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ABSTRACT 
 
Dynamic Contrast Enhanced (DCE) MRI is a useful technique 
to probe physiology in an organ or area of interest over time.  In 
this process a contrast agent is injected into the body and images 
are acquired over time to track the uptake and washout patterns 
of an area of interest.  It takes a relatively long time to acquire 
full data in k-space for each time frame without tradeoffs in 
spatial and temporal resolution.  We propose a Spatio-Temporal 
Constrained Reconstruction (STCR) technique that uses spatial 
and temporal constraints to reconstruct high quality images from 
undersampled dynamic k-space data.  The proposed method was 
tested on angularly undersampled (sparse) radial dynamic 
contrast enhanced myocardial perfusion data and compared to 
standard inverse Fourier reconstructions from full data. The 
method reconstructed images faithfully from as little as 15% of 
full data and contrast to noise ratio was improved by 30%.  
Image quality was preserved even in the presence of some 
respiratory motion. 
 
Index Terms: DCE MRI, myocardial perfusion, reconstruction, 
regularization.     

1. INTRODUCTION 
 
DCE MRI is used to measure the kinetics of enhancement in an 
object of interest.  It is a promising technique to evaluate and 
characterize coronary artery disease and tumor uptake patterns 
among other applications.  In DCE MRI a contrast agent is 
injected into the body and a series of images are acquired over 
time.  The amount of data that can be acquired is limited due to 
relatively long acquisition times often resulting in tradeoffs in 
coverage of the organ, spatial, temporal resolutions and signal to 
noise ratios (SNRs). Various methods [1 – 4] have been 
proposed to accelerate dynamic imaging by acquiring fewer data 
in k-space for each time frame and resolving aliasing and 
degradation using a priori information about the data. High 
acceleration factors cannot usually be achieved for DCE MRI 
without using training data due to rapid variation in contrast in 
images, which requires more temporal bandwidth. We recently 
proposed a Temporally Constrained Reconstruction (TCR) 
technique [5] to achieve acceleration factors up to a factor of 
five.  The method [5] was applied on sparse cartesian 
myocardial perfusion data with no respiratory motion.  We 
propose to extend the method [5] to achieve higher acceleration 
factors by (i) incorporating spatial constraints, (ii) using radial 
data instead of cartesian data and (iii) testing the method with 
some respiratory motion. 
 

2. METHODS 

2.1. Theory 
 
The standard approach to reconstructing DCE MRI data is to 
apply a 2D inverse Fourier transform on the full k-space data for 
each time frame (k-t space).  Acquiring sparse data, d , in k-t 
space results in aliasing artifacts (streaking in the case of radial 
undersampling).  Artifacts can be removed by using a priori 
information about fully sampled data as constraints in a 
regularization framework [5, 6].  Reconstruction of artifact free 
images can be obtained by minimizing the cost function C given 
by 
                      1 2min( ) min( )C T S
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Where m  represents the estimated complex image data,  is 
the fidelity to the acquired sparse data, and T and S represent the 
temporal and spatial constraint terms respectively, which are 
based on characteristics of the fully sampled data. The fidelity 

term is given by 
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norm, W is the binary sparsifying pattern used to obtain sparse 
data from full data. The temporal regularization term we chose 
is a maximum smoothness functional [5] given by 
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T m  where t  represents the temporal gradient 

operator, N is the total number of pixels in each time frame and 

im represents the time curve for pixel i.  This choice was based 
on the fact that for fully sampled image data, the real and 
imaginary time curves for the pixels are generally smoothly 
varying in time [5].  The spatial regularization term S we chose 
is the popular total variation (TV) regularization [7] which is 

given by 2 2 2
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S m m where 
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.  represents 

L1 norm, M is the total number of time frames in the dynamic 
sequence, x  is the spatial gradient of the image in x-direction, 

y  is the spatial gradient of the image in y-direction and  is a 

small positive constant. jm represents the time frame j in the 

dynamic sequence.  The TV spatial regularization was chosen in 
order to reduce the streaking artifacts from radial 
undersampling, while preserving the spatial edges in the images 
by not penalizing the gradients excessively.  In the above 
equation (1), 1  and 2 are the regularization parameters which 
control the amount of temporal and spatial regularization, 
respectively.  
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Reconstruction from the sparse data is performed by 
minimizing the cost function, C, given by 
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An iterative gradient descent with finite forward differences was 
used to minimize the above cost function.  The dynamic set of 
images were updated iteratively according to  
 

                1 '( );  0,1, 2...n n nm m C m n              – (3) 
 

In the above equation '( )C m  is the Euler Lagrange derivative 
of C with respect to m which is given by 
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In the above equation (4) 2
t represents the temporal laplacian 

operator. 
 

2.2. Myocardial perfusion data 
 
The STCR method was tested on simulated sparse radial data 
obtained from cartesian data and also on sparse actual radial 
data for dynamic myocardial perfusion, which is a good 
example of DCE MRI.  Cartesian and radial perfusion data were 
obtained from a Siemens Trio 3T scanner using an eight channel 
cardiac coil.  A saturation recovery turboFLASH sequence with 
TR/TE ~ 2.2/1.2 msec, flip angle=12 deg., slice thickness=8mm, 
was used to acquire cartesian and the actual radial data.   

Full cartesian k-space data for each time frame were used 
to simulate radial data by taking 96 equi-angular radial lines 
passing through the center of k-space to simulate 96 projections.  
We chose 96 radial lines as the images reconstructed using IFT 
on the simulated data matched closely with the IFT 
reconstructions from full cartesian data.  The % sparsification 
for the simulated radial data is defined as the fraction of the total 
number (96) of radial lines taken for each time frame.  The set 
of projections for the sparse radial data was rotated by a random 
angle for different time frames.  A typical radial mask for a 
single time frame is shown in figure 1.   

Sparsification of full actual radial data was done by 
sampling a fraction of the total projections in an interleaved 
fashion.  That is, for a given acceleration factor R, for the first 
time frame the projections nearest to 1, R+1, 2R+1,… were 
taken, for the second time frame projections nearest to 2, R+2, 
2R+2,… and so on were taken.  The % sparsification for the 
actual radial data is defined as the fraction of the total number of 
projections taken. 

The parameters for the spatio-temporal method were 
empirically chosen based on the results for a single dataset.  The 

regularization parameters 1 and 2 were chosen as 0.04 and 
0.005 respectively and the step size for the gradient descent  in 
equation (3) was chosen as 0.5.  The value of  was chosen on 
the order of machine precision.  A fixed number of iterations 
(1000) were performed to minimize the cost function C.  We 
found that regularization parameters 1 and 2 were robust to 

slight perturbations (by a factor of 0.5).  In [5] we used the L-
curve technique to determine the optimal regularization 
parameter for the temporal constraint.  We found that for a 
given undersampling and for a class of data, the optimal value 
of the regularization parameter did not change significantly [5]. 
We note that for the current method, techniques like L-surface 
[8] can be used to determine the optimal values of multiple 
regularization parameters.   

 
3. RESULTS 

 

3.1. Simulated radial data – No respiratory motion 
 
The results of the STCR approach on a simulated sparse radial 
perfusion dataset from a single coil with no respiratory motion 
are shown in figure 2.  Figure 2a shows a single time frame in 
the sequence reconstructed using the standard inverse Fourier 
transform (IFT) on the full cartesian data with a region of 
interest in the left ventricular (LV) blood pool region. The 
corresponding time frame reconstructed using IFT from ~15% 
(R~6.5) of full data is shown in figure 2b.  Figure 2c shows the 
reconstructed time frame using the STCR approach from the 
sparse data.  The intensity time curves in the reconstructed 
images for the region shown in figure 2a are compared in figure 
2d.  From the results we see that the artifacts from 
undersampling k-t space data are significantly reduced and the 
dynamics are well preserved.  SNR for an image frame picked 
from the center of sequence was computed as /LV noise , 

where LV is the mean signal intensity of a region in the LV 

blood pool and noise is the standard deviation of noise from a 
region in the background.  Contrast to noise ratio (CNR) for the 
image from the center was computed as ( ) /LV Myo noise , 

where Myo is the mean signal for a region in the myocardium.  

An improvement of 40% was observed in SNR and 38% was 
observed in CNR over the standard IFT reconstruction.   
 

3.2. Simulated radial data – With respiratory motion 
 
Although it is possible with some patients to acquire rest 
perfusion data with a good breath hold, it is very difficult for 
patients to hold their breath during stress perfusion scans.  
Reconstruction from sparse data with respiratory motion is 
challenging as it adversely combines with artifacts from 
undersampling of full data.  The proposed method was able to 
reconstruct faithfully from sparse (~25% of full data) radial data 
with respiratory motion.  The results from single coil data are 
shown in figure 3.  Figure 3a shows a single time frame 
reconstructed using IFT from a full dataset with considerable 
respiratory motion along with a region of interest in the LV 
blood pool. Figure 3b shows the corresponding time frame 
reconstructed from ~25% of full data and using IFT.  Figure 3c 
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shows the corresponding time frame reconstructed from sparse 
data using the current method.  Figure 3d compares the average 
signal intensity time curves in the reconstructed images for the 
region shown in figure 3a.  Higher sparsification could not be 
achieved in this case and led to streaking artifacts in the 
reconstructed images. 
 

3.3. Actual radial data – Minimal respiratory motion 
 
The results of the STCR approach on actual radial data from a 
single coil are shown in figure 4.  Gridding technique using bi-
linear interpolation was used to reconstruct images from radial 
data.  The radial data was first density compensated using a 
ramp filter to account for the oversampling of the center region. 
Density compensated data was then sampled onto a cartesian 
grid using bi-linear interpolation.  Figure 4a shows a single time 
frame reconstructed from full radial data using the gridding 
method followed by IFT.  A region of interest in the LV blood 
pool is also shown. Figure 4b shows the corresponding time 
frame reconstructed using the gridding method followed by IFT 
from ~15% (R~6.5) of full data.  Figure 4c shows the 
corresponding time frame reconstructed using the STCR 
approach from ~15% of full data.  Figure 4d shows the mean 
signal intensity time curves for the region shown in figure 4a. 
We see that the image features and dynamics are well preserved 
for reconstruction from sparse data.  SNR and CNR, computed 
as described in section 3.1, were improved by 33% and 31%, 
respectively, over the standard reconstruction from full data. 
 

4. DISCUSSION 
 
Spatio-temporal regularization method to speed up the 
acquisition of DCE MRI has been presented.  Although the 
results presented here are for dynamic myocardial perfusion, the 
method can be easily applied to reconstructing other sparse DCE 
MRI studies like tumor imaging where high accelerations can be 
achieved as motion is less of an issue. 

Although not shown here, in the presence of motion, we 
found that the STCR approach with radial undersampling 
produces better results as compared to cartesian undersampling.  
This can be due to the fact that in general the artifacts arising 

from radial undersampling are more benign than those from 
cartesian undersampling. 

Simulating radial data from a cartesian acquisition is a 
limitation of part of this study.  The limitation is shown not to 
be severe by the fact that comparable results were achieved with 
an actual radial acquisition. 

Only single coil results were presented.  The method can be 
applied independently on multi-coil images and the images can 
be combined in a square-root-of-sum-of-squares fashion.  
Alternatively the current method can be combined with parallel 
imaging techniques to achieve higher accelerations. 

Although spatial and temporal regularization terms both 
help in reducing the artifacts in images due to undersampling, 
temporal regularization performs significantly better than spatial 
regularization for a given acceleration factor.  As we go to 
higher acceleration factors and in the presence of motion, the 
temporal regularization when combined with spatial 
regularization helps in reducing the streaking artifacts.  Figure 
5a shows the zoomed image of the dataset in figure 3a which 
had respiratory motion.  Figure 5b shows the corresponding 
zoomed image frame reconstructed using temporal 
regularization only, that is 1 is chosen appropriately and 2 is 
set to zero in equation (1).  Figure 5c shows the corresponding 
zoomed frame reconstructed using the STCR approach.  We see 
that the streaking artifacts present in the LV blood pool in figure 
5b are reduced in figure 5c. 

The algorithm was implemented in Matlab and took about 
19 min to reconstruct a sparse dataset with 36 time frames 
obtained from ~15% of full data on a linux machine with an 
AMD dual core processor and 4GB ram. 
 

5. CONCLUSIONS 
 
A promising spatio-temporal regularization technique to 
significantly speed up the acquisition of DCE MRI was 
presented.  Images were reconstructed faithfully using as little 
as 15% of full data.  The method can be used to improve 
coverage of an organ, spatial and temporal resolution and signal 
to noise ratios even in the presence of some respiratory motion 
by using STCR on undersampled radial data. 
 
 
 

                                                       
 

    
(a) 

   
               (b) 

  
(c) 

 
                              (d) 

Figure 2 – Results of reconstruction from simulated sparse radial data from a single coil using STCR, no motion case.  (a) A single time frame reconstructed 
from full data using IFT with a region of interest in the LV blood pool.  (b) Corresponding time frame reconstructed using IFT from ~15% of full data (c) 
Corresponding time frame reconstructed from sparse data using STCR.  (d) Comparison of mean signal intensity time curves for the region shown in figure 

Figure 1.  Image showing the binary radial mask for a single time frame 
used to sparsify full k-space data. The white region represents the sampled 
data. 

6. FIGURES 

111



2a.  Even when selecting a large uniform region, the time curve from the conventional IFT reconstruction from sparse data did not match well with that from 
full data. 

 
 

(a) 

 
 

(b) 

 
 

 (c) 
  

(d) 
Figure 3 – Results of reconstruction from simulated sparse radial data from a single coil using STCR, with respiratory motion.  (a) A single time frame 
reconstructed from full data using IFT with a region of interest in the LV blood pool.  (b) Corresponding time frame reconstructed using IFT from ~25% of 
full data.  (c) Corresponding time frame reconstructed from sparse data using STCR.  (d) Comparison of mean signal intensity time curves for the region 
shown in figure 3a 
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(b) 

 
 
 

(c) 
 

(d) 
Figure 4 – Results of reconstruction from actual radial dataset with little respiratory motion from a single coil using STCR.  (a) A single time frame 
reconstructed from full data after gridding followed by IFT.  (b) Corresponding time frame reconstructed from ~15% of full data after gridding followed by 
IFT.  (c) Corresponding time frame reconstructed from sparse data using STCR approach from ~15% of full data. (d) Comparison of mean signal intensity 
time curves for the region shown in figure 4a. 

 
(a) 

 
(b) 

 
 (c) 

Figure 5 – Comparison of spatial and temporal regularization, with respiratory motion.  (a) A single time frame reconstructed from full data using IFT 
(Zoomed image of the dataset shown in figure 3a).  (b) Corresponding time frame reconstructed from ~25% of full data using only temporal regularization.  
An arrow pointing to the streaking in the LV blood pool is shown.  (c) Corresponding time frame reconstructed from ~25% of full data using STCR.  The 
arrow pointing to the LV blood pool shows the streaking is reduced. 
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