can be used where the L2 distance between patches
within the search window is minimized (43).

Computation Time

Computation of weights ws and wt is the most com-
putationally intensive part in the reconstruction.
However, a number of approaches can be used to-
gether to make the approach feasible. First, the NLM
reconstruction allows for parallel implementation on
multicore processors. Steps 3 and 4 in the imple-
mentation were parallelized to run on an 8 processor
machine with MatLab’s (MathWorks, Natick, MA)
parallel computing toolbox. We found an approxi-
mately linear increase in speed-up with number of
processors. Also, the joint multicoil approach pro-
posed is significantly faster than reconstructing each
coil image separately (almost by a factor of number
of coils), since the constraints are applied on the sin-
gle image estimate m, rather than an image estimate
for each coil.

Here we break the 3Dþtime reconstruction task
into a series of smaller 2Dþtime problems (with crop-
ping in the read dimension) with two separate con-
straints to gain flexibility and reduce computational
load. A more computationally intensive 3D NLM con-
straint can also be applied, in which similarity is
enforced in terms of 3D cubes (y-z-t) around each
pixel.

The proposed NLM reconstruction is also robust to
the choice of initial estimate, m0. While IFT images
from undersampled data are used for the initial esti-
mate, the convergence to the final image can be accel-
erated by starting with an image closer to the final so-
lution. We found improvements in the reconstruction
time by a factor of three when the sliding window
images are used for the initial estimate. It took �10
minutes to reconstruct a 80 � 64 � 44 dataset from a
7-coil undersampled DCE breast acquisition, on a 2.8
GHz 8-processor machine in MatLab starting with a
sliding window initial estimate. While not imple-
mented here, it has been reported that accelerations
up to a factor of 45 can be achieved using multi-

threaded graphical processing units (GPUs) as com-
pared to standard CPUs for NLM denoising (52). Simi-
lar speed-ups could be achieved for NLM reconstruc-
tions. Additional software approaches, for example,
methods proposed previously (53,54), can be used in
order to speed up computation of the weights for the
reconstruction by selectively choosing the neighbor-
hoods within the search window.

In conclusion, the NLM-constrained reconstruction
approach offers a promising framework for improving
3D dynamic tumor imaging. The nonlocal constraints
are based on a generalized model for MR images and
can offer high-quality reconstruction from signifi-
cantly undersampled data. Unlike the linear sliding
window method and the nonlinear TV reconstruction
approaches, the proposed method offers a better
trade-off between temporal and spatial fidelity at high
accelerations. While the reconstruction is computa-
tionally demanding, multipronged software and hard-
ware technologies can be used to make it viable. The
proposed method has the potential to improve the
clinical utility of 3D DCE imaging of tumors.
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